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Abstract
This paper extends the classical warping-based optical

flow method to achieve accurate flow in the presence of
spatially-varying motion blur. Our idea is to parameter-
ize the appearance of each frame as a function of both the
pixel motion and the motion-induced blur. We search for
the flows that best match two consecutive frames, which
amounts to finding the derivative of a blurred frame with re-
spect to both the motion and the blur, where the blur itself is
a function of the motion. We propose an efficient technique
to calculate the derivatives using pre-filtering. Our tech-
nique avoids performing spatially-varying filtering (which
can be computationally expensive) during the optimization
iterations. In the end, our derivative calculation technique
can be easily incorporated with classical flow code to han-
dle video with non-uniform motion blur with little perfor-
mance penalty. Our method is evaluated on both synthetic
and real videos and outperforms conventional flow methods
in the presence of motion blur.

1. Introduction
Optical flow has many important applications in com-

puter vision including video denoising, deblurring, stabi-
lization, and structure from motion. In these applications,
optical flow needs to be computed on videos with camera
motion and/or target motion. These types of videos of-
ten contain a significant amount of spatially-varying motion
blur, which makes it difficult for traditional optical flow al-
gorithms to produce accurate results since they make as-
sumptions about data conservation between frames.

One motivation of this work is that in the last decade,
people have tried to combine frames in a sequence with dif-
ferent exposures such as for HDR video [14], image deblur-
ring [30], and video denoising [21]. Solving these problems
requires accurate alignment between frames. It is unrealis-
tic to ignore motion blur in the context of imaging dynamic
scenes with variable exposure.

This paper studies the problem of how to achieve accu-
rate optical flow in the presence of spatially- varying motion
blur. Our work also takes variable exposure times into ac-
count and aims to provide consistent flow between blurred
and sharp frames as well as between blurred frames with
different blur kernels. This problem is especially challeng-
ing due to the difficulty of estimating spatially-varying blur
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Figure 1. We present a blur-aware optical flow algorithm that pro-
vides more accurate and consistent flow than the baseline classical
flow method [5, 17] in the presence of motion blur. Using the flow
estimated between the top image pair by our method, the warping
from the source to the target better preserves the image structure.
In contrast, the baseline flow method tries to move pixels in the
sharp images to match the blurry appearance of the target.

in an efficient manner.
We approach the problem by extending the classical

warping-based optical flow method. Our idea is to param-
eterize the appearance of each frame as a function of both
the pixel motion and the motion-induced blur. Using the
metric proposed in [13], we search for the flows that best
match two consecutive frames. The search amounts to find-
ing the derivative of a blurred frame with respect to both
the motion and the blur; the blur itself is a function of the
motion. We propose an efficient technique to calculate the
derivatives using pre-filtering. Our technique avoids per-
forming spatially-varying filtering (which can be computa-
tionally expensive) during the optimization iterations. In
the end, our derivative calculation technique can be easily
incorporated with classical flow code to handle video with
non-uniform motion blur with little performance penalty.

We also develop error metrics for evaluating optical flow
in the presence of motion blur. Standard optical flow error
metrics depend on a ground truth flow field for calculation;
however, a pixel in one image that is blurred in another has
multiple correspondences in the other image, as observed in
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[22]. This makes the notion of a ground truth flow ambigu-
ous. Our proposed error metrics handle this flow ambiguity.

2. Related work
Optical flow has seen many improvements over the past

few decades. A full review is beyond the scope this paper.
We refer the readers to the previous work sections in [1, 26]
for excellent reviews of recent work in optical flow. For
older work, see [2]. Despite the multitude of work on opti-
cal flow in general, there is very little in the literature that
addresses the problem of spatially-varying motion blur di-
rectly. Filter flow [24] is capable of modeling optical flow
with blur, and [11] uses it to deblur image sequences. How-
ever, its ability to produce accurate flow fields for motion
blurred sequences has not been demonstrated.

Sellent et al. [25] capture videos with alternating short
exposures and long exposures and use the motion blur of
the long-exposure frames to more accurately estimate mo-
tion between the short-exposure frames. Their algorithm
requires the alternating exposure scheme with short delays
between frames. We do not place any such constraints on
the exposure times of the frames and also address flow be-
tween two blurred frames.

Liu and Sun [18] compute flow between high-resolution
and low-resolution images for video super resolution. They
estimate a spatially-invariant smoothing kernel for the low-
resolution images and apply it to the high-resolution image
in a warping-based flow context.

