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Abstract

The fast radial symmetry (FRS) transform has been
very popular for detecting interest points based on lo-
cal radial symmetry1. Though, FRS delivers good per-
formance at a relatively low computational cost and
is very well suited for a variety of real-time computer
vision applications, it is not invariant to perspective
distortions. However, even perfectly (radially) sym-
metric visual patterns in the real world are perceived
by us after a perspective projection. In this paper, we
propose a systematic extension to the FRS transform
to make it invariant to (bounded) cases of perspective
projection - we call this transform the generalized FRS
or GFRS transform. We show that GFRS inherits the
basic characteristics of FRS and retains its computa-
tional efficiency. We demonstrate the wide applicabil-
ity of GFRS by applying it to a variety of natural im-
ages to detect radially symmetric patterns that have
undergone significant perspective distortions. Sub-
sequently, we build a nucleus detector based on the
GFRS transform and apply it to the important prob-
lem of digital histopathology. We obtain superior per-
formance over state-of-the-art nuclei detection algo-
rithms, which is validated through quantitative mea-
surement of precision and recall.

1. Introduction

Symmetry of all kinds, including the visual, is ubiq-
uitous in our world. Indeed, visual symmetry can be
copiously seen in nature as well as in human creations:
buildings, objects, our works of art. Perception of vi-
sual symmetry is thought to play an important biolog-

1The term radial symmetry is used in the sense of circular sym-
metry, as in the FRS paper [10].

ical and evolutionary role in humans as well in other
species (for examples, see [5],[7]). Perhaps due to this
importance of visual symmetry, humans seem to be
able to recover symmetry in shapes and random tex-
tures within 100ms [16].

This paper deals with symmetry of the radial kind.
Our world abounds in objects and structures that are
(partially) radially symmetric - natural objects includ-
ing the heavenly bodies, fruits and vegetables of var-
ious kinds, human heads, textured patterns like the
spots on a cheetah, a variety of man-made objects in-
cluding balls, coins, wheels, tapes, manholes, circular
tabletops, ends of cylindrical objects as well as innu-
merable examples from our works of art. Accordingly,
computation of radial symmetry has attracted due in-
terest from the computer vision community (e.g. [14],
[10], [9]). For an excellent recent exposition, refer to
[12].

However, the issue of perspective projection in
fast radial symmetry detection seems to have received
lesser attention - one work in this direction is [3]. Hu-
mans perceive objects after a perspective projection.
It is well known that under (bounded cases) of per-
spective projection, circles give rise to ellipses. Thus,
(roughly) radially symmetric visual patterns would be
perceived as elliptical by our eyes. To be able to handle
perspective projections, it is very important that radial
symmetry detectors principally incorporate detection
of elliptical radial symmetry in visual patterns.

We are interested in fast computation of radial sym-
metries. The best run-time [12] is achieved by the Fast
Radial Symmetry (FRS) transform proposed by Loy
and Zelinsky [10] in 2003. FRS uses a Hough Trans-
form [1] like voting scheme in the hough space to de-
tect points of local radial symmetry. However, instead
of using a 3-dimensional parameter space for voting, it

1
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estimates the local differential properties of the image
to reduce the voting space to become one dimensional
(scale/ radii axis). If we are looking to detect circles of
a give size, the algorithm is O(N) - N being the number
of pixels in the image.

We make the following contributions in this paper:
(1) We systematically extend the FRS transform to in-
corporate detection of elliptical symmetry while lever-
aging the very good complexity behavior of the FRS
algorithm. We extend the idea of using local differen-
tial structure of images (in FRS) to make it work for
a class of affine spatial transformations. The proposed
algorithm is parametrized to be able to use FRS as a
module and thus retains its attractive features like sim-
plicity and fast computational speed. We call the pro-
posed method - the Generalized Fast Radial Symmetry
(GFRS) transform. (2) We demonstrate the wide appli-
cability of GFRS by applying it to a variety of natural
images to detect radially symmetric patterns that have
undergone significant perspective distortions. (3) Fi-
nally, we carefully validate the novel GFRS transform
by applying it to the problem of (cell) nuclei detection
in histopathology slides. These nuclei are elliptical in
nature. For this purpose, we train a simple nucleus
detector based on the GFRS transform and show that
we are able to obtain superior performance over state-
of-the-art nuclei detection algorithms (including one
based on the FRS detector). We validate the perfor-
mance through quantitative measurement of precision
and recall.

The rest of the paper is structured as follows: In
subsection 1.1, we place this work in context with the
state of art in computer vision. In Section 2, we present
the Generalized Fast Radial Symmetry (GFRS) trans-
form. We present experimental results on natural im-
ages in subsection 3.1, and subsequently, in subsection
3.2, we present the application of the ellipse detector
based on the GFRS transform to nuclei detection. We
summarize the contributions of the paper in Section 4.

