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2 S. M. Ali Eslami et al.

Abstract A good model of object shape is essential in

applications such as segmentation, detection, inpainting

and graphics. For example, when performing segmen-

tation, local constraints on the shapes can help where

object boundaries are noisy or unclear, and global con-

straints can resolve ambiguities where background clut-

ter looks similar to parts of the objects. In general, the

stronger the model of shape, the more performance is

improved. In this paper, we use a type of deep Boltz-

mann machine (Salakhutdinov and Hinton, 2009) that

we call a Shape Boltzmann Machine (SBM) for the

task of modeling foreground/background (binary) and

parts-based (categorical) shape images. We show that

the SBM characterizes a strong model of shape, in that

samples from the model look realistic and it can gener-

alize to generate samples that differ from training ex-

amples. We find that the SBM learns distributions that

are qualitatively and quantitatively better than existing

models for this task.

Keywords Shape · Generative · Deep Boltzmann

Machine · Sampling

1 Introduction

Models of the shape of an object play a crucial role in

many imaging algorithms, such as those for object de-

tection and segmentation (e.g. Borenstein et al, 2004;

Winn and Jojic, 2005; Alexe et al, 2010a; Eslami and

Williams, 2011), inpainting (e.g. Chan and Shen, 2001;

Bertozzi et al, 2007; Shekhovtsov et al, 2012) and graph-

ics (e.g. Anguelov et al, 2005). In object segmenta-

tion, local constraints on the shape, such as smoothness

and continuity, can help provide correct segmentations

where the object boundary is noisy or lost in shadow.

More global constraints, such as ensuring the correct

number of parts (legs, wheels, etc.), can resolve am-

biguities where background regions look similar to an

object part (e.g. Jojic et al, 2009). Shape also plays an

important role in generative models of images (e.g. Frey

et al, 2003; Williams and Titsias, 2004; Le Roux et al,

2011; Eslami and Williams, 2011). In general, the bet-

ter the model of object shape, the more performance

will be improved in these applications.

This paper addresses the question of how to build a

strong probabilistic model of object shapes. We define

a strong model as one which meets two requirements:

1. Realism – samples from the model look realistic;

2. Generalization – the model can generate samples

that differ from training examples.

The first constraint ensures that the model captures

shape characteristics at all spatial scales well enough

(a) Mean (b) MRF (c) FA

Fig. 1: Samples generated by (a) a mean-only model

of horse shapes, (b) a Markov Random Field model,

(c) discrete Factor Analysis as defined in Eqs. 18, 19.

to place probability mass only on images that belong

to the ‘true’ shape distribution. The second constraint

ensures that there are no gaps in the learned distri-

bution, i.e. that it also covers novel unseen but valid

shapes.

There have been a wide variety of approaches to

modeling 2D shape. The most commonly used mod-

els are grid-structured Markov Random Fields (MRFs)

or Conditional Random Fields (CRFs, e.g. Boykov and

Jolly, 2001). In such models, the pairwise potentials

connecting neighboring pixels impose very local con-

straints like smoothness but are unable to capture more

complex properties such as convexity or curvature, nor

can they account for longer-range properties. Carefully

designed high-order potentials (e.g. Kohli et al, 2007;

Komodakis and Paragios, 2009; Rother et al, 2009; Kohli

et al, 2009; Nowozin and Lampert, 2009) allow particu-

lar local or longer-range shape properties to be modeled

within an MRF, but these potentials fall short of cap-

turing all such properties so as to make realistic-looking

samples. For example, a strong shape model of horses

would know that horses have legs, heads and tails, that

these parts appear in certain positions consistent with

a global pose, that there are never more than four legs

visible in any given image, that the legs have to support

the horse’s body, along with many more properties that

are difficult to express in words but necessary to make

the shape look plausible.

Other approaches represent shape using a level set

or parameterized contour. These have different strengths

and weaknesses, but all share the fundamental challenge

of imposing sufficient constraints to limit the model to

valid shapes while allowing for the right degree of flex-

ibility to capture all possible shapes. For example, a

common approach when using a contour (or an image)

is to use a mean shape in combination with some prin-

cipal directions of variation, as captured by a Princi-

pal Components Analysis (Cootes et al, 1995) or Fac-

tor Analysis (Cemgil et al, 2005; Eslami and Williams,

2011). Such models capture the typical global shape of

an object and global variations on it (such as changes in
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Realism Generalization
Globally Locally

Mean e.g. Jojic and Caspi (2004) X - -
Deformation field e.g. Winn and Jojic (2005) - X X
Factor Analysis e.g. Cemgil et al (2005) X - X
Fragments e.g. Borenstein et al (2004) - X X
Grid MRFs/CRFs e.g. Rother et al (2004) - X X
High-order potentials e.g. Nowozin and Lampert (2009) limited X X
Database e.g. Gavrila (2007) X X -

Shape Boltzmann Machine X X X

Table 1: Comparison of a number of different shape models.

the aspect ratio of a face). However, they cannot cap-

ture multimodal distributions, and tend to be poor at

learning about local variations which affect only part of

the shape (e.g. the angle of a horse’s front legs).

Non-parametric approaches employ what is effec-

tively a large database of template shapes (Gavrila,

2007) or shape fragments (Borenstein et al, 2004; Ku-

mar et al, 2005). In the former case, because no attempt

is made to understand the composition of the shape, it

is impossible to generalize to novel shapes not present

in the database. In the latter case, the challenge lies

in how to compose the shape fragments to form valid

shapes. We are not aware of any method which can

generate a variety of realistic looking whole shapes by

composing fragments. Table 1 and Fig. 1 illustrate why

these existing approaches do not meet the criteria for a

strong shape model.

In this paper, we consider a class of models from

the learning community, known as deep Boltzmann ma-

chines (DBMs, Salakhutdinov and Hinton, 2009). The
main contribution of this paper is to show how a strong

model of binary shape can be constructed using a form

of DBM with a set of carefully chosen capacity con-

straints, which we call the Shape Boltzmann Machine

(SBM). The model is a generative model of object shape

and can be learned directly from training data. The

capacity constraints allow training on relatively small

training sets as are common e.g. for segmentation datasets.

Due to its generative formulation the SBM can be used

very flexibly, not just as a shape prior in segmentation

tasks but also, for instance, to synthesize novel shapes

in graphics applications, or to complete partially oc-

cluded shapes. We learn SBM models from several chal-

lenging shape datasets and evaluate them on a range of

shape synthesis and completion tasks. We demonstrate

that, despite the relatively small sizes of the training

datasets, the learned models are both able to generate

realistic samples and to generalize to generate samples

that differ from images in the training dataset. We pro-

vide a detailed discussion of the roles played by the dif-

ferent capacity constraints in making the SBM work.

We finally present an extension of the SBM that also

allows it to simultaneously model the shape of multi-

ple dependent regions such as the parts of an object,

which can in turn be used, for instance, as a prior in

parts-based segmentation tasks.

The remainder of the paper is structured as follows.

In Sec. 2 we review several families of probability distri-

butions that have been used in the literature to model

object shape. In Secs. 3 and 4 we present the SBM and

describe efficient inference and learning schemes for the

model. We provide an extensive experimental evalua-

tion in Sec. 5, and conclude with a discussion in Secs. 6

and 7.

2 Related work

In this section we will review several undirected models

suitable for modeling binary shape images. We will start

with the commonly used grid-structured MRF and de-

scribe how it can be modified to form an undirected

model known as the Restricted Boltzmann Machine

(RBM). We then describe how RBMs can be stacked to

form the hierarchical structure of the deep Boltzmann

machine (DBM).

