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Abstract

A widely used technique to recover a 3D surface from
photographs is patch-based (multi-view) stereo reconstruc-
tion. Current methods are able to reproduce fine surface de-
tails, they are however limited by the sampling density and
the patch size used for reconstruction. We show that there
is a systematic error in the reconstruction depending on the
details in the unknown surface (frequencies) and the recon-
struction resolution. For this purpose we present a theoreti-
cal analysis of patch-based depth reconstruction. We prove
that our model of the reconstruction process yields a lin-
ear system, allowing us to apply the transfer (or system)
function concept. We derive the modulation transfer func-
tion theoretically and validate it experimentally on synthetic
examples using rendered images as well as on photographs
of a 3D test target. Our analysis proves that there is a sig-
nificant but predictable amplitude loss in reconstructions of
fine scale details. In a first experiment on real-world data
we show how this can be compensated for within the limits
of noise and reconstruction accuracy by an inverse transfer
function in frequency space.

1. Introduction

Patch-based (multi-view) stereo reconstruction [1, 4, 6,
7, 8] is a widely used technique to recover a 3D surface
from photographs. Current methods achieve remarkable ac-
curacy and are able to capture even fine geometric details
[17, 13]. Their ability to faithfully reconstruct details is ob-
viously limited by two facts: the sampling density of the
algorithm and the size of the patch used for reconstruction
(both of these are typically coupled to the resolution of the
input images). To give a concrete example: a planar surface
modulated with fine scale detail will eventually be recon-
structed as a plane as image resolution decreases and patch
size increases. This is illustrated in Figure 1 for a 1D signal.

We are interested in the geometry reconstructed by a
patch-based algorithm for details that are roughly at the
scale of the patch size. As also illustrated in Figure 1, such
details are reconstructed with much lower amplitude and
can even be inverted, so that valleys are reconstructed as
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Figure 1. Predicted reconstruction of a sinusoidal surface with
different patch widths. Top: The amplitude of the reconstruction
varies drastically with the width of the patch used for reconstruc-
tion. In some cases, the signal is even inverted. The bold line marks
the optimal patch position and orientation. Bottom: Table with pre-
dicted amplitude loss depending on patch width relative to signal
wave length. Bold columns mark the cases drawn above.

peaks and vice versa. This behavior is not only contradict-
ing our standard (or naı̈ve) intuition about the properties of
patch-based reconstruction, it is also in stark contrast to the
assumptions made by most fusion techniques used to recon-
struct a single surface from a set of reconstructed points or
depth maps. These algorithms typically assume that the re-
constructed points are samples of the true surface disturbed
by zero-mean Gaussian noise [2, 9, 21]. Different scales or
sampling densities are sometimes represented by lower con-
fidences (or large variances in the noise model) and often
enough just ignored. This implies that a reliable measure-
ment of the true surface can be obtained by just averaging
enough surface samples as this will cancel out noise.

In this paper, we show that there is a systematic error in
the reconstruction depending on the details in the unknown
surface (frequencies) and the reconstruction resolution. We
show that even a “perfect” patch-based reconstruction algo-
rithm will result in different reconstructed geometry of the
same scene if used at different scales (e.g., varying resolu-
tion of input images or changing patch size). To our knowl-
edge this fact is not modeled in any existing patch-based
reconstruction algorithm. We provide a model that predicts
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how amplitudes of different frequencies in the incoming
signal are reproduced. The model is motivated by the con-
cept of optical transfer functions (OTF) [19, 20] typically
applied in the context of 2D image processing. It allows us
theoretically to invert this process, in practice however only
within the limits of noise and reconstruction accuracy.

The remainder of this paper is organized as follows: We
first review related work (Section 2) before we derive and
validate our model in 2D using synthetic examples and a
real-world test target (Section 3). We then extend our the-
ory to 3D (Section 4) and show its relevance on a real life
application. Finally, we discuss our results (Section 5).

2. Related work
The analysis of different scale geometry reconstruction

using patch-based stereo techniques has been neglected so
far. For an overview and classification of multi-view stereo
we refer to the recent survey and constantly updated bench-
mark by Seitz et al. [17, 13]. Key elements in our work
build upon signal processing, optical transfer functions, and
multi-scale surface representation. Existing work of the lat-
ter two areas will be discussed in the following.