1.1. Related Work

An area related to our work is that of affine invariant
interest point detectors or (local) feature detectors - for
an excellent survey, see [15]. Affine invariant detectors
like Harris-Affine and Hessian-Affine are very local in
nature though they do respond to blob-like features as
well. These detectors only use the very local differen-

tial properties of the image. GFRS uses the local dif-
ferential image properties but agglomerates them us-
ing an underlying elliptical model. Even though many
of these invariant detectors analyze local second order
image properties and output elliptical representations,
these are based on a fitting process and not on detec-
tion of radial symmetry. Similar is the case with region
detectors like MSER [11].

More closely related is the ellipse detection based
on Generalized Hough Transforms (GHT) [1]. How-
ever, this would imply dense sampling in the five di-
mensional parameter space (cx, cy, θ, a, b) - which can
be computationally prohibiting. Indeed, to alleviate
this problem, Loy and Zelinski [10] proposed the Fast
Radial Symmetry (FRS) based on an efficient vot-
ing algorithm. FRS transforms an input image to a
transform image which highlights points of high radial
symmetry. The FRS algorithm is very efficient with
a complexity linear in the size of the image (for each
scale). However, FRS is not invariant to affine trans-
formations. Our work addresses precisely this issue.
We systematically extend the FRS algorithm to detect
radial symmetries while being invariant to affine trans-
formations.

More recently, Cornelius and Loy [3] proposed an
approach to detect radial symmetry under affine pro-
jections. However, their approach is computationally
intensive: they first detect affine invariant features,
compute SIFT descriptors and pairs of features are
used to vote for. We, on the other hand, provide a
natural extension to the FRS transform retaining the
computational efficiency of the original algorithm.

2. Generalized Fast Radial Symmetry (GFRS)
Transform

2.1. Fast radial symmetry transform

We summarize here the fast radial symmetry trans-
form method. Interested readers may refer to [10] for
more details. For each radius n, the algorithm uses im-
age gradients to vote for both the positively-affected
and negatively-affected pixels which are defined as

p+ve(p) = p+ round
(

g(p)

||g(p)||
n

)

p−ve(p) = p− round
(

g(p)

||g(p)||
n

)
2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#560

CVPR
#560

CVPR 2012 Submission #560. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

p+ve(p),p−ve(p) correspond to pixels with the gra-
dient g(p) pointing towards and away from the center
respectively. From those pixels, an orientation projec-
tion image On and a magnitude projection image Mn

are formed. Specifically, for each positively affected
pixel, the corresponding point p+ve in On and Mn is
increased by 1 and ||g(p)||, respectively. Similarly, for
the negatively affected pixel, the corresponding point
is decreased by the same quantity in each image.

Then the radial symmetry response map is defined
as

Sn = Fn ∗An (1)

where

Fn(p) =
Mn(p)

kn

(
|Õn(p)|
kn

)α
(2)

Õn(p) =
{On(p), On(p) < kn

kn, otherwise
(3)

An is an isotropic Gaussian smoothing function, α is
the radial strictness parameter, and kn is a scaling fac-
tor across different radii.

While [10] is very effective at detecting circular ra-
dial symmetry, FRS is not invariant to spatial trans-
formations arising due to perspective projections. In
those cases the gradient direction deviates from the ra-
dial vector, which leads to diffusion and dispersion
of the locus of symmetry in the object space [17].
In the case of bounded perspective projection, it is
well known that circular structures project as ellipti-
cal structures. Thus, to handle geometric distortions
due to perspective projections, there is a need to ex-
tend FRS to handle elliptical symmetries. We use here
a simple observation from geometry: an ellipse can
be represented as an affine transform of a unit circle.
Utilizing this affine relationship, we propose to get a
modified voting procedure to generalize the FRS al-
gorithm to render it invariant to (bounded) perspective
transformations. We describe the details below.

2.2. Generalized radial symmetry voting

Let p(φ) be the parametrization of a circle

p(φ) = (cos(φ)+cx, sin(φ)+cy)
T , 0 ≤ φ < 2π (4)

where c = (cx, cy)
T is the center of the circle. Then,

the ellipse q(φ) at the same location c, with orientation

θ, and (a, b) as the length of the semi-major and semi-
minor axes respectively, can be obtained by a suitable
affine transformation G

q(φ) = G · (p(φ)− c) + c, G = R · S (5)

R =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, S =

(
a 0
0 b

)
,

where R,S are the rotation and scaling matrix re-
spectively. We denote A(2) as the group of affine
transformation of the plane [6], and we restrict G to
be a member of A(2) to ensure the uniqueness of the
affine transformation [13].