We will specify undirected models in terms of an

energy function E(x1, . . . , xN ) defined over the relevant

set of random variables x1, . . . , xN (image pixels, possi-

bly latent variables). The associated Gibbs distribution

is then given by:

p(x1, . . . , xN ) =
1

Z
exp {−E(x1, . . . , xN )} , (1)

where Z =
∑
x1,...,xN

exp {−E(x1, . . . , xN )} is the nor-

malization constant. We will further use vi to denote

image pixel i, and v = (vi)
T to denote a column-vector

of image pixels. The pixels are assumed to be binary (we

consider categorical pixels in Sec. 3.2). Similarly we use

hj and h = (hj)
T to refer to binary hidden variable j

and a vector of hidden variables respectively.
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v

(a) Mean

v

(b) MRF

v

h1

(c) RBM

v

h1

h2

(d) DBM

v

h1

h2

(e) SBM

Fig. 2: Models of shape. (a) 1D slice of a mean model. (b) Markov Random Field in 1D. (c) Restricted Boltzmann

Machine in 1D. (d) Deep Boltzmann machine in 1D. (e) Shape Boltzmann Machine in 1D.

2.1 Grid Markov Random Fields

The simplest approach is to model each shape pixel vi
independently with categorical variables whose param-

eters are specified by the object’s mean shape (Fig. 2a).

Such a ‘mean model’ can be expressed in terms of an

energy function comprised of single-variable terms only:

E(v;Θ) =
∑
i

fi(vi; bi). (2)

For binary images, for instance, the fi might take the

form fi(vi; bi) = −bivi, specifying the unnormalized

log-probability of vi = 1 which results in the normalized

probability being p(vi = 1; bi) = exp(bi)/ (1 + exp(bi)).

A binary grid-structured MRF defines a distribution

over binary images v whose energy function is:

E(v;Θ) =
∑
i

fi(vi; bi) +
∑
(i,j)

fij(vi, vj ;wij), (3)

where i ranges over image pixels, (i, j) ranges over grid

edges between pixels i and j and the potentials are pa-

rameterized by bi and wij , again jointly denoted by Θ.

The grid structure of the MRF arises from the pairwise

potentials fij shown in Fig. 2b. These potentials induce

dependencies between neighboring pixels that can favor

local shape properties such as connectedness or smooth-

ness, but it is commonly accepted that grid-structured,

pairwise MRFs are very limited models of global shape

(e.g. Morris et al, 1996; Tjelmeland and Besag, 1998).

In an attempt to capture more complex or global

shape properties, much recent research has therefore fo-

cused on constructing higher-order potentials (HOPs),

which take the configuration of larger groups of image

pixels into account (i.e. their energy includes potentials

f that depend on more than two pixel variables). The

maximum number of variables per potential is referred

to as the ‘order’ of the model. Since, in general, the cost

of näıve inference (e.g. finding the most likely (MAP)

configuration of the variables) in MRFs grows exponen-

tially in the model order, there has been a strong em-

phasis on developing higher-order potentials for which

efficient inference schemes can be devised.

The higher order potentials in Rother et al (2009),

for instance, are defined in terms of a set of ‘reference

patterns’ and penalize deviations of groups of pixels

from these patterns. Such HOPs can be considered to

be introducing an auxiliary hidden variable connected

through pairwise potentials to multiple image pixels.

The introduction of such hidden variables provides a

powerful way to capture and learn complex properties

of multiple image pixels. When such hidden variables

are marginalized out they induce high-order constraints

amongst the image pixels. Yet, because the model only

contains pairwise potentials, both learning and infer-

ence remain tractable.

2.2 Restricted Boltzmann Machines

One model that makes heavy use of hidden variables

to introduce dependencies between the observed vari-

ables is the Restricted Boltzmann Machine (RBM, e.g.

Freund and Haussler, 1994). In an RBM, a number of

hidden variables h are used, each of which is connected

to all image pixels as shown in Fig. 2c. However, unlike

a grid MRF, there are no direct connections between

the image pixels v. There are also no direct connec-

tions between the hidden variables. Hence, the energy

function takes the form:

E(v,h;Θ) =
∑
i

bivi +
∑
i,j

wijvihj +
∑
j

cjhj , (4)

where i now ranges over pixels and j ranges over hid-

den variables. The key points to note are that the po-

tential functions are all simple products and that the

only pairwise potentials are those between each visible

and each hidden variable. By learning the parameters

of the potentials {wij , bi, cj}, the model can learn about

high-order constraints in the data set.

The effect of the latent variables can be directly ap-

preciated by considering the marginal distribution over



The Shape Boltzmann Machine 5

v which is given by marginalizing over the hidden vari-

ables:

p(v;Θ) =
∑
h

1

Z(Θ)
exp{−E(v,h;Θ)}, (5)

where the normalization constant Z(Θ) is given by

Z(Θ) =
∑

v,h exp{−E(v,h;Θ)}. This marginalization

allows the model to capture high-order dependencies

between the visible units. In fact, the hidden units can

be summed out analytically (e.g. Freund and Haussler,

1994), giving rise to an alternative formulation of the

RBM in terms of high-order potentials that no longer

includes latent variables. The energy of this marginal

distribution is given by:

E(v;Θ) =
∑
i

fi(vi; bi) +
∑
j

gj(v;W·j), (6)

where fi(vi; bi) = −bivi and gj(v) = − log(1 +

exp (
∑
i wijvi + cj)).

It is instructive to compare the form of Eq. 6 with

the energy of the grid-structured MRF in Eq. 3: whereas

the energy of the grid-structured MRF was comprised

of unary and pair-wise terms only (fi(vi) and fij(vi, vj)

respectively), the energy of the RBM involves unary po-

tentials as well as high-order potentials, each of which

is defined over all pixels v (the gj(v)). There is one such

high-order potential for each hidden unit, and it is these

high-order potentials that allow the RBM to model con-

siderably more complicated dependencies than, for in-

stance, pairwise MRFs.

Whilst marginalization over the latent variables makes

the high-order potentials explicit, the formulation that

includes latent variables suggests an efficient inference

scheme (in loose analogy to the use of latent variables

for the HOPs discussed in Sec. 2.1): When written as in

Eq. 4 the RBM forms a bipartite graph that has edges

only between hidden and visible variables. As a conse-

quence all hidden units are conditionally independent

given the visible units – and vice versa. This property

can be exploited to make inference exact and efficient.

The conditional probabilities are:

p(vi = 1|h) = σ(
∑
j

wijhj + bi), (7)

p(hj = 1|v) = σ(
∑
i

wijvi + cj), (8)

where σ(y) = 1/(1 + exp(−y)) is the sigmoid function.

This property allows for efficient implementations of

block-Gibbs sampling where all v and all h are sam-

pled in parallel in an alternating manner, which can be

exploited during approximate learning (Hinton, 2002;

Tieleman, 2008).

2.3 Deep Boltzmann Machines

RBMs can, in principle, approximate any binary distri-

bution (Freund and Haussler, 1994; Le Roux and Ben-

gio, 2008), but this can require an exponential number

of hidden units and a similarly large amount of training

data. The DBM provides a richer model by introducing

additional layers of latent variables as shown in Fig. 2d.