He et al. [10] perform motion estimation for spatially-
varying blur by detecting corners and using hierarchical
block matching to obtain flows for the corners. Flows for
other pixels are obtained by interpolating between the avail-
able flows in a sparse-to-dense approach.

Ben-Ezra and Nayer [3] propose a hybrid camera system
where a secondary detector captures a sequence of short-
exposure frames whose optical flows are used to estimate a
spatially-invariant blur kernel for the single long-exposure
image from the primary detector.

Yuan et al. [29] perform alignment between motion
blurred and sharp image pairs. Their work assumes a
spatially-invariant blur kernel and an affine image trans-
form. HaCohen et al. [9] compute dense correspondence
between motion blurred and sharp image pairs by inter-
leaving kernel estimation and deblurring within the corre-
spondence algorithm. Their work also assumes a spatially-
invariant blur kernel and only computes the correspondence
within a validity mask.

Our work is related to works on tracking in the presence
of motion blur [13, 16, 19, 20]. Of particular importance are
[13, 19], which use the commutativity of the blur operation
to match blurred images and avoid deblurring. These works
track individual blurred patches between images, whereas
we compute dense optical flow.

Our work is also related to motion from blur [7, 15, 23],
where the motion blur in a single image is used to estimate
the motion. These algorithms only provide the direction
and speed of motion at the time the image was captured,
which is unlikely to provide accurate correspondences be-
tween image pairs with arbitrary motion.

3. Baseline method
We use “classical” warping-based optical flow as a base-

line method [4, 5, 6, 12]. The problem is formulated as
an energy minimization problem with the following energy
functional:

E(w) = ED(w) + αES(w), (1)

where w = (u, v) is a flow vector,ED is a data conservation
term, ES is a smoothness term, and α is a regularization pa-
rameter. The data conservation term provides a brightness
constancy constraint along the flow:

ED(w) =
∑
x

ψD

(
(I2(x+w)− I1(x))2

)
, (2)

where ψD is a penalty function and we are computing the
flow from image I1 to image I2. In practice, we filter the
input images to reduce the effects of illumination changes.

The smoothness term has the form
ES(w) =

∑
x

ψS

(
|∇u|2 + |∇v|2

)
(3)

where ψS is again a penalty function. The smoothness term
helps to account for the aperture problem (the data term pro-
vides no motion information in regions without texture) and
also helps to prevent outliers.

As in [5], we use the robust penalty function

ψ(x2) =
√
x2 + ε2 (4)

for both the data and smoothness terms. The constant ε
makes the function differentiable, which helps with the min-
imization. We use ε = 0.001.

3.1. Energy minimization
Minimizing the energy functional is achieved using a

gradient-based method in a coarse-to-fine fashion. If we
have a current flow estimate w = (u, v), we can write our
next estimate as (u + du, v + dv). The problem can then
be solved iteratively by linearizing about (u, v) and find-
ing the increment (du, dv) that minimizes the linear energy
functional. The linearized data term has the form:

ED(w) =
∑
x

ψD

(
(Iz + Ixdu+ Iydv)

2
)
, (5)

where
Iz = I2(x+w(x))− I1(x), (6)

Ix =
∂Iz
∂u

=
∂I2
∂x

∣∣∣∣
x+w(x)

, (7)

Iy =
∂Iz
∂v

=
∂I2
∂y

∣∣∣∣
x+w(x)

. (8)
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As shown in [17], the minimization of the linearized en-
ergy functional can be formulated as an iterated reweighted
least squares problem. Taking the derivative of the energy
and setting it equal to zero gives the following:[
ψ′DI

2
x + αL ψ′DIxIy

ψ′DIxIy ψ′DI
2
y + αL

] [
du
dv

]
= −

[
ψ′DIxIz + αLu
ψ′DIyIz + αLv

]
,

(9)
where bolded terms indicate diagonal matrix forms of the
images, non-bolded terms indicate vector forms, and L is
the weighted Laplacian filter using ψ′S as weights. The cur-
rent estimate of (u, v) is used to calculate the weights ψ′D
and ψ′S. The matrix on the left-hand side is positive definite,
so we can use the conjugate gradient method to solve the
system and avoid actually forming the matrix [17].

4. Blur-aware flow algorithm
When one or both of the images used in the flow calcu-

lation contain motion blur, the brightness constancy (and/or
gradient constancy) of the data term will be violated. In its
attempt to minimize the error of the data term, the baseline
algorithm will try to warp the source image to match the ap-
pearance of the target image. This will produce inaccurate
flow in regions where the two images do not have the same
blur. Our algorithm modifies the data term to obtain higher
quality flow by matching the non-uniform motion blur be-
tween the two images.

