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Abstract

A novel approach for event summarization and rare
event detection is proposed. Unlike conventional methods
that deal with event summarization and rare event detec-
tion independently, we solve them together by transforming
the problems into a graph editing framework. In our ap-
proach, a video is represented as a graph, in which each
node of the graph indicates an event obtained by segment-
ing the video spatially and temporally, while edges between
nodes describe the events related to each other. Based on
the degree of relations, edges have different weights. After
learning the graph structure, our method edits the graph by
merging its subgraphs or pruning its edges. The graph is
edited toward minimizing a predefined energy model with
the Data-Driven Markov Chain Monte Carlo method. The
energy model consists of several parameters that represent
causality, frequency, and significance of events. We design
a specific energy model utilizing these parameters to satisfy
each objective of event summarization and rare event detec-
tion. Experimental results show that the proposed approach
accurately summarizes a video in a fully unsupervised man-
ner. Moreover, the experiments also demonstrate that the
approach is advantageous in detecting the rare transition
of events.

1. Introduction

Recently, there has been a growing interest in video anal-
ysis. Given the large amount of video data, the key objective
of video analysis is to analyze the data automatically and
then extract useful information from it efficiently. Among
the various problems of video analysis, event summariza-
tion and rare event detection are being addressed by a grow-
ing number of researchers owing to the increasing interest
on intelligent surveillance systems [3, 7, 17]. The aim of
this paper is to develop a fully automatic system that can
solve these two problems efficiently and robustly in a single
framework.

The goal of event summarization is to condense a long
video into a short one by extracting the story-line of the
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Figure 1. Overview of our system The system consists of two
parts. The first part is graph learning for analyzing video data. The
second is graph editing for extracting useful information ( event
summarization and rare event detection ) from the analyzed data.

video [2, 4, 6, 10,9, 15, 16]. The story-line consists of
representative events of the video, which are rearranged
according to causality between events. Gupta et al. [4]
accurately extracted visually grounded story-line learned
from annotated videos. However, the method has weak-
nesses such as the need for labeled data to learn the story-
line. On the other hand, our method can extract the
story-line in a fully unsupervised manner. Hospedales et
al. [6] and Kuettel et al. [9] introduced a Markov Clustering
Topic Model and a Dependent Dirichlet Processes-Hidden
Markov Model, respectively, and successfully detected in-
teresting events and their relations in complex and crowded
public scenes. Compared to these methods, our method
can find more complex relations of events by measuring the
causality, frequency, or significance of events.

In rare event detection, unusual events are detected au-
tomatically [1, 8, 11, 18, 19, 20, 23, 24]. It is necessary
for surveillance systems since such events should be re-
ported for further examination. Xiang et al. [20] suggested
a surveillance system for recognizing normal behavior in
real-time and detecting abnormal actions simultaneously.
Boiman et al. [1] detected irregular behavior by comparing
visual data with the database containing regular patterns.
However, these two algorithms cannot detect unusual tran-
sitions between events, such as an unusual switch in a series
of actions. In contrast, the proposed algorithm accurately
finds these transitions.

The philosophy of our method is that an input video can
be represented as a single graph and, by editing this graph,
the problems of event summarization and rare event detec-
tion can be efficiently solved. Fig.1 summarizes the overall
procedure of our system. The system first transforms an in-
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(a) Spatial
Decomposition

(b) Temporal
Decomposition
Figure 2. Process of learning nodes Our system decomposes the
video spatially and temporally into three-dimensional segments.

(c) Generated nodes

put video into a graph as shown in Fig.1(b). In the graph,
the nodes indicate events contained in the video, which are
obtained by segmenting the video spatially and temporally.
The edges are connected when relations between events ex-
ist. The system finds the relations utilizing the data-mining
technique in [5]. Depending on the process of editing the
graph, different problems can be solved as illustrated in
Fig.1(c). In the event summarization problem, the graph
is edited to leave events with high causality. On the other
hand, rare events are detected by leaving events with high
causality but low frequency. We define rare events as those
with low-frequency since the definition is widely used in
the rare event detection problems [20, 24]. In all problems,
events with low significance are deleted because the esti-
mated causality and frequency of the events are not reliable
in these cases.