The optical transfer function (OTF) is a well known con-
cept to describe how details are reproduced by an imaging
system [20]. It relies on the assumption of a linear system
and describes how amplitude and phase change for different
frequencies in the image using modulation and phase trans-
fer functions, respectively. In our work, we validate that
the linearity assumption holds and estimate the modulation
transfer function of a patch-based stereo system. The OTF
can be estimated in various ways [20]. For sampled imaging
systems, Reichenbach et al. [16] introduced the knife-edge
technique. Multiple scan lines are first registered to create
a super-resolution edge profile and to suppress noise before
the frequency space behavior is analyzed. Goesele et al. [5]
applied this technique to estimate the modulation transfer
function of a 3D range scanner. They capture a slanted edge
and fit two planes to the measurements to create a super-
resolution edge profile. The Fourier transform of the profile
is then compared to that of an ideal edge.

Kobbelt et al. [10] define multi-scale surface representa-
tions and encode changes between levels using normal dis-
placements. They use fairing operators to iteratively smooth
a mesh and apply the results in the context of multi-scale
surface editing. Inspired by Lindeberg’s scale-space the-
ory [12], Pauly et al. [14] present a point-based multi-scale
representation scheme using approximate geometric low-
pass filtering and a projection operator to encode the differ-
ent levels of detail. They discuss two approximate low-pass
filters based on diffusion and least-squares filtering, respec-
tively. Both can lead to deformations such as surface shrink-
age. They identify the problem that no global, distortion-
free parameterization exists for manifolds in general.

In this paper, we draw the connection between multi-
scale surface representations and patch-based stereo recon-
struction. We rely on the transfer function concept and the
analysis techniques presented above, allowing us to demon-
strate the effects in theory and practice. Using the simpli-
fying assumption that the geometry can be represented as
a height field, we are able to apply Fourier analysis to the
reconstructed geometry.

3. Modeling the reconstruction process
The common strategy in patch-based stereo methods is

to locally fit a planar patch to the unknown geometry that
is photo-consistent with one or more other views. A typical
example for measuring photo-consistency is the normalized
cross-correlation (NCC) of points on the patch projected in
other views. The final surface is represented by the (triangu-
lated) central patch points [1, 4, 7] or the points are merged
into a distance field [2, 3, 21]. In the following, we will de-
velop a theoretical model for fitting a planar patch to the
geometry, first in 2D and later in 3D (Section 4).

We assume that the geometry can be described as a
height field z = f(x) (i.e., the whole surface is visible from
an orthographic camera aimed perpendicular to the height
field plane). In order to obtain the reconstruction ẑ = f̂(x)
at position x∗ we fit a patch (line segment) with an extent
of 2δ centered around x∗ to the geometry. We represent the
line segment by two parameters m,n and model the fitting
process as optimizing for least-squares distance to the true
geometry by minimizing the following energy

E(m,n, x∗) =
∫ x∗+δ

x∗−δ
(mx+ n− f(x))2dx. (1)

The reconstructed surface height at x∗ is then given through
the optimal parameters m,n by ẑ = mx∗+n. Note that we
measure the patch extent along the x-axis in world coordi-
nates and not in pixels as typically done in stereo. In the
remainder of the paper we will use the term patch width
for describing a patch of extent 2δ. The parameter δ also
depends on image resolution, surface distance to the cam-
era, and the camera’s focal length. The actual patch size de-
pends however on the slope (or orientation) of the patch. In-
tuitively, a smaller δ allows to capture fine details whereas
a larger δ yields a smoothed surface. Image resolution of-
ten defines the sampling frequency equal to the distance
between two consecutive points x∗1 and x∗2 where we fit a
patch. In the following, we will deliberately disregard im-
age resolution and think of reconstructing the geometry as
fitting a patch continuously at every point x∗.