The additional layers capture high-order dependencies

between the hidden variables of previous layers and so

can learn about complex structure in the data using

relatively few hidden units. The energy of a DBM with

two layers of latent variables is given by:

E(v,h1,h2;Θ) =
∑
i

bivi +
∑
i,j

w1
ijvih

1
j +

∑
j

c1jh
1
j

+
∑
j,k

w2
jkh

1
jh

2
k +

∑
k

c2kh
2
k. (9)

As for the RBM, the posterior distribution over the

visibles is obtained by marginalization, this time with

respect to both sets of hidden variables:

p(v;Θ) =
∑
h1,h2

1

Z(Θ)
exp{−E(v,h1,h2;Θ)}, (10)

and the normalization constant defined analogously:

Z(Θ) =
∑

v,h1,h2 exp{−E(v,h1,h2;Θ)}.
Although exact inference is no longer possible in this

model, the conditional distributions p(v|h1), p(h1|v,h2),

and p(h2|h1) remain factorized due to the layering:

p(vi = 1|h1) = σ(
∑
j

w1
ijh

1
j + bi), (11)

p(h1j = 1|v,h2) = σ(
∑
i

w1
ijvi +

∑
k

w2
jkh

2
k + c1j ), (12)

p(h2k = 1|h1) = σ(
∑
j

w2
jkh

1
j + c2k). (13)

This allows for computationally efficient inference, ei-

ther by layerwise block-Gibbs sampling from the poste-

rior p(h1,h2|v) (Fig. 4), or by using a mean field pro-

cedure with a fully factorized approximate posterior as

described in Salakhutdinov and Hinton (2009). The lay-

ering further admits a layer-wise pre-training procedure

that makes it less likely that learning will get stuck in

local optima. Hence the DBM is both a rich model of

binary images and a tractable one.

3 Model

RBMs and DBMs are powerful generative models, but

also have many parameters. Since they are typically

trained on large amounts of unlabeled data (thousands

or tens of thousands of examples), this is usually less
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of a problem than in supervised settings. Segmented

images, however, are expensive to obtain and datasets

are typically small (hundreds of examples). In such a

regime, RBMs and DBMs can be prone to overfitting.

In this section we will describe how we can impose

a set of carefully chosen connectivity and capacity con-

straints on a DBM to overcome this problem: the re-

sulting SBM formulation not only learns a model that

accurately captures the properties of binary shapes, but

that also generalizes well, even when trained on small

datasets.

3.1 The Shape Boltzmann Machine

The SBM used below has two layers of latent variables:

h1 and h2. The visible units v are the pixels of a bi-

nary image of size N × M . In the first layer we en-

force local receptive fields by connecting each hidden

unit in h1 only to a subset of the visible units, corre-

sponding to one of four rectangular patches, as shown in

Fig. 3. In order to encourage boundary consistency each

patch overlaps its neighbor by r pixels and so has side

lengths of N/2 + r/2 and M/2 + r/2. We furthermore

share weights between the four sets of hidden units and

patches, however the visible biases bi are not shared.

Similar constraints have previously been used in the

literature (e.g. Desjardins and Bengio, 2008; Raina et al,

2009; Lee et al, 2009; Norouzi et al, 2009; Ranzato

et al, 2010, 2011), especially in convolutional and tiled-

convolutional formulations of RBMs and DBNs. In com-

parison, in the SBM the receptive field overlap of adja-

cent groups of hidden units is particularly small com-

pared to their sizes.

Overall, these modifications reduce the number of

first layer parameters by a factor of about 16 which

reduces the amount of data needed for training by a

similar factor. At the same time these modifications

take into account two important properties of shapes:

first, the restricted receptive field size reflects the fact

that the strongest dependencies between pixels are typ-

ically local, while distant parts of an object often vary

more independently (the small overlap allows boundary

continuity to be learned primarily at the lowest layer);

second, weight sharing takes account of the fact that

many generic properties of shapes (e.g. smoothness) are

independent of the image position.

For the second layer we choose full connectivity be-

tween h1 and h2, but restrict the relative capacity of

h2: we use around 4×500 hidden units for h1 vs. around

50 for h2 in our single class experiments. While the first

layer is primarily concerned with generic, local proper-

ties, the role of the second layer is to impose global

r

N

v

h1

h2

Fig. 3: The Shape Boltzmann Machine in 2D. We

enforce local receptive fields by connecting each hidden

unit in h1 only to one of four rectangular patches.

constraints, e.g. with respect to the class of an object

shape or its overall pose. The second layer mediates de-

pendencies between pixels that are far apart (not in the

same local receptive field), but these dependencies will

be weaker than between nearby pixels that share first-

level hidden units. Limiting the capacity of the second-

layer encourages this separation of concerns and helps

to prevent the model from overfitting to small training

sets. Note that this is in contrast to Salakhutdinov and

Hinton (2009) who use a top-most layer that is at least

as large as all of the preceding layers.

3.2 A multi-region SBM

The SBM model described in the previous section rep-

resents shapes as binary images and can be used, for ex-

ample, as a prior when segmenting a foreground object

from its background. While it is often sufficient to con-

sider the foreground object as a single region without

internal structure, there are situations where it is de-

sirable to explicitly model multiple, dependent regions,

e.g. in order to decompose the foreground object into

parts (Winn and Jojic, 2005; Kapoor and Winn, 2006;

Thomas et al, 2009; Bo and Fowlkes, 2011; Eslami and

Williams, 2011).

In the SBM this can be achieved by using categor-

ical visible units instead of binary ones: Visible units

with L + 1 different states (i.e. vi ∈ {0, . . . L}) allow

the modeling of shapes with L parts. The visible unit

representing the i-th pixel then indicates which of the

L parts or the background the pixel belongs to (here

we treat the background as part 0).
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We use a ‘one-of-L+1’ encoding for vi, i.e. we choose

vi to be L+1 dimensional binary vectors and for vi = l

we set vil = 1 and vil′ = 0, ∀l′ 6= l. The energy function

of this extended model is given by:

E(V,h1,h2|θs) =
∑
i,l

blivli +
∑
i,j,l

w1
lijvlih

1
j +

∑
j

c1jh
1
j

+
∑
j,k

w2
jkh

1
jh

2
k +

∑
k

c2kh
2
k, (14)

where we use V to denote the the matrix with the L+1

dimensional vectors vi in its rows.

This change in the nature of the visible units pre-

serves all of the appealing properties of the SBM. In

particular the conditional distributions over the three

sets of variables V, h1, and h2 remain factorial. The

only change is in the specific forms of the two condi-

tional distributions p(v|h1) and p(h1|v,h2):

p(vi = l|h1) =
exp

(∑
j w

1
lijh

1
j + bli

)
∑L
l′=0 exp

(∑
j w

1
l′ijh

1
j + bl′i

) , (15)

p(h1j = 1|V,h2) = σ(
∑
i,l

w1
lijvli +

∑
k

w2
jkh

2
k + c1j ) (16)

where in the left-hand-side of Eq. 15 we use vi = l to

denote the fact that vil = 1 and vil′ = 0, ∀l′ 6= l as

explained above.

Note that Eq. 16 is effectively the same as Eq. 13

except that there are now L + 1 binary visible units

per pixel. The conditional distribution given in Eq. 15

implements the constraint that for each pixel only one

of these L+1 binary units can be active, i.e. only one of

the parts can be present. Due to the particular form of

the conditional distribution (Eq. 15) categorical visible

units are often referred to as ‘softmax’ units (e.g. Bridle,

1990). In our experiments below we explore SBMs with

6 or 7 parts.

It should be noted that the above formulation of the

multi-part SBM is especially suited to model the shapes

of several dependent regions such as non-occluding (or

lightly occluding) object parts. For modeling the shapes

of multiple independent regions, as arise in the case of

multiple occluding objects, it might be more suitable to

model occlusion explicitly, as in Le Roux et al (2011).