The first contribution of this paper is to present the com-
pletely unsupervised method for extracting the story-line
and detecting rare events in the video (automatic). The
second contribution is the capacity to solve the problems
of event summarization and rare event detection in a sin-
gle framework by considering them as a graph learning and
editing one (efficiency). The last contribution is the ability
of the proposed method to discover associated events from
a video (usefulness). With these contributions, our system
satisfies the aforementioned key objective of video analysis,
which is to analyze data automatically and extract useful in-
formation from it efficiently.

2. Video-Structure Graph Learning

In this section, the process of learning the nodes (sub-
section 2.1) and edges (subsection 2.2) of a graph from an
input video is explained.

2.1. Learning Nodes

A node represents a spatio-temporal event. Then, the
nodes of the graph are obtained by decomposing a video
into three-dimensional segments, where each segment cor-
responds to each node of the graph. To this end, we adopt
the method introduced in [13] and extend it by decom-
posing the video not only spatially but also temporally. '
Fig.2 describes the whole process of learning the nodes,
which mainly consists of two steps, spatial decomposition

'If we employ more advanced video segmentation and image represen-
tation methods [22], our method can further improve the performance.

and temporal decomposition.

Spatial Decomposition: The first step is to decompose a
video into several regions in space as illustrated in Fig.2(a)
because a different event occurs depending on the spatial
position of a region. In the subway scene, the region of the
subway rail is where the event of arrival and departure of a
train occurs. On the other hand, people typically get in and
out of the train at the region of the subway platform. The
system automatically finds the boundaries of these semantic
regions by dividing the video into blocks of 10 x 10 pixels
and clustering the blocks according to the similarity of lo-
cal spatio-temporal activity patterns. With regard to the fea-
tures describing the activity patterns, we utilize the percent-
age of static foreground pixels within the block and the per-
centage of pixels within the block that are classified as mov-
ing foreground [13]. Static foreground pixels are naively
detected by subtracting each frame with a background im-
age while moving foreground pixels are found by subtract-
ing consecutive frames. As to the clustering method, the
spectral clustering algorithm in [21] is employed, where the
number of regions is determined automatically. Note that
the spatial decomposition is done by considering all frames
in the video.

Temporal Decomposition:  After decomposing the video
into several regions spatially, each region is further divided
temporally as shown in Fig.2(b) since different events may
occur in relation to time even at the same region. For exam-
ple, in the subway scene, two different events occur at the
same region of the subway rail: the arrival and the depar-
ture of a subway train. The system separates the event of
each region into multiple events in a manner similar to that
in spatial decomposition. However, features describing the
activity patterns are different from those in the spatial de-
composition case. For the feature, the dominant magnitude
and angle of optical flow are utilized, where optical flow
is calculated by the Lucas-Kanade method in [14]. The
dominant magnitude of optical flow represents the average
movement of events. The dominant angle of optical flow
indicates the representative direction of events.

Note that our method does not need the correspondence
across nodes. If the events are similar each other, they are
clustered in a node during the process of spectral cluster-
ing using [13]. So, each node includes totally different
events. For instance, all events of the train approaching are
clustered in node A and all events of the train departure are
clustered as node B. In this case, an example of the con-
structed graph is A — B — A according to the temporal
order of the video.

2.2. Learning Edges

To construct edges in the graph, each node is connected
with its neighbors. The edges are then weighted accord-
ing to properties such as causality, frequency, and signif-
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Figure 3. Process of learning edges Our system connects neigh-
bor nodes while weighting on the edges according to causality,
frequency, and significance of events. Then, (c) is an initial graph
for the graph-structure editing in the next section.

(c) Weighting edges
(initial graph)

(a) Neighbors of node A (b) Example of hypotheses for node A
Figure 4. Process of making hypotheses of relations

icance of events. We estimate the properties utilizing the
data-mining technique introduced in [5]. Fig.3 describes
the whole process of generating edges.

Connecting edges: Each node of the graph is connected to
its neighboring nodes. This implies that, if events occur at a
closer location, then there is a higher probability that these
events are related to each other. To determine the neighbors
of each node, we draw an imaginary cylinder centered at
each node. If a certain node falls in the cylinder centered at
node A, the node is considered to be a neighbor of node A,
as illustrated in Fig.3(b). Then, the initial graph certainly
takes the temporal order of two nodes into account This is
because the nodes of the initial graph are connected with
edge only when they are neighbors spatially and temporally.
Note that the width (height) of a cylinder indicates how far
a node is considered to be a neighbor at the axis of space
(time). In the experiments, width and height of the cylinder
are set at half of the diagonal length of a scene and at 100
frames, respectively.