3.1. Theoretical results for a sine wave

We start by analyzing the simplest geometry in the sense
of frequency behavior, a sine wave f(x) = a sin(ωx)



with amplitude a and frequency ω. To determine the recon-
structed signal according to our model, we need to mini-
mize E by finding the roots of the partial derivatives

∂mE = 2
∫ x∗+δ

x∗−δ
x(mx+ n− a sin(ωx))dx != 0 (2)

∂nE = 2
∫ x∗+δ

x∗−δ
(mx+ n− a sin(ωx))dx != 0. (3)

Solving the equations for m and n results in

m =
3a cos(ωx∗)(sin(ωδ)− ωδ cos(ωδ))

ω2δ3
(4)

n =
aδ2ω sin(ωx∗) sin(ωδ)

ω2δ3

+
3ax∗ cos(ωx∗)(ωδ cos(ωδ)− sin(ωδ))

ω2δ3
(5)

Inserting this in ẑ = mx∗ + n, the reconstruction is

f̂(x∗) =
a sin(ωδ) sin(ωx∗)

ωδ
= a sinc(ωδ) sin(ωx∗). (6)

This is an interesting result because frequency and phase
of the sine are preserved for arbitrary patch width and fre-
quency; only the amplitude is scaled by sinc(ωδ) confirm-
ing one part of our linear system assumption. Note that for
certain combinations ωδ the signal can even be inverted so
that valleys become peaks and vice versa. In the following
we will corroborate this result experimentally.

3.2. Experimental results for a sine wave

We first validate our results on synthetic data sets, ren-
dered using the PBRT system [15]. This has the advantage
that registration is perfect and all observed effects are due
to photo-consistency optimization alone. As test target, we
create a mesh representing a sine wave in the x, y−plane
with z(x, y) = a sin(ωx). The mesh is observed by five
perspective cameras: One central camera points orthogonal
to the x, y−plane and the other cameras are equally dis-
tributed around it with 15° parallax. A random texture with
structure on all scales is mapped onto the geometry. We ren-
der views of the geometry using a variety of image resolu-
tions. For the highest resolution we also create a ground
truth depth map. For reconstruction, we run a patch opti-
mization taken from an existing multi-view stereo system
[6, Sect. 6.2] using the central camera as reference view and
the surrounding cameras as neighbor views. For each pixel
in the central camera the optimization is initialized with a
fronto-parallel patch at depth values associated with that
pixel in the highest-resolution ground truth depth map. The
optimized patch with highest confidence (based on NCC)
determines the depth at the current pixel.

For data analysis, we fit the parameters amplitude â,
frequency ω̂, phase p̂ and offset ô of the sine function

10
0

10
1

−0.2

0

0.2

0.4

0.6

0.8

1

ω δ

 

 

ω = 32 − 5x5

ω = 32 − 7x7

ω = 64 − 5x5

ω = 64 − 7x7

sinc(ωδ)

10
0

10
1

0.97

0.98

0.99

1

1.01

1.02

1.03

ω δ

 

 

relative frequency

10
0

10
1

10
−6

10
−4

10
−2

10
0

ω δ

 

 

phase

offset

Figure 2. Resulting relative amplitude, relative frequency, phase,
and offset of the reconstructed sine wave for different wavelengths
and patch widths.

z = â sin(ω̂x+ p̂) + ô to all reconstructed 3D points using
Levenberg-Marquardt optimization [11]. To obtain a super-
resolution sampling of the sine wave along the x-axis the
camera’s up-vector is slightly tilted against the y-axis (about
5°) similar to the knife edge technique [16]. In our experi-
ments we use two sine waves of different frequency (ω = 32
and ω = 64). We vary the patch width parameter δ by us-
ing various image resolution as well as image patch sizes of
5×5 and 7×7 pixels. Figure 2 shows that the reconstructed
relative amplitudes, relative frequencies, phases, and offsets
match very well with the predicted values. The observed
differences are primarily caused by imperfections in the re-
construction process, in particular the interaction between
the model texture and the photo-consistency of the patch.