4 Learning

Learning of the model involves maximizing log p(v;Θ)

of the observed data v with respect to its parameters

Θ = {b,W 1,W 2, c1, c2} (see Eqs. 5, 10). The gradi-

ent of the log-likelihood of a single training image with

respect to the parameters is given by:

∇Θ log p(v;Θ) = 〈∇ΘE(v′,h1,h2;Θ)〉pΘ(v′,h1,h2)

− 〈∇ΘE(v,h1,h2;Θ)〉pΘ(h1,h2|v), (17)

and the total gradient is obtained by summing the gra-

dients of the individual training images (e.g. Ackley

et al, 1985; Freund and Haussler, 1994; Salakhutdinov

and Hinton, 2009). The first term on the right hand

side is the expectation of the gradient of the energy

(see Eqs. 9, 14) where the expectation is taken with

respect to the joint distribution over v, h1, h2 defined

by the model. The second term is also an expectation

of the gradient of the energy, but this time taken with

respect to the posterior distribution over h1, h2 given

the observed image v. Although the gradient is readily

written out, maximization of the log-likelihood is dif-

ficult in practice. Firstly, except for very simple cases

it is intractable to compute as both expectations in-

volve a sum over a number of terms that is exponential

in the number of variables (visible and hidden units).

Secondly, gradient ascent in the likelihood is prone to

getting stuck in local optima.

In this work we closely follow the procedure pro-

posed in Salakhutdinov and Hinton (2009) which min-

imizes these difficulties in three ways: (a) it approx-

imates the first expectation in Eq. 17 with samples

drawn from the model distribution via MCMC; (b) it

approximates the second expectation using a mean-field

approximation to the posterior; and (c) it employs a

pre-training strategy that provides a good initialization

to the weights W 1, W 2 before attempting learning in

the full model.

Learning proceeds in two phases. In the pre-training

phase we greedily train the model bottom up, one layer

at a time. The purpose of this phase is to find good

initial values for all parameters of the model. We begin

by training an RBM on the observed data. The like-
lihood gradient of an RBM takes a form very similar

to Eq. 17. Unlike for the DBM, for an RBM the second

expectation over the conditional distribution of the hid-

den units h given the data is tractable and can be com-

puted exactly (see Eq. 8). The first expectation, taken

with respect to the full model distribution, however,

remains intractable. We therefore perform stochastic

maximum likelihood learning (SML, also referred to as

‘persistent contrastive divergence’; Neal, 1992; Tiele-

man, 2008; Salakhutdinov and Hinton, 2009) where this

expectation is approximated using samples from the

model distribution obtained via MCMC. While a näıve

MCMC approximation of the expectation would be com-

putationally very expensive, considerable computational

savings can be obtained through a set of Markov chains

that are initialized at the beginning of learning and

then maintained over the course of learning (hence the

adjunct ‘persistent’), alternating updates of the model

parameters Θ with Gibbs sampling steps to update

the sample approximation to the model distribution.
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v

h1

h2

. . .

image reconstruction sample 1 sample n

Fig. 4: DBM MCMC. Block-Gibbs MCMC sampling scheme, in which v, h1 and h2 variables are sampled in

turn. Note that each sample of h1 is obtained conditioned on the current state of v and h2. For sufficiently large

values of n, sample n will be uncorrelated with the original image.

This algorithm is an instance of a stochastic approxima-

tion scheme of the Robbins-Monro type (Robbins and

Monro, 1951; Younes and Sud, 1989; Younes, 1999).

The number of hidden units of this RBM is the same

as the size of h1 in the full SBM model and it obeys

the same connectivity constraints as the SBM’s first

layer. Once this RBM is trained, we infer the condi-

tional mean of the hidden units using Eq. 8 for each

training image. The resulting vectors then serve as the

training data for a second RBM with the same number

of hidden units as h2, which is trained using SML.

We use the parameters of these two RBMs to initial-

ize the parameters of the full SBM model as described

in Salakhutdinov and Hinton (2009). Simply speaking,

we use the weights of the first RBM to initialize the

parameters of the lower layer of the SBM (b and W 1),

and the parameters of the second RBM to initialize

the upper layer (W 2 and c2). As discussed in detail in

Salakhutdinov and Hinton (2009) special care must be

taken to account for the fact that in the full model h1

now receives input from both v and h2.

In the second phase we then perform approximate

stochastic gradient ascent in the likelihood of the full

model to fine-tune the parameters in an expectation-

maximization-like scheme. This involves the same sample-

based approximation to the gradient of the normaliza-

tion constant used for learning the RBMs (Tieleman,

2008; Salakhutdinov and Hinton, 2009), as well as a

fully factorized mean-field approximation to the poste-

rior p(h1,h2|v). This joint training is essential to sep-

arate out learning of local and global shape properties

into the two hidden layers.

5 Experiments

We performed an extensive experimental evaluation of

the SBM model on five datasets in total. The presenta-

tion of the results is divided into four parts:

In Sec. 5.1 we focus on demonstrating that the SBM

can indeed act as a strong model of object shape. For

this purpose we perform qualitative and quantitative

evaluations on two challenging datasets: the Weizmann

horse datasets and motorbikes from Caltech-101. De-

spite both datasets being relatively small we find that

the learned models capture essential high- and low-level

properties of the shapes in the training data, produc-

ing realistic samples and generalizing to novel shapes

not present in the training data. Quantitatively we find

that the SBM outperforms several baseline models in a

difficult shape completion task.

The goal of Sec. 5.2 is to examine the contribution of

the various architectural choices detailed in Sec. 3 to the

success of the SBM. We address the impact of localized

receptive fields, weight-sharing, and of the hierarchical

structure of the model.

In many situations it is desirable or even necessary

to model not just a single but multiple object classes

with the same model. In Sec. 5.3 we therefore intro-

duce an additional dataset comprised of multiple object

categories (Weizmann horses and several animals from

Caltech-101) and demonstrate that the SBM, with a

single set of parameters, can learn a joint model of sev-

eral categories from unlabeled data, generalizing reli-

ably within each category.

Finally, in Sec. 5.4 we analyze the behavior of the

multi-part extension of the SBM introduced in Sec. 3.2
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on two multi-part datasets, the ETHZ cars dataset and

the HumanEva pedestrians dataset.

5.1 Generalization and Realism

In this section we demonstrate that the SBM can be

trained to be a strong model of object shape. For this

purpose we consider two challenging datasets: Weiz-

mann horses and Caltech-101 motorbikes.

Weizmann horse dataset The Weizmann horse dataset

(Borenstein et al, 2004) contains 327 images, all of horses

facing to the left, but in a variety of poses1. The dataset

is challenging because in addition to their overall pose

variation, the positions of the horses’ heads, tails and

legs change considerably from image to image.

The binary images are cropped and normalized to

32 × 32 pixels (see Fig. 5a). We trained an SBM with

overlap r = 4, and 2,000 and 100 units for h1 and h2

respectively. The first layer was pre-trained for 3,000

epochs (iterations) and the second layer for 1,000 epochs.

After pre-training, joint training was performed for 1,000

epochs. Our Matlab implementation completed train-

ing in around 4 hours, running on a dual-core, 3GHz

PC with 4GB of memory.

Caltech motorbikes dataset Our second dataset is based

on Caltech-101 (Fei-Fei et al, 2004), and consists of

798 motorbike silhouettes2. These binary images are of

higher resolution than the horses and are cropped and

normalized to 64×64 pixels (see Fig. 7a). We trained an

SBM with overlap r = 4, and 1200 and 50 units for h1

and h2 respectively, using the same schedule as before.