Making hypotheses: After connecting the edges, the sys-
tem makes multiple hypotheses of the relations between
nodes. To this end, we select a node in the graph as the
center-node and consider the subgraph for the center-node,
which consists of neighbor nodes and edges connected to it
as shown in Fig.4(a). In the subgraph, multiple hypotheses
are created by deleting a different subset of edges and nodes
from the subgraph, as illustrated in Fig.4(b). Our method
makes all possible hypotheses for each center-node. Finally,
the hypothesis is duplicated in proportion to the temporal
length of the center-node. If there are p number of neigh-
bors and the number of frames in the center-node is ¢, the
p

i

This process is performed repeatedly until all nodes in the
graph are selected as the center-node. Fig.4 illustrates an
example of hypotheses when node A is selected as center-
node. In this example, the total number of hypotheses is

total number of hypotheses is calculated by ¢ > 7 _, <

qZ?:l ( f ) = 29¢.

From the hypotheses of the relations between nodes, our
system derives statistics such as m(A, B), m(A), n,, and
n. where m(A, B) is the observed frequency of events A
and B occurring jointly, m(A) is the observed frequency
when event A occurs, n,, is the number of all pairs of events,
and n. is the number of events in the hypotheses. Note that
our method can obtain the statistics using only one video.
The statistic of m (A, B) can be obtained by counting the
number of hypotheses, which include event A and event B
simultaneously. For example, if the constructed graph is
A — B — A, possible hypotheses are A — Band B — A.
In this case, m(A, B) is 2. In the London traffic sequence,
video length was one hour and m(gostraight, turnleft)
was 1497. n, and n. denote the number of all possible
pairs and events, shown in the hypotheses, respectively.
Weighting edges: Events connected with edges imply that
they have a certain type of a relation. Characteristics of
relations are distinguished by utilizing the aforementioned
statistics obtained from the hypothesis. The process of find-
ing characteristics is called weighting edges because the
strength of the relations is determined by the characteris-
tics. In our problem, three different types of characteristics
are used, namely, causality, frequency, and significance of
events.

The causality ¢(A — B) represents the probability that
event B is caused by event A:

A,B) n.m(A,B)

(
¢(A— B) = o) = oA (1)

If related events have a high value on the causality, the sys-
tem considers them to have a strong causal relationship. On
the other hand, the frequency f(A — B) indicates the prob-
ability that events A and B occur jointly:

m(A, B)

f(A%B):p(AaB):T' (2
p

If related events have a low value on the frequency, then
the relation is considered abnormal. The last characteristic
is the significance of events called the p-value, which mea-
sures how much events A and B are independent:

m(A)

= > () wtmmya - s

]
i=m(A,B)
3)

The p-value can be used to measure the confidence of
causality and frequency of events. If the p-value is very
high, events are highly independent. In this case, the con-
fidence of causality and frequency is very low because the
independence of events offer no sufficient chances to obtain
reliable values of causality and frequency.
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Figure 5. Process of editing the graph-structure Utilizing DDM-
CMC, our method obtains N samples of the graph-structures.
Among the samples, the method selects the best graph-structure
as the final result of event summarization or rare event detection.
In practice, the binomial probability in (3) is quite dif-
ficult to calculate. Thus, we obtain the z-score [5] which
is an upper bound of (3) instead of directly calculating p-
value:
d(A o By = —MAB) —mp(Ap(B)
V1pp(A)p(B)(1 - p(A)p(B))

where z(A, B) denotes the z-score of events A and B.

3. Video-Structure Graph Editing

After learning the initial graph such like Fig.3(c), our
system edits the graph toward minimizing a predefined en-
ergy model with the Data-Driven Markov Chain Monte
Carlo (DDMCMC)? method as described in Fig.5. The
energy model is composed of several variables represent-
ing causality, frequency, and significance of events and de-
signed with these variables to satisfy each objective of the
event summarization and rare event detection problem.