3.3. Stereo transfer function

Ideally, we can express the reconstruction process using
a transfer (or system) function representing the relation be-
tween input and output in terms of spatial frequencies. This
concept is common in the imaging domain (optical transfer
function) [19, 20] for describing the capability of showing
fine details and the trade-off between blurred structure and
aliasing. The optical transfer function is actually the Fourier
transform of the point spread function. However, the trans-
fer function concept is only applicable to linear systems fea-
turing the principle of superposition and stationarity. The



latter is given for our model since the reconstruction is lat-
eral shift invariant. What remains to check is the principle of
superposition or additivity. We show that if the geometry is
the sum of different frequency components the reconstruc-
tion is the sum of its separate contributions. For this purpose
we represent f by a complete Fourier series

f(x) =
a0

2
+
∞∑
k=1

(ak cos(kx) + bk sin(kx)) . (7)

Substitution to Equation 1 and carrying out the same steps
as in Section 3.1 one obtains

f̂(x) =
a0

2
+
∞∑
k=1

sinc(kδ)·(ak cos(kx) + bk sin(kx)) (8)

as the reconstructed geometry (see Appendix A for inter-
mediate steps). Thus, the principle of superposition is ful-
filled and our model of patch-based stereo reconstruction is
a linear system. This allows us to formulate the relationship
between reconstructed and real geometry as

F̂δ(ω) = MTFδ(ω) · F (ω) = sinc(ωδ) · F (ω) (9)

where F̂δ and F are the Fourier transforms of the re-
constructed (using patch width 2δ) and real geometry.
MTFδ(ω) is the modulation transfer function. Note that
there is a difference to the traditional OTF. In our case the
MTF can also be negative, modeling an inversion of am-
plitudes and the geometry, respectively. This allows us to
completely remove the phase transfer function. In the next
section, we will validate this result experimentally.

3.4. Experiments on a slanted edge

To experimentally validate Equation 9 we reconstruct a
zigzag shape whose Fourier transform contains frequencies
on all scales due to its sharp edges. Apart from the under-
lying geometry which is a zigzag shape (constant along y-
axis) with edges of about 126° we use the same setup as
in Section 3.2. Again, we just look at the (x, z) pairs of all
reconstructed points. The slanted edge (implemented by the
slightly tilted up-vector) gives us a fine sampling of the edge
along the x-axis. We chose an interval [xmin, xmax] such
that it captures exactly one period of the zigzag shape and
sample all points therein into 2n bins so that the Discrete
Fourier Transform (DFT) can be applied. In the Fourier
transform of the ground truth profile every second coeffi-
cient is zero so we only use every second coefficient to
compute the MTF, where the different resolutions lead to
various patch widths 2δ (see Figure 3 top, middle). We can
also measure how the amplitude is altered according to the
product of frequency ω and δ (see Figure 3 bottom). Up to
ωδ ≈ 1.5 the measured data matches very well with the the-
oretically predicted result. Beyond that point, the MTF still
follows the theoretical prediction sinc(ωδ) but is masked by
noise introduced by the reconstruction process.
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Figure 3. Top: Imaginary part of DFT coefficients for the zigzag
profile. Middle: MTF samples for different patch widths 2δ as a
function of ω. Bottom: MTF as a function of the product ωδ.

3.5. Results on real-world data

Our goal is to analyze an object of simple and known 1D
geometry to validate our theory with real world data. We
therefore created a test target using 3D printing technology
(see Figure 4). It consists of two periods of a sine wave with
wavelength 62.8 mm and amplitude 10.0 mm and an edge
with an angle of about 126°. Both are spread over 188.5 mm
in width. To provide structure, we mapped the same texture
as used in our synthetic experiments on the entire surface.
This model was printed using a ZPrinter® 650 which has
a printing accuracy of about 0.1 mm according to manu-
facturer specifications. For our experiments, we took pho-
tos with a digital SLR (one central photo looking orthog-
onal onto the object and several surrounding photos) with
three different average camera distances to the object (near:
95 cm, middle: 145 cm, far: 280 cm). For each set of photos
we perform a calibration using structure-from-motion [18].
We then apply a multi-view stereo algorithm [6] with patch-
based optimization to compute a depth value for each pixel
in the central views. Hereby, we repetitively rescale the im-
ages in order to get depth maps of different resolutions and



Figure 4. Left: Rendering of the test target. Middle/Right: Side and
top view of the manufactured test target.
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Figure 5. Results using the manufactured test target. Top: Ampli-
tude loss on the sine wave. Bottom: MTF samples using the edge.

additionally run the reconstruction algorithm with two dif-
ferent image patch sizes (5×5 and 7×7 pixel).