It is noteworthy that for both datasets the number

of training images is relatively small compared to the

variability present in the data and, in particular, com-

pared to the size of datasets that deep learning models

are typically trained on. Both datasets consist of signif-

icantly less than 1,000 training images which is in stark

contrast to the several thousand or, more often, tens of

thousands of training images for most applications of

deep models in the literature. Salakhutdinov and Hin-

ton (2009), for instance, use the 60,000 training images

from the MNIST dataset for their experiments.

Baseline models For comparison we considered two base-

line models: First, we trained a Factor Analysis (FA)

model with 10 latent dimensions. The FA model was

modified to work on discrete binary images. Similar to

the Clipped Factor Analysis model described in Cemgil

1 http://msri.org/people/members/eranb
2 http://vision.caltech.edu/Image Datasets/Caltech101

et al (2005) the independent Gaussian latent variables

are mixed linearly and then passed through a sigmoid

to obtain binary observed variables:

p(h) = N (0, I), (18)

p(vi = 1|h) = σ(
∑
j

wijhj + bj), (19)

where 0 is a vector of zeros and I denotes the identity

matrix. The model was trained using gradient ascent,

and inference was performed using elliptical slice sam-

pling as described in Eslami and Williams (2011).

Our second baseline model was the RBM as defined

in Eq. 4. We used 500 hidden units and trained the

model using SML as described in Sec. 4. For both base-

line models the hyperparameters and number of hidden

units were manually optimized for each dataset.

5.1.1 Realism

To assess the Realism requirement, we sampled a set of

shapes from each model, as shown in Fig. 5 and Fig. 7

for the horse and motorbike datasets respectively.

The FA shape models can be sampled from directly.

For the RBM and SBM models samples are generated

by extended block Gibbs sampling. In particular, for the

SBM models samples were generated using the scheme

outlined in Fig. 4. As is common in the literature, we

visualize the samples by showing for each pixel i the

(grayscale) conditional probability of that pixel p(vi =

1|h) given the particular hidden configuration that con-

stitutes the current state of the Markov chain. Binary

samples can be generated per-pixel from a Bernoulli dis-
tribution where the gray level specifies the distribution

mean.

FA effectively defines a transformed Gaussian distri-

bution over the image pixels and is thus inherently uni-

modal. In order to account for the diversity of shapes

in the training data it is therefore forced to allocate

probability mass to images that do not correspond to

realistic horse or motorbike shapes, as shown in Figs. 5b

and 7b.

By contrast, the RBM can, in principle, account

for multi-modal data and could thus assign probabil-

ity mass more selectively. However, as the samples of

horses (Fig. 5c) indicate, the model also fails to learn

a good model of the variability of horse shapes – the

samples are mostly of the same pose, and details of the

shape are lost when the pose changes. We found this

effect to be even more dramatic for RBM samples of

motorbikes, due to the larger image size (see Fig. 7c).

These problems are symptomatic of training RBMs

with insufficient data. The SBM aims to overcome these
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(a) Data

(b) Factor Analysis

(c) Restricted Boltzmann Machine

(d) Shape Boltzmann Machine

Fig. 5: Sampled horses. (a) A selection of images from the Weizmann horse dataset. (b) A collection of samples

from a discrete Factor Analysis model. The Gaussianity assumption forces the model to allocate probability mass

to unlikely horse shapes. (c) Samples from an RBM. (d) Samples from an SBM. The model generates samples of

varying pose, with the correct numbers of legs and details are preserved (samples are arranged left-right, up-down

in decreasing order of generalization).
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(a) Sample - Closest - Generalization

(b) Generalizations

Fig. 6: Generalization. (a) A sample from the SBM, the closest image in the training dataset to the generated

sample, and the difference between the two images. Red pixels have been generated by the sample but are absent

in the training image; yellow pixels are present in the training image but absent in the sample. The model has

generalized to an unseen, but realistic horse shape. (b) Generalizations made in each of the samples in Fig. 5d.

problems through a combination of connectivity con-

straints, weight sharing, and model hierarchy. As we

will discuss in more detail in Sec. 5.2 below, the com-

bination of these ingredients is necessary to obtain a

strong model of shape.

Samples from the SBM for horses and motorbikes

are shown in Figs. 5d and 7d respectively. First, we

note that the model generates natural shapes from a

variety of poses. Second, we observe that details such

as legs (in the case of horses) or handle bars, side mir-

rors, and forks (in the case of motorbikes) are preserved

and remain sharply defined in the samples. Third, we

note that the horses have the correct number of legs

while motorbikes have, for instance, the correct num-

ber of handle bars and wheels. Finally, we note that the

patch overlap ensures seamless connections between the

four quadrants of the image. Indeed, horse and motor-

bike samples generated by the model look sufficiently

realistic that we consider the model to have fulfilled the

Realism requirement.

5.1.2 Generalization

We next investigated to what extent the SBM meets the

Generalization requirement, to ensure that the model

has not simply memorized the training data. In Fig. 6

we show for horses the difference between the sampled

shapes from Fig. 5d and their closest images in the

training set. We use the Hamming distance between

training images and a thresholded version of the con-

ditional probability (> 0.3), as the similarity measure.

This measure was found to retrieve the visually most

similar images. Red indicates pixels that are in the sam-

ple but not in the closest training image, and yellow

indicates pixels in the training image but not in the

sample. Fig. 7e shows a similar analysis for samples

from the model learned for motorbikes. Both models

generalize from the training data-points in non-trivial

ways whilst maintaining validity of the overall object

shape. These results suggest that the SBM generalizes
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(a) Training

(b) Factor Analysis

(c) Restricted Boltzmann Machine

(d) Shape Boltzmann Machine

(e) Shape Boltzmann Machine differences

Fig. 7: Results on Caltech-101 motorbikes. (a) A selection of images from the training set (at 64× 64 pixels).

(b) A set of samples from the FA baseline model. (c) A set of samples from the RBM baseline model. (d) A chain of

samples generated by the SBM. (e) Difference images for each of the samples in (d) (same format as in Fig. 6): The

model generalizes from training examples in non-trivial ways, whilst maintaining overall motorbike look-and-feel.

to realistic shapes that it has not encountered in the

training set.

5.1.3 Shape completion

We further assessed both the realism and generalization

capabilities of the SBM by using it to perform shape

completion, where the goal is to generate likely con-

figurations of pixels for a missing region of the shape,

given the rest of the shape. To perform completion we

obtain samples of the missing – or unobserved – pix-

els vU conditioned on the remaining (observed) pixels

vO (U and O denote the set indices of unobserved and

observed pixels respectively). This is achieved using a

Gibbs sampling procedure that samples from the con-

ditional distribution. In this procedure, samples are ob-

tained by running a Markov chain as before, sampling

v, h1, and h2 from their respective conditional distri-

butions, but every time v is sampled we ‘clamp’ the

observed pixels vO of the image to their given values,

updating only the state of the unobserved pixels vU .

Since the model specifies a distribution over the miss-

ing region p(vU |vO), multiple such samples capture the

variability of possible solutions that exist for any given

completion task. In Fig. 8 we show how the samples

become more constrained as the missing region shrinks.

Fig. 9 and Fig. 10 show sampled completions of regions

of horse and motorbike images that the model had not

seen during training. Despite the large sizes of the miss-

ing portions, and the varying poses of the horses and

motorbikes, completions look realistic.
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Fig. 8: Shape completion variability. Blue in the first column indicates the missing regions. The samples

highlight the variability in possible completions captured by the model. As the missing region shrinks, the samples

become more constrained.

Fig. 9: Sampled image completion for horses. The SBM completes rectangular imputations of random size

on images not seen during training.