3.1. Energy Minimization by DDMCMC

The best graph G is one that gives the minimum log-
likelihood estimate over the N number of samples.

G = argmin — 10gp(Y|G(l)) forl=1,...,N, (5
10

where G indicates the I-th sample of the graph-structure;
Y denotes the observations of G(), which are causal-
ity, frequency, and significance of events in G(); and
—log p(Y|G!) represents the energy model that measures
how much G and optimal graph-structure G°?* coincide.
In (5), the DDMCMC method can be interpreted as a data-
driven stochastic search, where G may tend to a structure
resembling G°P?,

The DDMCMC method consists of two main steps: the
proposal step and the acceptance step. In the proposal step,
a new graph-structure is proposed by the proposal density
function. Given the proposed graph-structure, the method
decides whether it is accepted or not with the acceptance
ratio in the acceptance step:

(—logp(Y|G*))"'Q(G; G*)
(—logp(Y|G))'Q(G*;G) |’

2The MCMC method is called as Data-driven one [12] because the
proposal distributions in (8), (9), (11), and (12) are strongly guided by the
observation data such as the causality and frequency.

(6)

v =min |1,

Algorithm 1 Graph-structure editing
1: forl=1to N —1do

2 G=G0O

3:  Propose G* using Q(G*; G) in (7).

4:  Calculate v in (6) with — log p(Y|G) of (10)(13).
5. 0~ U0,1].

6: if <~ then

7 G(H'l) =G*

8: else

9: G =qg

10 end if

11: end for

where Q(G*;G) denotes the proposal density function
and G™ represents the new graph-structure proposed by
Q(G*; G). These two steps iteratively go on until the num-
ber of iterations reaches a predefined value, as summarized
in Algorithm 1.

To calculate the acceptance ratio in (6), the remaining
task is to design the proposal density function Q(G*; G)
and the energy model —log p(Y|G). In the next subsec-
tion, it is explained how to efficiently design the proposal
density function for increasing the accuracy of the estimate
in (5) given a fixed number of samples and build the en-
ergy model appropriately to satisfy each objective of event
summarization and rare event detection.

3.2. Event Summarization

Our goal of the event summarization problem is to ex-
tract representative and interesting events having strong
causality to each other from a video. To achieve this, the
proposal density function in (6) is designed as follows:

Q1(G*; G) : with the probability 1
R2(G*; G) : with the probability ;

(N
where Q1 (G*; G) adds a new pair of events into the current
graph, G, and Q2(G™*; G) deletes an existent pair of events
from G. In Q1 (G*; G), the candidate pair of events, A and

B, is chosen for addition into the graph with the probability:

Q(G";G) = {

expf(lfc(AﬁB)) ,

pa(A — B) = S eap(—c(r—=s)) A~ BeR,
Vr—seR’ g
(@)

where ¢(A — B) represents the causality between events A
and B calculated by (1) and R’ denotes the set of all pairs of
related events, which are not included in the current graph,
G. In Q2(G*; G), the existent pair of events, A and B, is
chosen for deletion from the graph with the probability:

exp—c(A—>B)

Z empfc(r—)s) ’
Vr—seR

pa(A — B) = A—-BeR, 9

where R denotes the set of all pairs of related events existing
inG.
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The energy model of the event summarization problem is
designed to include as many related events as possible while
the events have high values on causality and significance.

—logp(Y|G) = —logp(c,2|G)
= A Z (I—=c(r—s))

Vr—seR (10)
A Y. 2(r—s) = AGP

Vr—seR

where ¢(r — s) and z(r — s) represent the causality and
significance of a pair of events calculated by (1) and (4),
respectively; A, As and A, indicate the weighting param-
eters; and |G| is the regularization or prior term, which re-
turns the total number of events in graph GG. Note that our
system has the ability to control the length of the video’s
story-line by differently weighting on |G| with the weight-
ing parameter \,, in (10). The system with the lower value
Ap, obtains a more concise story-line of the video.