To analyze the amplitude loss on the sine wave, we first
determine an optimal transform aligning the reconstruction
with the x, y-plane. This optimal transformation is applied
to all the different resolution depth maps to which we then
fit in a second step a sine with amplitude, frequency, phase,
and offset as in our synthetic experiments. Figure 5 (top)
shows the amplitude loss with growing ωδ. The results
closely match the theoretical prediction. In the second ex-
periment, we analyze the reconstructed edge of the test tar-
get using an approach very similar to Goesele et al. [5]. We
first fit two least-squares planes to the (highest resolution)
reconstructed points on both sides of the edge and rotate
the scan such that the intersection line coincides with the
y-axis and the edge profile is symmetric to the y, z−plane.
We then bin the reconstructed points ((x, z)-pairs) into 257
bins along the x-axis, move the ends to z = 0 and multi-
ply with a Blackman window. Then each profile is rotated
around one end point to continue it periodically, dropping
the first and last bin and thus resulting in 512 bins. We apply
the Fourier transform to each profile and compare it to the
Fourier transform of a perfect edge profile. Figure 5 (bot-

tom) shows the sampled MTF values for different δ. The re-
sult shows significantly more noise and outliers than on the
synthetic data reflecting errors in the registration, wrongly
matched patches due to far-off start points and summed up
errors during region growing.

4. Moving from 1D to 2D functions
So far, we described the theory for one-dimensional

functions and validated it using geometry that is constant in
one dimension. Naturally, real-world geometry rarely con-
forms to such a constrained model. We therefore show how
our theory extends to height fields parameterized over a 2D
plane, i.e., surfaces that can be described by z = f(x, y).

4.1. Theory for a height field over a 2D plane

Similar to the one-dimensional case we fit a planar patch
P = mxx + myy + n to the height field around a point
(x∗, y∗) with dimensions δ×δ. We again express the geom-
etry in terms of a sine and cosine series or, for convenience,
using complex numbers

f(x, y) =
∞∑
j=0

∞∑
k=0

αj,ke
i(jx+ky). (10)

Solving the according minimization problem

min
mx,my,n

∫ y∗+δ

y∗−δ

∫ x∗+δ

x∗−δ
(P − f(x, y))2 dx dy (11)

for mx,my, and n we obtain the reconstructed geometry as∑
j,k

αj,ke
i(jx+ky) sinc(jδ) sinc(kδ) (12)

(see Appendix C for a thorough derivation handling the
more general case of a rectangular patch). Note that this
amplitude loss is a product of two sinc functions which is
the Fourier transform of a box filter.

4.2. Results on synthetic 2D sine

We will substantiate the theoretical result on geometry
containing only one frequency along each dimension and
construct a height field with z = 1

ω sin(ωx) sin(ωy). Apart
from this geometry, the setup is equivalent to that in Sec-
tions 3.2 and 3.4. We optimize for the six parameters am-
plitude â, frequencies ω̂x, ω̂y , phases p̂x, p̂y , and offset ô
such that z = â sin(ω̂xx+ p̂x) sin(ω̂yy + p̂y) + ô holds for
the reconstructed 3D points. According to the theoretical re-
sult from Equation 12, the reconstructed amplitude should
be scaled by sinc2(ωδ) compared to the original amplitude.
Figure 6 shows that the experimentally obtained scaling fac-
tors match the expected values very well. The estimated fre-
quencies, phase shifts, and offsets are comparable to the 1D
experiments (similar to Figure 2).



10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω δ

 

 

ω = 16 − 5x5

ω = 16 − 7x7

ω = 32 − 5x5

ω = 32 − 7x7

sinc
2
(ωδ)

Figure 6. Reconstructed amplitude as fraction of the true amplitude
compared to theoretical prediction in 2D.

Figure 7. Left: Sample image of the lion head sculpture. Right:
Low-resolution VRIP reconstruction.
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Figure 8. Slice of the 2D inverse MTF and of the low-pass filter
used for the lion head experiment.

Figure 11. Absolute depth differences of results shown in Fig-
ure 10 left/middle compared to Figure 10 right. Note the changes
around the eyelid and the nose.