Let us also represent the corresponding tangent vec-
tors as Tp(φ), Tq(φ) and normal vectors as Np(φ), Nq(φ)

at p(φ) and q(φ). We derive two propositions follow-
ing from the simple fact that since G : R2 → R2 is a
linear transform, the relevant tangent and normal sub-
spaces are also related by the same transformation G.

Proposition 1. The tangent vector Tq(φ) at the point
q(φ) on the ellipse can be obtained through the affine
transform G of the tangent vector Tp(φ) at the cor-
responding point p(φ) on the circle, i.e., Tq(φ) =
G · Tp(φ).

Proof. Follows from differentiating (5): Tq(φ) =
∂φq(φ) = ∂φG · p(φ) = G · Tp(φ)

Proposition 2. The voting vector Vq(φ) toward the
centroid of the ellipse at point q(φ) can be obtained
through the affine transform G of the normal vector
Np(φ) of the corresponding point p(φ) on the circle,
i.e., Vq(φ) = G ·Np(φ).

Proof. Since Vq(φ) = c− q(φ) and Np(φ) = c− p(φ),
the result follows from (5).

This leads to the main result of our paper.

Proposition 3. Let T̂q(φ) be an unbiased estimator of
the tangent at q(φ). Then, the unbiased estimator of
the voting direction is given by

V̂q(φ) = G ·M ·G−1 · T̂q(φ) (6)

where M =

[
0 1
−1 0

]
.

3
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Figure 1. Voting direction Vq(φ) for the ellipse’s centroid
(in red) vs. Original normal vectors Nq(φ) on the ellipse (in
blue).

Proof. Vq(φ) = G ·Np(φ) = G ·M · Tp(φ) = G ·M ·
G−1 · Tq(φ).

The first equality follows from Proposition 2, the
second from the fact that M relates the tangent and
normal spaces and the third from Proposition 1.

In Figure 1, we illustrate that the voting vectors
V̂q(φ) (red lines), as computed by (6) have the correct
directions as they all correctly intersect at the center of
the ellipse. On the other hand, the voting directions of
FRS, aligned with the normal to the curve, are incor-
rect. These are depicted as dashed blue lines.

Consequently, for a given G, we can use local dif-
ferential image characteristics to vote for the ellipses
of that particular shape. Therefore, for each point
sampled from the constrained affine group A(2), we
modify the image gradient voting vector in [10] to
(6). Then, each value of G provides us with a re-
sponse map, which captures evidence for ellipses of
that particular size, shape, and orientation. Note that
G induces a natural parametrization for the space of
ellipses and a consequent generalization of the FRS
algorithm (GFRS). We can now span the desired range
of the 3D parameter space ofA(2), compute the GFRS
map for each parameter and use the resultant stack of
response maps as an interest point map for ellipses of
all desired sizes, shapes and orientations. The final re-
sponse map is obtained through taking the maximum
at each pixel location among all the response maps.

We summarize the detailed procedures of GFRS in Al-
gorithm 1.

In the following, we summarize two practical as-
pects.

Normalizing factor kn: As the length of the ma-
jor/minor axis of ellipse changes, so does the number
of gradient votes from the perimeter of the ellipse. To
alleviate this bias, we follow the suggestion in [10],
and empirically determine the normalizing factor kn
(see 2) for ellipse across different affine transforma-
tion parameters a and b.

Smoothing: We generalize the smoothing per-
formed in (1) to be consistent with the affine trans-
formation by choosing a multivariate Gaussian kernel,
the orientation and extend is determined by the affine
parameters θ, a, and b. This is motivated by the ob-
servation that, under noise, the deviation of the vot-
ing location from the true center is increasing with the
length of Vq(φ).

3. Experimental results

In this section, we apply GFRS transform to a va-
riety of real world images and nuclei detection in
histopathological images. We provide the details be-
low.

3.1. Real world images

We apply GFRS to a variety of complex real world
images to detect regions of radial symmetry in pres-
ence of significant perspective distortion. The exam-
ples we present contain wheels from different kinds
of vehicles, as well as other objects such as tomatoes
and coins. In Figure 2, we show the response map
from GFRS in the top row and the corresponding im-
age overlaid with detections in the bottom row. We ob-
serve that the GFRS response maps capture locations
of radially symmetric structures very effectively, de-
spite perspective transformations and other challeng-
ing conditions, e.g, cluttered background, partial oc-
clusion of objects’ elliptical-arcs, lack of contrast in
regions of interest etc. The high response regions coin-
cide well with locations of radially symmetric objects
like wheels, coins etc. Note that the range of scales
of the sampling points from A(2) is chosen not to tar-
get very small objects so as not to clutter the qualita-
tive results. We observe the overlaid ellipses coincide
well with the boundaries of the radially symmetric ob-

4
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Algorithm 1 Generalized fast radial symmetry transform.
Require: Image gradient g(p) at each pixel p, a set of sampling points from affine transform subspace {Gi}

1: Get the tangent vector Tp at each pixel p, which is perpendicular to the gradient vector g(p).
2: For each sampled affine transformation Gi, modify the image gradient voting vector in [10] to (6) at each

image pixel p, collect the corresponding response map Fi.
3: Take the maximum at each pixel from all response maps {Fi} as the GFRS response map. Thresholding the

response map and do a non-maxima suppression to obtain detected elliptical regions.

jects. This also shows that GFRS is able to estimate
the affine parameters quite accurately.