3.3. Rare Event Detection

In the rare event detection problem, our system finds
events that have high causality but low frequency. To this
end, the proposal density function is the same with (7)
except in choosing a candidate pair of events for adding
or deleting. In rare event detection, the candidate pair of
events, A and B, is chosen for addition to the graph with the
probability:

exp~(1-c(A=B))~f(A=B)

Z expf(lfc('r*)s))ff(rﬁs) ’
Vr—seR/

Pa(A — B) = an

where A — B € R’ and f(A — B) represents the fre-
quency of the pair of events A and B, calculated by (2).
Similarly, the existent pair of events, A and B, is chosen for
deletion from the graph with the probability:
emp—c(AaB)—(l—f(AaB))

Z expfc(r%s)f(lff(rﬁs)) ’
Vr—s€R

pa(A — B) = (12)

where A — B € R.

Our system designs the energy model of rare event de-
tection toward including related events with high values
on causality and significance but low values on frequency
while maintaining a certain number of events.

—logp(Y|G) = —logp(c, f,2|G)
=X > (A=clr—=s)+Ar > flr—s)

Vr—seR Vr—seR
+ A Z 2(r = ) — M\ |G,
Vr—seR
(13)

Figure 6. Results of event summarization recovered by our
method in the subway platform sequence. The number in each
rectangle denotes a node index. The red arrows represent the exis-
tence of significant relations between nodes while the red numbers
indicate causality.

Ae» As, Af, and A, indicate the weighting parameters. Note
that the rare event detection problem includes event sum-
marization in our framework. If Ay in (13) is taken as zero,
the equations are exactly the same with (10) of the event
summarization problem, respectively.

4. Experimental Results

In the experiment, we tested three datasets which are
publicly available *. Using the datasets, the proposed algo-
rithm # was compared with the significant association rule
model (SARM) in [5] and Dependent Dirichlet Processes-
Hidden Markov Model (DDP-HMM) in [9], which are the
state-of-the-art data mining and event detection algorithm,
respectively. For the SARM, the same graph learned by our
method was utilized as the initial graph. Then, utilizing the
data mining techniques in [5], the graph was edited to pro-
duce event summarization and rare event detection results.
For the DDP-HMM, we used the software provided by au-
thors. We adjusted parameters of SARM and DDP-HMM
to show the best performance.

4.1. The Subway Platform Sequence

For event summarization, the energy model in (10) was
minimized with the DDMCMC method where the number
of used samples was 800 and \., A\, and \,, were set to
100, 0.01, and 1, respectively. After energy minimization,
the edited graph was obtained as illustrated in Fig.6. The
graph consists of 12 nodes and 10 edges while the original
graph has 45 nodes and 231 edges. The extracted story-line
of the video can be divided into the following four parts.

e Part A : This part describes the approach of a train.
When the train pulls into the platform (node 22), waiting
passengers typically converge near the train (node 34, 37),
although a small number of people move toward the down
direction of the scene (node 18, 32). Our system summa-
rized both normal (node 34, 37) and abnormal (node 18,

3The details of the datasets can be found at following sites. i-LIDS
(http: //www.eecs.qmul.ac.uk/ ~andrea/avss2007_d.html), BOSS (http:
//193.190.194.199/BOSS), London Traffic from [6]

4The result videos can be found at http://cv.snu.ac kr/.
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(@A, =0.5 (b) A\n =0.3
Figure 7. More concise results of event summarization com-
pared to Fig.6 ( A\,, = 1) in the subway platform sequence.

Figure 8. Results of rare event detection found by our method
in the subway platform sequence. The red arrows represent the ex-
istence of significant relations between nodes with low frequency,
denoted by red numbers. The blue arrows describe that the nodes
are spatial or temporal neighbors to each other.

32) events that occurred at the platform well, which were
caused by the event of the approaching train (node 22).

e Part B : The second part shows related events after the
train opens its doors. When the doors of the train are opened
(node 25), people get on or off the train (node 38). Although
there are severe occlusions between people, the system cap-
tured events, which have casual relations, robustly.

e Part C : The third part concerns the events that arise from
the departure of the train from the subway station. After the
train leaves the station (node 24)), some people move to the
top of the platform (node 27), while others, who get off the
train, move to the bottom of the platform (node 9).

e Part D : The last part illustrates the situation when a
train approaches the platform from the opposite side (node
21). While the event is occurring, people go to the upside
or downside of the platform (node 19). The events included
in part D are very difficult to extract since they are severely
rare events in the subway platform sequence.