4.3. Application to real-world example

After presenting all the theoretical results and experi-
ments validating the results in practice, we want to exploit
the new insights within a real-world application. In the fol-

lowing we enhance a single-scale multi-view stereo recon-
struction. For that purpose we create a 3D model of a lion
head sculpture using the following pipeline. We register
225 photographs [18] of a lion head sculpture, reconstruct
a depth map for a subsets of 41 views with image patch
size of 7×7 pixels [6], and merge the depth maps into a
global model using VRIP [2] (see Figure 7). Hereby, we
create two different versions, a low-resolution model us-
ing downscaled photos (halved image dimensions) for depth
map reconstruction and a high-resolution model using full
image resolution. We convert a cut-out of the models into
a height field and smoothly interpolate to a constant value
and zero gradient at the borders minimizing second order
derivatives. This leads to a periodical signal which is the
input to a 2D Fourier transform. For all frequencies, we
compute the inverse MTF using our model and scale up the
frequencies accordingly to invert the amplitude loss dur-
ing reconstruction. Since our experiments showed signifi-
cant noise and thus deviation from the ideal MTF for the
real-world test target, we clamp the inverse MTF. We use
MTFδ(ω)−1 = min(0.6−1, sinc(ωδ)−1) (Figure 8). We
also apply a smooth low-pass filter that suppresses high-
frequencies where the patch size is smaller than the wave-
length. Finally, the inverse Fourier transform is performed.
Figures 9 and 10 show how details are emphasized through
the inversion of our stereo transfer function. Difference im-
ages in Figure 11 show a quantitative comparison where
some regions are improved whereas others become worse.

5. Discussion
We introduce a theoretical model of patch-based stereo,

modeling the reconstruction process as a linear system, and
validate it on synthetic and real input using an existing
multi-view stereo system. We demonstrate that there is a
significant amplitude loss and even an inversion of ampli-
tudes which has not been modeled before in any of the ex-
isting reconstruction pipelines. The real-world application
example gives a first clue of how this could improve the
reconstruction quality in a practical system. Inevitably, the
experiments show some limitations. First, modeling the re-
construction process as finding the depth and orientation of
a patch that minimizes the least-squares distance to the true
surface leaves out the complex interaction between the sur-
face texture and the reconstruction. This may yield artifacts
when the MTF is inverted. Second, the noise introduced in
the reconstructions may of course limit the ability to invert
the amplitude loss. Finally, practical applicability is limited
because of the nature of the global Fourier method caus-
ing problems with depth discontinuities (occlusion), finite
image size (periodicity assumption), and incomplete recon-
structions. The lion head example is therefore only a start-
ing point of how geometry can be reconstructed faithfully
using our amplitude loss compensation.



a) b) c) d) e)
Figure 9. Results on a height field created from the lion head VRIP model. a) Low-resolution reconstruction. b) Removed high-frequency
noise. c) Inverted amplitude loss up to a certain scale. d) Smoothed high-resolution reconstruction. e) High-resolution reconstruction.

Figure 10. From left to right: Magnification of a region around the left eye in Figure 9 b), c), and d), clearly showing how our proposed
method improves the details, e.g., of the eyelid. See Figure 11 for a quantitative visualization of the differences.
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A. Geometry reconstruction in 1D
Representing the underlying geometry f(x) with a com-

plete sine and cosine series yields

f(x) = a0
2 +

∑∞
k=1 (ak cos(kx) + bk sin(kx)) . (13)

We need to find m and n, so that on the interval I = [x∗ −
δ, x∗ + δ] the energy E(m,n, x∗) is minimized:

E(m,n, x∗) =
∫
I
(mx+ n− f(x))2 dx. (14)

This implies taking partial derivatives with respect tom and
n and finding the roots of these equations:

∂mE(m,n, x∗) =
∫
I
2x (mx+ n− f(x)) dx != 0

∂nE(m,n, x∗) =
∫
I
2 (mx+ n− f(x)) dx != 0. (15)

This yields the following solution for Equation 15:

Em = nx2 + 2
3mx

3 − 1
2a0x

2 +
∑∞
k=1

2
k2 (−ak cos(kx)

−bk sin(kx)− kyak sin(kx) + kybk cos(kx))