Fig. 10: Sampled image completion for motorbikes. The SBM completes rectangular imputations of random

size on images not seen during training.
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(a) (b)

(c) (d)

Fig. 11: Constrained shape completion. Missing regions (blue pixels, top row) are completed using the SBM

and by finding the closest match (middle row) to the prescribed pixels in the training data. (a) The horse’s back is

pulled up by the SBM (bottom row) using an appropriate ‘on’ brush. Notice how the stomach moves up and the

head angle changes to maintain a valid shape. The horse’s back is then pushed down with an ‘off’ brush. (b) Given

only minimal user input, the model completes the images to generate realistic shapes. (c,d) Motorbikes. In many

cases, the nearest neighbor method fails to find a suitable training image to satisfy the constraints.

The SBM’s ability to do shape completion suggests

applications in a computer graphics setting. Sampled

completions can be constrained in real-time by simply

clamping certain pixels of the image. In Fig. 11a and

Fig. 11c we show snapshots of a graphical user inter-

face in which the user modifies a horse or motorbike

silhouette with a digital brush. The model’s ability to

generalize enables it to generate samples that satisfy

the user’s constraints. The model’s accurate knowledge

about horse and motorbike shapes ensures that the

samples remain realistic.

As a direct comparison we also consider a simple

data-base driven (‘non-parametric’) approach where we

try to find suitable completions via a nearest-neighbor

search in our database of training shapes. As shown in

Fig. 11 such a database-driven approach can fail to find

shapes that match the constraints.

The same approach can also be used to generate

complete silhouettes in different poses given simple stick

figures provided by the user (see Figs. 11b and 11d).

This GUI and a video showing its use may be down-

loaded from http://bit.ly/ShapeBM.

5.1.4 Quantitative comparison

A natural way to directly evaluate a generative model

quantitatively is by computing the likelihood of some

held-out data under the model. Unfortunately, this like-

lihood computation is intractable for DBMs. Approxi-

mations, e.g. based on annealed importance sampling,

http://bit.ly/ShapeBM
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(Neal, 2001; Salakhutdinov and Murray, 2008; Salakhut-

dinov and Hinton, 2009; Murray and Salakhutdinov,

2009) are computationally very expensive and their ac-

curacy can be difficult to assess.

As an alternative we therefore introduce what we

will refer to as an ‘imputation score’ for the shape com-

pletion task as a measure of the strength of a model.

We collect additional horse and motorbike silhouettes

from the web (25 horses and 25 motorbikes), and di-

vide each into 9 segments. We then perform multiple

imputation tests for each image. In each test, we re-

move one of the segments and estimate the conditional

probability of that segment under the model, given the

remaining 8 segments. The log probabilities are then

averaged across the different segments and images to

give the score.

Except for the mean model (where they are trivial)

the conditional distributions over the subsets of unob-

served pixels given the rest of the image are infeasible

to compute in practice due to the dependencies intro-

duced by the latent variables. We therefore approximate

the required conditional log-probabilities via MCMC:

for a particular image and segment we draw configu-

rations of the latent variables from the posterior given

the observed part of the image and then evaluate the

conditional probability of the true configuration of the

unobserved segment given the latent variables, i.e. we

compute:

p(vU |vO) ≈ 1

S

∑
s

p(vU |ĥs), (20)

where vU and vO indicate the set of unobserved/observed

pixels (corresponding to the one removed and the 8 re-
maining segments), and ĥs ∼ h|vO are samples from

the conditional distribution over the hidden units given

the observed part of the image obtained via MCMC3.

Provided that our MCMC scheme allows us to sample

from the true posterior the right hand side of Eq. 20

provides us with an unbiased estimate of p(vU |vO).

A high score in this test indicates both the realism

of samples and the generalization capability of a model,

since models that do not allocate probability mass on

good shapes (from the ‘true’ generating distribution of

horses) and models that waste probability mass on bad

shapes are both penalized. In particular for the motor-

bike dataset we found a small amount of regularization

to be beneficial for most models. This prevented overly

confident predictions (and hence large penalties in the

log-probability), e.g. in the situation where a particular

pixel happened to be 0 for all training images, but 1 in

one or some of the test images. To this end we replaced

3 We set S = 10, 000 in our experiments.

Horses Motorbikes
Score d Score d

Without
regularization

Mean -50.72 0.000 -248.28 0.000
FA -41.28 0.000 -109.17 0.000
RBM -48.57 0.000 -142.47 0.000
SBM -27.90 0.000 -132.97 0.000

With
regularization

Mean -50.65 0.012 -154.14 0.010
FA -40.33 0.028 -108.41 0.006
RBM -47.52 0.016 -142.47 0.000
SBM -26.90 0.014 -104.21 0.034

Table 2: Imputation scores. In the ‘with regulariza-

tion’ scenario, we also report for each model the regu-

larization d which maximizes that model’s score.

the predicted probability p of a pixel being 1 given the

observed portion of the image by d + (1 − 2d) · p. The

results of these experiments can be seen in Table 2. For

optimal damping SBM is the top-performing model on

both the horses and motorbikes datasets, but the FA

model performs well on the motorbikes.

5.2 Analysis of the SBM formulation

So far we have demonstrated that the SBM is able to

learn strong models of object shapes, producing real-

istic samples without overfitting to the training data.

In this section we explore in more detail how these ca-

pabilities of the SBM depend on the specific properties

of the architecture described in Sec. 3: local receptive

field and weight sharing; hierarchical formulation; and

receptive field overlap.

5.2.1 Generalization through local receptive fields

In the first layer of the SBM we employ localized recep-

tive fields and parameter sharing. This dramatically re-

duces the number of parameters that need to be learned

and in consequence substantially reduces the propensity

of the model to overfit.

One way to diagnose this effect is to inspect the first

layer weight matrix of the SBM and compare it to those

of the two baseline models (RBM and FA) which were

implemented without weight sharing. Each column in

the weight matrices W of the models (Eqs. 4, 9, 19

for the RBM, SBM, and FA model respectively) corre-

sponds to a ‘filter’ that is associated with the activation

of one of the hidden units. As shown in Fig. 12a and 12b,

the filters for the FA and RBM have only global struc-

ture. This means that these models are unable to com-

bine local filters to generate novel horse shapes. In con-

trast, because spatial locality and parameter-sharing

are built into the SBM, it learns general-purpose filters
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(a) Factor Analysis

(b) Restricted Boltzmann Machine

(c) Shape Boltzmann Machine

Fig. 12: First layer example weights. (a) Weights learned by the FA model capture only global modes of

variability (32×32). (b) Weights learned by the RBM also fail to capture local modes of variation (32×32).

(c) General, more local filters learned by an SBM (18×18).

that allow it to generalize factorially from the training

examples as can be seen in Fig. 12c.

Increasing the number of hidden units in the RBM

in the hope that additional capacity would allow it to

learn more local filters did not solve the problem but

rather worsened the overall results, suggesting that it

is indeed the lack of data rather than a lack of capacity

that is the issue. On the other hand, an RBM with

similar connectivity constraints as the first layer of the

ShapeBM has fewer parameters than a fully connected

RBM and thus suffers less from overfitting (cf. Fig. 13).

But as we discuss in more detail in the next section

without the second layer it fails to account for global

constraints on the shape.

5.2.2 Global consistency through hierarchy

Localized receptive fields and weight sharing are crucial

for the ability of the SBM to generalize well. In order

to obtain a model that produces realistic samples these

need to be embedded in a hierarchical architecture that

ensures the global consistency of the shapes.