While the story-line in Fig.6 is the long version of the
event summarization, the story-lines in Fig.7 are the con-
cise versions obtained by decreasing the \,, value in (10).
Fig.7(a) illustrates the result of event summarization when
An is 0.5. It includes a smaller number of, but more rep-
resentative, events such as the train approaching the plat-
form and the people getting on or off the train after it opens
its doors. Fig.7(b) is the most concise version of the event
summarization. It contains most representative events such
as people getting on or off the train.

Representative events [ Ours SARM DDP-HMM ‘
Approaching of the train 1 1 1
Opening train’s doors 1 0 0
Leaving of the train 1 0 0
Approaching (opposite side) 1 0 1
Waiting the train 2 3 1
Getting on or off the train 3 6 5
Counterflow 3 2 0

| Rare transitions [ Ours SARM DDP-HMM |
Interesting 5 2 0
Uninteresting 0 3 0

Table 1. Comparison in the subway platform sequence. Red in-
dicates best performance. If the number is 0, it means that the
method could not find the representative event type. On the other
hand, number 1 indicates that the method successfully found the
event type. If the number is more than 2, it means that the method
unnecessarily found the same event type again. In the case of rare
event detection, the lager number of rare transitions indicates bet-
ter results.

Figure 9. Selection of representative activities detected by
DDP-HMM in the subway platform sequence.

For rare event detection, A., As, Ay, and \,, were set
in (13) as 10, 0.01, 100, and 0.5, respectively. After en-
ergy minimization of (13), our system obtained two abnor-
mal scenarios as described in Fig.8. In the first scenario,
two people who are sitting on the stool (node 12) and a
person at the platform (node 37) start to move toward the
down direction of the scene (node 10, 32) as the train ap-
proaches the platform (node 22). The events of nodes 10
and 32 themselves are actually normal since these types of
events frequently occur when people get on or off the train.
However, the events become abnormal when their relations
with the event of node 22 are considered. The event of node
22 infrequently causes the event of node 10 or 32. Instead,
it typically causes most people in the scene go near the ap-
proaching train. Thus, it is the rare transition of events from
node 22 to node 10 or 32. Similarly, the second scenario in-
cludes the abnormal scenario where a woman continues to
sit on the stool (node 31) although the train had already ar-
rived at the platform. She finally goes out of the subway
station with the people who get off the train (node 26) after
the train departs from the station.

Table 1 shows the comparison with different event sum-
marization and rare event detection methods. We evaluated
event summarization by counting the number of representa-
tive event types discovered by the methods. We utilize the
method in [6] for the evaluation. For this, we manually la-
bel each segment in the video for making the ground truth.
As shown in Table 1, our method more accurately extracted
representative event types and found more interesting and
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(b) Rare event detection results (c) Joint activiti
of our method DDP-HMM

Figure 10. Results of event summarization and rare event de-
tection made by our method in the disease sequence. The red
numbers represent the causality of events in (a) and frequency of
events in (b), respectively.

larger number of events in the sequence compared to SARM
and DDP-HMM. Although DDP-HMM also showed good
performance by finding diverse moving directions of peo-
ple that get on or off the train, it missed a few representative
events such as “opening train’s doors” and “leaving of the
train”, as shown in Fig. 9. Note that, since DDP-HMM
learns the number of activities automatically, we could not
increase the total number of representative events to be
same as ours. On the other hand, our method produced bet-
ter results since it uses the foreground percentage as well
as the optical flow for the feature and exploits rich statistics
about the relation of events such as causality, frequency, or
significance of events. Similarly, we evaluated rare event
detection by counting the number of rare transitions discov-
ered by the methods. Interesting rare transitions found by
our method are people not going near the approaching train
when the train was approaching. Our method detected a
larger number of rare transitions compared to SARM as de-
scribed in Table 1. DDP-HMM cannot find rare transitions
of events during the training phase, although it can be used
to detect them after training a model off-line. On the other
hand, given a video, our method needs no training phase to
detect rare transitions of events in the video.