En = 2nx+mx2 − xa0

−
∑∞
k=1

2
k (ak sin(kx)− bk cos(kx)) . (16)

Inserting the boundaries of the interval I (ignoring the su-
perscript ∗ for typographic reasons) in Equation 16 yields

0 = 4nxδ + 4mx2δ + 4
3mδ

3 − 2xδa0 +
∑∞
k=1

4
k2 (

−xkak cos(kx) sin(kδ)− δkak sin(kx) cos(kδ)
+ ak sin(kx) sin(kδ)− xkbk sin(kx) sin(kδ)
+ δkbk cos(kx) cos(kδ) −bk cos(kx) sin(kδ))

0 = (−4δmx− 4δn+ 2δa0+∑∞
k=1

4
k sin(kδ) (ak cos(kx) + bk sin(kx))

)
(17)

These two equations are linear inm and n and can be easily
solved. Moreover, from Equation 17 one obtains the expres-
sion for the solution mx+ n directly as

a0
2 +

∑∞
k=1 sinc(kδ) (ak cos(kx) + bk sin(kx)) . (18)

B. 1D reconstruction with complex numbers
Using complex numbers, we can write our series as

f(x) =
∑∞
k=0 αke

ikx (19)

and solve the expressions for the partial derivatives as the
following indefinite integrals

Em = nx2 + 2
3mx

3 + 2
∑∞
k=0 αke

ikx
(−1
k2 + ix

k

)
En = 2nx+ 2mx2 +

∑∞
k=0

2i
k αke

ikx. (20)

Restricting to the interval I we get

Em = 4nxδ + 4mx2δ + 4
3mδ

3+∑∞
k=0 αke

ikx 4i
k2 (kδ cos(kδ) + (−1 + ikx) sin(kδ))

En = 4δ(n+mx)−
∑∞
k=0

4
kαke

ikx sin(kδ). (21)

From this, m and n can be solved resulting in

mx+ n =
∑∞
k=0 sinc(kδ)αkeikx (22)

C. 2D reconstruction with complex numbers
Clearly, the same procedure can be applied in 2D. Let

P = mxx+myy + n (23)

be the solution to the patch that we want to compute around
a point (x, y) spanned by I = [x− δ, x+ δ]× [y− ε, y+ ε].
The signal f(x, y) can be expressed in terms of a sine and
cosine series or, alternatively, using complex numbers by

f(x, y) =
∑∞
j=0

∑∞
k=0 αj,ke

i(jx+ky) (24)

Again we want to find the minimum of

E =
∫
y

∫
x
(P − f)2 dx dy (25)

for the parameters mx, my , and n. Taking derivatives with
respect to these parameters and solving yields

Emx
= nx2y + 2

3mxx
3y + 1

2myx
2y2

+
∑
j,k αj,ke

i(jx+ky)
(

2i
j2k + 2x

jk

)
(26)

Emy
= nxy2 + 1

2mxx
2y2 + 2

3myxy
3

+
∑
j,k αj,ke

i(jx+ky)
(

2i
jk2 + 2y

jk

)
(27)

En = 2nxy +mxx
2y +myxy

2

+
∑
j,k αj,ke

i(jx+ky) 2
jk . (28)

On the given patch I we get

Emx
= nx+mxx

2 +myxy +
1
3
mxδ

2

+
∑
j,k αj,ke

i(jx+ky) sin(kε)·(
i
jkε cos(jδ)− sin(jδ)( i

j2kδε + x
jkδε )

)
(29)

Emy = ny +mxxy +myy
2 +

1
3
myε

2

+
∑
j,k αj,ke

i(jx+ky) sin(jδ)·(
i
jkδ cos(kε)− sin(kε)( i

jk2δε + y
jkδε )

)
(30)

En = n+mxx+myy

−
∑
j,k αj,ke

i(jx+ky) 1
jkδε sin(jδ) sin(kε) (31)

We can solve these linear equations inmx,my , and n. From
En = 0 one can directly derive the solution for our patch:

P = mxx+myy + n

=
∑
j,k αj,ke

i(jx+ky) 1
jkδε sin(jδ) sin(kε)

=
∑
j,k αj,ke

i(jx+ky) sinc(jδ) sinc(kε). (32)