For comparison, we applied FRS to some images of
Figure 2. The results are shown in Figure 3. As ex-
pected, GFRS is able to detect radial symmetry in the
presence of significant perspective distortions while
FRS fails to do so.

3.2. Nuclei detection

We now access the performance of GFRS for de-
tecting nuclei in biopsy samples from histopatholog-
ical images. Nuclei detection is a fundamental step
in the automatic prognosis of breast cancer. Differ-
ent methods have been proposed in previous work, in-
cluding a linear SVM approach [8], a Hessian matrix
based approach [2], a circular Hough transform based
approach [4] etc. Here, we exploit a-prior knowl-
edge that nuclei are usually elliptical in shape, and
apply the GFRS transform to extract those elliptical
regions of interest. The samplings from the 3d affine
space used here are: a=[6, 8, 10, 12, 14, 16], b=[4,
6, 8], θ = [i*π/8,i=0,1,...,7]. Then from the output re-
sponse map, we collect all interest points above a cer-
tain threshold value. Each interest point is associated
with a confidence value and an elliptical region which
is described by five ellipse parameters.

We carry out experiments on nuclei detection using
512 × 512 image patches that were taken from large,
several GPixel large, H&E stained "virtual slides".
Those slides were sampled at 0.47 microns/pixel, cor-
responding to 40X objective scan.

Figure 4 shows the nuclei detection results from
a typical histopathological image. We show the re-
sponse map on the left, and the extracted nuclei on the
right. We plot ellipses on top of the detected nuclei,
and the color of the ellipses represents the confidence
value. We observe that GFRS can effectively detect
nuclei with various shapes, even in challenging cases

of touching/overlapping nuclei. In addition to identi-
fying the nuclei centers, GFRS provides additional in-
formation about the size and orientation of the nuclei
from the extracted elliptical region. This side infor-
mation can be used to facilitate follow-up processing
and analysis for segmentation, linking, and detection
of other conditions like malignancy.

We also carried out a quantitative evaluation and
comparison of the GFRS based nuclei detector. For
this purpose, we constructed a ground truth dataset by
manually annotating all nuclei centroids from five im-
ages of size 512 × 512, — in all, 2555 nuclei were
annotated. We then applied GFRS and evaluated its
performance using precision-recall curves.

We compare our results with those from related
state of the art - radial symmetry transform [10], Hes-
sian matrix based detection [2], SVM based detection
[8]. We plot the precision and recall curves in Figure
5.

GFRS clearly achieves the best performance among
all the algorithms that were tested on this problem. For
example, for a recall of 95%, only every 13th detec-
tion corresponds to a false alarm. None of the other
approaches achieves comparable performance.

3.3. Computational complexity

In our experiments, it takes around 20ms for each
sampled Gi to generate a response map on a 375x250
image. The number of parameters sampled from 3d
affine space for each image varies from 50 to 200.
However, with application-specific priors, e.g., rough
knowledge of camera height and viewing angle in a
surveillance/traffic-like static camera setting, GFRS
will collapse to almost the same sampling set size as
FRS (1d scale space).

5
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GFRS

Figure 2. Results of the GFRS applied to different real world images. Each pair of images shows the GFRS response map
and the most confident detections corresponding to ellipses after thresholding the GFRS response map and non-maxima
suppression.
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FRS

Figure 3. FRS applied to different real world images. Compared to Figure 2, it can be seen that many of the (elliptical)
structures are less pronounced.

Figure 4. Nuclei detection of one histopathological image. Left: response map from GFRS; Right: detected nuclei.

4. Conclusions

In this paper, we have presented a novel GFRS
transform that can detect radial symmetry in presence
of (bounded) perspective transformations. This was
achieved by systematically modifying the FRS trans-
form, which is currently the fastest algorithm for de-
tecting circular symmetry, to detect elliptical symme-
try as well. We showed the wide applicability of GFRS
to computer vision by applying it to a variety of ev-
eryday images. Further, we applied GFRS to the im-
portant task of cell nuclei detection in biopsy sam-

ples from histopathology images. This is an impor-
tant first step in automatic determination of presence
and malignancy of cancer. We compared the GFRS
nucleus detector with other state of the art detectors
using precision-recall curves and showed that GFRS
achieves the best results reported to date.
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