This is demonstrated by the samples in Fig. 13:

They are obtained from an RBM equivalent to only

the first layer of the SBM, i.e. this RBM has localized

receptive fields with a small overlap between them. It

was trained on the Weizmann horse dataset and has

the same number of hidden units as the first layer of the

horse SBM for which we have shown samples above. Un-

like the fully connected RBM whose samples are shown

in Fig. 5c this constrained RBM learns to generate a

diverse set of shapes. The samples are, however, only

locally plausible. In contrast to the samples from the

SBM they do not exhibit any of the large-scale struc-

ture present in the training data and therefore are not

realistic horse shapes in most cases. The second layer

of the SBM is crucial for enforcing global consistency

of the shapes.

In order to further understand the role of the hierar-

chy and to tease apart the roles of the two layers of the

SBM in representing shape information we performed

the following experiment: We fixed the configuration of

the hidden units in the second layer (h2) to values in-

ferred from training images and then iterated between

sampling v and h1 only. In Fig. 14 we plot two sets

of samples for two different settings of h2. We observe

that by freezing h2 we fix the horse’s pose, but since

h1 changes from sample to sample the position of its

legs and other small details vary. This suggests that

the highest layer in the model predominantly captures

global information and has learned to be invariant to

small-scale changes in shape (achieving an effect simi-

lar to the pooling layers e.g. in Lee et al, 2009). This

automatic, implicit, separation of large-scale and small-

scale statistics is fundamental to the operation of the

model.
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(a) Samples

(b) Global errors

Fig. 13: Samples from an SBM with only a single layer. (a) A set of samples drawn from an RBM with

the same connectivity constraints (localized receptive fields; small receptive field overlap; weight sharing) as the

first layer of the SBM. Although the RBM enforces local smoothness (including at the receptive field boundaries,

due to the overlap) it fails to enforce global constraints on the pose of the horses therefore often appears distorted

(see, in particular, examples in (b); the pink lines indicate receptive field boundaries). Note that the visible biases

bi are not shared, and this is what allows the model to reproduce very coarsely the main features of horse shapes.

5.2.3 Local consistency through receptive field overlap

The hierarchical formulation encourages global consis-

tency of the shapes by coordinating the overall pose

across receptive fields. In order to also ensure local con-

sistency at the receptive field boundaries we further in-

troduced a small overlap of the receptive fields (denoted

by r in Fig. 3).

The effect of this is illustrated in Fig. 15 where we

show samples from an SBM (2-layer with local recep-

tive fields and weight sharing) trained in the usual man-

ner, except that there is no receptive field overlap (i.e.

r = 0). This leads to a loss of continuity at the patch

boundaries and also (albeit to a lesser extent) to a more

global deterioration of sample quality, suggesting that

the second layer on its own struggles to enforce local

consistency. This global deterioration is due to the fact

that some of the modeling capacity of the second layer

is now needed to enforce local continuity. Increasing

the number of hidden units in the second layer would

reduce this deterioration at the cost of increasing the

number of parameters and so reducing the advantage

gained from the hierarchical structure. Experimentally

we found that it led to overfitting and did not give sat-

isfactory results.

5.3 Multiple object categories

Class-specific shape models are appropriate if the class

is known, but for segmentation/detection applications

this may not be the case. A similar situation arises if

the view point is not fixed (e.g. objects can appear right

or left facing). In both cases there is large overall vari-

ability in the data but the data also form relatively

distinct clusters of similar shapes (e.g. all objects from

a particular category, or all right-facing objects).

To investigate whether the SBM is able to success-

fully deal with such additional variability and struc-

ture in the data we applied it to a dataset consisting of

shapes from multiple object classes and tested whether

it would be able to learn a strong model of the shapes

of all classes simultaneously.

We trained an SBM on a combination of the Weiz-

mann data and 3 other animal categories from Caltech-

101 (Fei-Fei et al, 2004). In addition to 327 horse im-
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Fig. 14: Clamped sampling. Sampling chains are run for two fixed, but different, configurations of h2. The

horse’s pose remains fixed, but configurations of legs, and neck and back positions vary. This suggests that the

highest layer in the model predominantly captures high-level pose information.

ages, the dataset contains images of 68 dragonflies, 78

llamas and 59 rhinos (for a total of 531 images). The

images are cropped and normalized to 32 × 32 pixels.

An SBM with r = 4, and 2,000 and 400 units for h1

and h2 was jointly trained without information about

image class.

In our experiments we found that the SBM still

learns a strong model, as demonstrated by Fig. 16 which

shows samples as well as shape completions obtained

from the learned model.

We further wanted to know whether the SBM’s un-

supervised learning procedure has led it to discover the

underlying grouping of the shapes into categories. In

order to test this, we compute average inter- and intra-

class distances of all training instances, both in data-

space (v) and in latent-space (h2). In Fig. 17a we plot

the ratio of these distances for the four classes. These re-

sults suggest that the SBM latent representation groups

the shapes from each category much more closely than

they are in pixel-space.

We also tested how well the model discovered object

categories by using it to classify in a setting with very

few labeled examples. We trained a generalized linear

model (GLM) using the glmnet algorithm (Friedman

et al, 2010) on between T = 1 . . . 20 randomly selected

images of each category and tested on 59−T images per

category, averaging over 100 runs. We find that despite

its smaller size, given only a few training examples, the

latent h2 is most discriminative (see Fig. 17b). After

just one labeled example per category, classification ac-

curacy using the trained GLMs is 56.0% using h2 vs.

just 36.8% using v.

Overall these results suggest that the SBM is not

only able to deal with the additional variability arising

from multiple object classes, but also reliably general-

izes within each class. It further appears to naturally

separate clusters of related shapes in its latent repre-

sentation, which can be exploited, for instance, for clas-

sification purposes.

5.4 Multiple object parts

For the evaluation of the multi-part formulation of the

SBM presented in Sec. 3.2 we considered the ground

truth label images from two segmentation datasets:

ETHZ cars dataset The first dataset that we consid-

ered was the ETHZ labeled cars dataset (Thomas et al,

2009), which itself is a subset of the LabelMe dataset

(Russell et al, 2008). It consists of 139 images of cars,

all in the same semi-profile view. We used the associ-

ated ground-truth segmentations for L = 6 parts (body,

wheel, window, bumper, license plate, headlight; see

Fig. 18a for examples). We trained an SBM at 50× 50

pixels with overlap r = 4, and 2,000 and 100 hidden

units in the first and second layers respectively. Each

layer was pre-trained for 3,000 epochs and joint training

was performed for 1,000 epochs.

HumanEva pedestrians dataset The second dataset we

considered was a labeled version of HumanEva (Sigal

et al, 2010; annotations by Bo and Fowlkes, 2011) show-

ing humans in different poses and facing in different di-

rections. The images are annotated with ground-truth

segmentations for L = 7 different parts (hair, face, up-

per and lower clothes, shoes, legs, arms; see Fig. 19a).

We trained an SBM on 684 images together with their

flipped counterparts (for a total of 1,368 images) at

48 × 24 pixels with overlap r = 4 (this corresponds

to a receptive field size in the first layer of 26 × 14),

and 400 and 50 hidden units in the first and second

layers respectively. Each layer was pre-trained for 3,000

epochs. After pre-training, joint training was performed

for 1,000 epochs.