Let us consider two ground truth images J1 and J2 where
J2 is a warped version of J1 ignoring occlusion and lighting
changes, i.e., J1(x) = J2 (x+w(x)). Then, let I1 = J1 ∗
k1 and I2 = J2 ∗ k2 be the observed images (minus noise)
where k1 and k2 are spatially-varying motion blur kernels.
Based on the tracking work of [13], we apply the blur of
each observed image to the other image to obtain

B1(x) = (I1 ∗ k2)(x) ≈ (J1 ∗ k1 ∗ k2) (x),
B2(x) = (I2 ∗ k1)(x) ≈ (J2 ∗ k2 ∗ k1) (x). (10)

Note that the blur kernels are themselves functions of x, but
we omit the function notation to avoid confusion with the
evaluation of a single element in the kernel. If the kernels
are spatially invariant, then the two convolutions commute.
We do not assume they are spatially invariant, so the com-
mutative property does not hold in general. However, we
do assume that the motion is locally smooth, so we have
B1(x) ≈ B2 (x+w(x)). Now, in place of Iz from the
baseline method, we have

Bz(x) = B2 (x+w(x))−B1(x). (11)

Since there is a connection between the optical flow and the
motion blur, the kernels used to form B1 and B2 may vary
with u and v. Therefore, we do not have ∂Bz/∂u = Bx
and ∂Bz/∂v = By as in Eq. (7) and Eq. (8). Our main con-
tribution is to adapt the data term to handle this connection
between the flow and the blur.

Estimated

k1

Actual k1

Actual k2

I0

I1

I2

w12

w10

Estimated

k2

w23

I3

Figure 2. We approximate the true motion blur kernels with piece-
wise linear kernels obtained from flows to neighboring frames.

Again, we write w = (u + du, v + dv) and linearize
about du and dv. The new data term is

ED(du, dv) =
∑
x

ψD

((
Bz +

∂Bz
∂u

du+
∂Bz
∂v

dv

)2
)
(12)

where

∂Bz
∂u

∣∣∣∣
x

=
∂

∂u

(
B2 (x+w(x))−B1(x)

)
=

[
∂B2

∂u
+
∂B2

∂x

]
x+w(x)

−
[
∂B1

∂u

]
x

. (13)

The partial derivative ∂B2/∂u represents how the blurred
image changes with respect to the blur induced by the flow,
and the partial derivative ∂B2/∂x represents how the value
B2 (x+w(x)) changes with respect to the flow for a fixed
blur. The partial derivative with respect to the vertical flow,
∂Bz/∂v, is similarly defined.

We use the same minimization approach as the base-
line method, but with the new blurred image derivatives,
Bz , ∂Bz/∂u, and ∂Bz/∂v, in place of the standard image
derivatives, Iz , Ix, and Iy . It remains to show how we ob-
tain the blurred images and their derivatives.

4.1. Blur kernel approximation
Motion blur kernels can be very complex for long expo-

sure times as shown in [8]. On the other hand, exposure
times in video are limited by the frame rate. Therefore, the
motion observed during the exposure of a frame is relatively
smooth and a piecewise linear approximation, as shown in
Figure 2, is reasonable to represent the motion trajectory
over multiple frames. This approximation helps in the case
of spatially-varying blur since estimating an arbitrary ker-
nel for each individual pixel without assuming linear mo-
tion between frames would be prohibitively expensive.

Let us consider a sequence of four frames I0, I1, I2 and
I3, with each possibly containing motion blur, and suppose
we want accurate flow from I1 to I2. The blur kernels used
in our flow method are approximated using precomputed
baseline flows w10 and w23 and the current estimate of the
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desired flow w12 as shown in Figure 2. Let kw denote a
blur kernel consisting of a line segment from the origin to
w. Then the approximated kernels are given by

k1(x) =
1
2

(
kw10(x)τ1/2 + kw12(x)τ1/2

)
,

k2(x+w12(x)) =
1
2

(
k−w12(x)τ2/2 + kw23(x+w12(x))τ2/2

)
,

(14)

where τi is the duty cycle of frame i.

4.2. Computation of blurred image derivatives
We could theoretically compute the blurred images by

performing line integrals at each pixel as in [19] and evalu-
ate the derivatives with respect to the flow by differentiating
the parametric kernels. For example,

∂B1

∂u

∣∣∣∣
x

=

(
I1 ∗

∂k2
∂u

)
(x). (15)

However, differentiating the kernel at each pixel and con-
volving it with the input image would be very inefficient,
especially because this spatially-varying blur needs to be
executed in each iteration of the optimization. Instead, we
precompute a grid of blurred images where each grid point
corresponds to a scaled flow vector (τi/2)w, which acts as
a blur kernel. We then evaluate the derivatives with respect
to the flow using finite differences. See Section 5 for more
details on the grid construction.