4.2. The Disease Sequence

The disease sequence of BOSS dataset was also tested.
The sequence includes the scenario where a man enters the
railway coach. After a while, he suddenly falls ill. Pas-
sengers help him to his seat. Fig. 10(a) and 10(b) show the
qualitative results of event summarization and rare event de-
tection in this sequence. For event summarization, A., As,
and A\, in (10) were set as 100, 0.01, and 0.3, respectively.
As the energy calculated by (10) is minimized, the graph
was edited to contain 8 nodes and 6 edges from the original

Representative events [ Ours SARM DDP-HMM ‘
Entering the coach 2 4 2
Taking a sit 2 3 1
Falling ill 1 0 0
Coming up to him 2 0 3
Helping him to his seat 1 1 0

Rare transitions [ Ours SARM DDP-HMM ‘
Interesting 2 1 0
Uninteresting 0 1 0

Table 2. Comparison in the disease platform sequence. Red indi-
cates best performance.

31 nodes and 142 edges. As illustrated in Fig. 10(a), our
system well summarized the disease sequence with three
different parts. The first part describes the scenario where
people enter the railway coach (node 20) and take their seats
(node 25). The event of node 20 caused the event of node
25. In the second part, our method captured the meaning-
ful situation of the man suddenly falling ill (node 22). The
method detected rare transitions between nodes 2 and 9 and
node 22. These transitions of events are irregular because
the abnormal event of node 22 occurs just after the normal
events of nodes 2 and 9. After the man falls ill, passen-
gers help him to his seat (node 21). The event of node 21
causes passengers to rise from their seats to help him (node
1,10). Our method accurately found the casual relationship
between node 21 and nodes 1 and 10 as shown in the third
part of Fig. 10(a), in spite of severe occlusions and inter-
actions of people. On the other hand, the joint activities
obtained by DDP-HMM described inaccurate transitions of
events due to the errors occurred by severe occlusion and
background clutter, although a full comparison is not possi-
ble, as illustrated in Fig. 10(c).

For rare event detection, we set Ac, As, Ay, and \,, in (13)
as 10, 0.01, 100, and 0.01, respectively. Fig. 10(b) shows
the edited graph obtained by our method for rare event de-
tection. Our system successfully detected the meaningful
but abnormal event of the man falling ill (node 22). Addi-
tionally, the system found related events with node 22. For
example, node 28 includes the region where the man has
felt pain for a while. This caused him to fall ill, which is the
event of node 22.

As shown in Table 2, our method outperforms SARM
and DDP-HMM quantitatively in the performance of both
event summarization and rare event detection.

4.3. The London Traffic Sequence

This sequence contains the traffic at intersections. To
summarize the sequence, we set \., As, and \,, in (10) as
100, 0.05, and 0.01, respectively, and minimize the energy
of (10). Then, we obtained the edited graph which consists
of 14 nodes and 14 edges, while the original one 827 nodes
and 2353 edges. As illustrated in Fig. 11, our method sum-
marized events similar to those shown in [6, 9]. It found the
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Figure 11. Results of event summarization recovered by our
method in the traffic sequence. The figures at the top are a simpli-
fied version of the figures at the bottom.
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Figure 12. Results of rare event detection found by our method
in the traffic sequence.
four representative movements of cars according to traffic
lights and recovered the traffic light cycle accurately.

Our method also found a rare transition of events at the
same time as illustrated in Fig. 12(a). In the dataset, a car
suddenly stopped on the road while other cars usually keep
going. It is an unusual switch in a series of car movements,
of which frequency is only 0.025. This can not be recovered
by DDP-HMM at its training phase, although it may detect
the transition after training. On the other hand, our method
found both rare and representative sequences of events si-
multaneously by casting the problems as the graph editing
framework. During the process of the method, the energy in
(13) was decreased from 7902 to 353 and finally converged
as shown in Fig. 12(b), in which A, A5, Ay, and A,, were
set to 100, 0.005, 200, and 0.005, respectively.

Our method spends most computational time to segment
the video spatially and temporally by the method in [13].
Thus, the computational cost and scalability highly depend
on [13]. By properly optimizing the process, we can greatly
enhance the performance although it approximately takes 1
seconds per frame at the current state.

5. Conclusion

In this paper, we have proposed an unified framework
for event summarization and rare event detection and pre-

sented the graph-structure learning and editing method to
solve these problems efficiently. The experimental results
demonstrated that the proposed method outperformed con-
ventional algorithms in complex and crowded public scenes
by exploiting and utilizing causality, frequency, and signifi-
cance of relations of events.
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