To assess the realism and generalization character-

istics of the learned SBM models we then performed

experiments analogous to the ones in Sec. 5.1: Figure

18b and 19b show a chain of unconstrained samples

from the SBM models learned for cars and pedestrians
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(a) Samples

(b) Misalignments

Fig. 15: Samples without overlap. (a) Samples from a SBM trained on Weizmann horses in the same way as

the SBM described in Sec. 5.1 except that there is no receptive field overlap in the first layer (i.e. r = 0). The lack

of receptive field overlap leads to discontinuities at the receptive field boundaries not present in the samples from

the SBM trained with r = 4 (see in particular the examples highlighted in (b) and compare to the SBM samples

shown in Fig. 5d) and more generally reduces the overall sample quality somewhat.

respectively. The models capture highly non-linear de-

pendencies in the data whilst preserving the objects’

details (such as face and arms for the pedestrians; or

headlights, license plates, and the window frames for

cars). We also show for each sample the difference to

the closest image in the training set (based on per-pixel

label agreement). We see that the model generalizes in

non-trivial ways to generate realistic shapes that it had

not encountered during training.

We also evaluated the models on constrained shape

completion tasks: In Figs. 18d and 19d we show how the

SBM completes rectangular occlusions. The left-most

example of Fig. 19d highlights the variability in possi-

ble completions captured by the model. In the middle

example the length of the person’s trousers on one leg

affects the predictions for the other, demonstrating the

model’s knowledge about long-range dependencies.

Overall these results demonstrate that the multi-

part formulation of the SBM significantly extends the

binary SBM in that it allows the modeling of shapes

with internal structure while preserving its ability to

produce realistic samples and to generalize in a mean-

ingful manner from the training data.

6 Discussion

Thanks to its formulation as a generative model the

SBM is very versatile. In our experiments we investi-

gated it as a ‘stand-alone’ shape model and focused on

its ability to generate and complete shapes. But it can

also directly be used as a component of a more com-

prehensive probabilistic architecture: As demonstrated

in Le Roux et al (2011), Heess et al (2011), Eslami and

Williams (2012) and Chen et al (2013), for instance,

it is possible to combine undirected models of shapes

formulated as RBMs or DBMs with models of appear-

ance to obtain complete probabilistic generative models

of RGB images with well-defined and efficient inference

schemes. Such models allow reasoning about various im-

age properties and can be applied, for instance, to seg-

mentation tasks. Indeed, Eslami and Williams (2012)

use the multi-region SBM presented in Sec. 5.4 to ob-

tain competitive results on two challenging parts-based

segmentation benchmarks.

There are three main open questions associated with

such applications of the SBM:

Firstly, our shape models are currently of fairly low

resolution compared to many real-world images. Näıvely
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(a) Training

(b) Sampled completions

(c) Samples

Fig. 16: Multiple object categories. (a) A selection of images from the augmented dataset. (b) The model

simultaneously identifies the object class and fills in the missing image region. (c) Samples from a single tempered

chain.
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Fig. 17: (a) The ratio of inter- and intra-class distances (values > 1 indicate that inter-class distances are larger).

(b) GLM classification accuracy as a function of the number of training images, averaged over 100 runs.
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(a) Training

(b) Samples

(c) Generalization

→ → →

(d) Sampled completions

Fig. 18: ETHZ cars. (a) Examples from the training data. Different colors represent different object parts. (b)

A chain of samples (1,000 samples between frames). The apparent ‘blurriness’ of samples is not due to averaging

or resizing. We display the probability of each pixel belonging to different parts. If, for example, there is a 50-50

chance that a pixel belongs to the red or blue parts, we display that pixel in purple. (c) Differences between the

samples and their most similar counterparts in the training dataset. (d) Sampled completions of occlusions (pink).

For each occlusion we show two different completions produced by the model (i.e. we show two different samples

from the conditional distribution over the unobserved pixels)

scaling up the SBM by increasing the receptive field

size is unlikely to work as this would greatly increase

the number of parameters (and hence the potential to

overfit) and also lead to practical problems such as

slow mixing when sampling from the model. Eslami and

Williams (2012) have demonstrated how to side-step

these problems by upsampling the predictions of the

low-resolution shape prior at test-time. This appears

to work well in practice but it still limits the level of

detail at which shapes can be modeled.

A second open question is that of translation and

scale invariance. These invariances are challenges for

many dense, pixel-level models, not just the SBM. Con-

volutional architectures (e.g. Desjardins and Bengio,

2008; Roth and Black, 2005; see also e.g. Ranzato et al,

2010) are inherently translation invariant but can be

expensive as they require enough capacity to learn the

structure of interest at all possible positions. An al-

ternative way to achieve large-scale translation invari-

ance is through a model that is defined only for a tight

bounding box enclosing the shape and which is then ex-

plicitly translated to all possible image positions (e.g.

Frey et al, 2003; Williams and Titsias, 2004; similar

to the sliding window approach for object detection

e.g. Rowley et al, 1998; Schneiderman, 2000; Felzen-

szwalb et al, 2009). When the processing of individual

image positions is expensive an exhaustive search over

all positions can be computationally very demanding

or even infeasible. This problem can, however, be miti-

gated with a fast and lightweight mechanism to reduce

the number of candidate positions for which the more

expensive computations are being performed (see e.g.

Lampert et al, 2008; Harzallah et al, 2009; Alexe et al,

2010b).



22 S. M. Ali Eslami et al.

(a) Training

(b) Samples

(c) Generalization

→ → →

(d) Sampled completions

Fig. 19: HumanEva results. (a) A selection of images from the dataset. (b) A chain of samples (1,000 samples

between frames); same format as in Fig. 18. (c) Differences between the samples and their most similar counterparts

in the training dataset. As observed for the horses and motorbikes the model generalizes in interesting and non-

trivial ways to pedestrian shapes not present in the training data. (d) Sampled completions of occlusions (pink).

For each occlusion we show two example completions. Note the variability in the conditional distribution for the

large scale occlusion on the left.

We believe that by further increasing the number

of layers in the model in combination with appropriate

constraints on the connectivity we will be able to make

progress with respect to both of these questions. As

demonstrated in Sec. 5.2.2 the hierarchical formulation

in combination with joint training leads to a ‘separation

of concerns’ across layers, in which the lower layer is

responsible for the local details while the higher layer

determines primarily the overall pose. This allows the

model to learn some degree of small-scale invariances,

achieving an effect similar to the pooling layers e.g. in

Lee et al (2009) (but without having to explicitly build

them in). We expect that a deeper model, in which

such effects will be replicated across several layers, will

be able to handle larger invariances, and that it will

also allow us to work with shapes at higher resolutions

while avoiding overfitting.

The third question is how to handle real-world im-

ages that contain not just one but many objects. This

will make it necessary to model the interactions be-
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tween the shapes of multiple occluding objects. Although

the multi-part SBM can model multiple regions it is

unlikely to be a good model of the regions that are the

result of occlusion, as discussed in Le Roux et al (2011).

Their proposed solution is, in principle, directly appli-

cable to the SBM and we are currently investigating

how their or similar approaches can be utilized.

7 Conclusions

In this paper we have presented the Shape Boltzmann

Machine, a strong generative model of object shape.

The SBM is based on the general DBM architecture, a

form of undirected graphical model that makes heavy

use of latent variables to model high-order dependen-

cies between the observed variables. We believe that the

combination of (a) carefully chosen connectivity and

capacity constraints, along with (b) a hierarchical ar-

chitecture, and (c) a training procedure that allows for

the joint optimization of the full model, is key to the

success of the SBM.

These ingredients allow the SBM to learn high qual-

ity probability distributions over object shapes from

small datasets, consisting of just a few hundred training

images. The learned models are convincing in terms of

both realism of samples from the distribution and gen-

eralization to new examples of the same shape class.

Without making use of specialist knowledge about the

shapes the model develops a natural representation with

some separation of concerns across layers.

Overall we believe that by integrating powerful com-

ponent models like the SBM into comprehensive gener-

ative models of images, performance in many computer
vision tasks can be improved. We believe this to be a

very promising direction of research.
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