With the blurred image grid, we can compute a pixel
B(x) = (I ∗ kw(x))(x) by bilinearly interpolating the grid
at the point w(x). This amounts to sampling four grid im-
ages at x and weighting the results. In this case, the partial
derivatives of the pixel with respect to u and v are trivial to
compute using finite differences of the four pixel values. In
general, the point at which we evaluate the grid may itself
be a function of the flow (see Eq. (14)). We can apply the
chain rule in this situation to get the partial derivatives with
respect to the current flow estimate w12. See the supple-
mentary material for the necessary equations.

4.3. Handling noise
When computing the flow between a clean long-

exposure frame and a noisy short-exposure frame, the blur-
ring of the noisy frame by the blur kernel of the long-
exposure frame has a denoising effect. This is a good thing
in general, since the long-exposure frame has low noise.
However, the true blur kernel is small in regions with very
little motion, so the noisy frame should be left mostly as-is
in these regions. What we have actually observed is that the
optimization introduces some (erroneous) non-zero flow so
that the noisy frame is blurred slightly to average out the
noise and reduce the energy in the data term.

To account for this undesired effect, we only use the
blur-aware flow for pixels whose estimated blur kernels are
larger than one pixel. Thus pixels with a baseline flow satis-
fying ‖w‖ < (max(τ1, τ2))

−1, where τ1 and τ2 are the duty

cycles of the two frames, are assigned the baseline flow in-
stead of the blur-aware flow. Our method is only designed
to make improvements to the flow in blurred regions, so the
recombination with the baseline in sharp regions is justified.

5. Implementation details
We initialize the flow field w12 at the coarsest level with

the baseline flow in order to have reasonable kernel esti-
mates from which to begin. The blur-aware flow can then be
seen as a refinement of the baseline. We use fewer pyramid
levels for the refinement to make better use of the coarse
solution from the baseline (a minimum image width of 100
instead of 30).

The magnitude of the flow is generally large for regions
with significant blur, so the error in the baseline flow should
not be enough to make the motion approximation unreason-
able (considering that even the motion approximated by the
ground truth flow is inaccurate when the actual motion is
not piecewise linear).

The extent of the blurred image grids are determined by
the range of flow values in the baseline flow fields. The
spacing of the grid points is chosen such that they are at
least one pixel apart and the total number of images is at
most M (we use 240). We need a reasonably dense grid
to get accurate results at intermediate points. A one pixel
difference is not as significant for large kernels as it is for
small kernels, so we increase the grid spacing as the points
get farther from the origin in order to get closer spacing near
the origin. See the supplementary material for more detail.

Our implementation operates on the same feature im-
ages as [17], which consist of the luminosity, the gradients
(scaled by a weight

√
γ to match the gradient constancy

term in [5]), the difference between the green and red chan-
nel, and the difference between the green and blue channel
(both scaled by some weight). The multiple channels are
summed into a single channel before solving Eq. (9).

All of our flows are computed using α = 0.01 for the
regularization parameter, γ = 1 for the gradient constancy
weight, and a scale factor of 0.75 between pyramid levels.
The color channel differences in the feature image are given
weight 0.5. We perform 16 iterations of warping at each
pyramid level. Apart from using fewer pyramid levels for
the blur-aware refinement, we use the same parameter val-
ues for the baseline and the refinement.

6. Evaluation
Normally, we would like to evaluate the accuracy of op-

tical flow using endpoint error [1]:

EE =
√
(û− u)2 + (v̂ − v)2, (16)

where (û, v̂) is the estimated flow and (u, v) is the ground
truth. In the presence of motion blur, however, the notion of
ground truth is unclear as observed in [22]: a point in I1 has
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I1

I2

w12
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Figure 3. A pixel in sharp image I1 has multiple corresponding
pixels in blurred image I2 due to motion and a non-zero exposure
time. Since there is no unique ground truth flow with which to
make an endpoint error calculation, we instead use the point along
the true motion that is closest to the estimate.

multiple corresponding points in I2 if it was moving during
the exposure. One could choose the beginning instant of
the exposure or the center of the exposure as the time for
the ground truth, but the reality is that there is no unique
ground truth flow to the blurred regions of I2. To compare
optical flow results in the presence of motion blur, we need
to take this ambiguity into account.

If we have a point (x, y) in I1 which moves along a tra-
jectory (x+ u(t), y + v(t)) during the exposure of I2, and
we consider any point along the trajectory to be a valid tar-
get for the flow, then we define the spatial error to be

SE = min
ti≤t≤tf

√
(û− u(t))2 + (v̂ − v(t))2, (17)

where ti is the start time of the exposure and tf is the end
time. This can be seen as the length of the error vector
from the estimated point to the actual trajectory, as shown
in Figure 3. The average spatial error over the entire image
provides one quantitative metric for the optical flow perfor-
mance. This error metric reduces to the endpoint error when
there is no motion or if the exposure time is infinitesimal.

Having a low spatial error is not sufficient for being a
good optical flow result: we would also like flows to con-
sistently map to the same time instant. To determine this
temporal consistency, we keep track of the values of t that
minimize the spatial error. Ideally these t values would all
be the same, so their variability provides a good measure
of the flow quality. We use the median absolute deviation
(MAD) as a robust metric for the temporal consistency. This
is only calculated over regions of the image with motion
since there is no ambiguity in stationary regions.

7. Results
We test our optical algorithm on both synthetic and

real sequences with spatially varying motion. More ex-
amples are provided in the supplementary material at
http://pages.cs.wisc.edu/~lizhang/projects/blurflow/.

The running time of our algorithm is fairly short, with the
refinement taking about 90 seconds at a 640x480 resolution;
the baseline flow takes about 40 seconds. Most of the extra
time is spent creating the blurred image grids prior to the
optimization at each pyramid level.

7.1. Synthetic Sequences
We generate synthetic sequences with spatially-varying

blur by moving a foreground object along a spline and alpha
blending it over a stationary background image. To simulate
motion blur from a non-zero exposure time, we move the
foreground in small increments from the start time of the ex-
posure to the stop time and average the transformed images
together. Gaussian noise is added to the images with stan-
dard deviation inversely proportional to the exposure time
to simulate the ISO speed adjusting to the changes in the
exposure time. The synthetic sequences are assumed to be
captured at one frame per second.

The spline used to generate the sequence provides
ground truth information for evaluating the results. We cal-
culate the metrics developed in Section 6 by projecting the
estimated flows onto the spline. We only compare flows in
the foreground since the background flows are mostly iden-
tical due to the noise handling mechanism.

In our first synthetic sequence, we vary the exposure time
between frames so that some frames are sharp and noisy
and some are blurred. Figure 4 shows the results for the
flow from a blurred frame to a relatively sharp frame. The
flow of the baseline method is inaccurate as it tries to warp
the sharp frame to match the blurred frame. This makes
the warped images look distorted and slightly blurry. Our
result is significantly more accurate with the warped images
retaining the sharpness and structure of the source image.
The average spatial error for the entire sequence was 1.14
pixels for the baseline and 0.93 pixels for our method. The
average temporal variability (MAD) was 0.048 seconds for
the baseline and 0.011 for our method.

Our second synthetic sequence uses a constant exposure
time so that all frames have significant motion blur. The
motion along the spline still produces different blur kernels
between neighboring frames, as we can clearly see in Fig-
ure 5. The improvements made by our method are more
subtle when both images are blurred since the violation of
the data term is less severe. However, the flow produced
by our method is still noticeably more consistent than the
baseline flow. The average spatial error for the entire se-
quence was 1.50 pixels for the baseline and 1.30 pixels for
our method. The average temporal variability was 0.035
seconds for the baseline and 0.013 seconds for our method.

Most of the spatial error remaining in our results is actu-
ally caused by a slight uniform bias or shift in the flow rather
than by local variability of the flow. This bias is most likely
caused by the inaccuracy of the linear motion approxima-
tion: when the actual motion is curved, the piecewise linear
approximation results in a blur kernel that is weighted more
heavily in one direction than the true kernel. Despite the
bias, our flow is still more consistent than the baseline and
has lower spatial error on average. See the supplementary
material for examples where the bias is more evident.
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Figure 4. Close-ups of results from the synthetic astronaut sequence. First row: The ground truth flow using the centers of the exposure
times is shown along with the input images. Second row: The baseline flow between the input images is inconsistent, and the warped
images, which should retain the appearance of the source, are distorted. Third row: The results of our method are much more consistent
and provide higher quality warped images. Brighter pixels in the spatial error images indicate larger errors with white being an error of 5
or more pixels. The temporal location images show the times that minimize the spatial error. Best viewed electronically in color.

7.2. Real Sequences

Our real sequences are captured with a Point Grey
Grasshopper at 30 frames per second. Like the first syn-
thetic sequence, we vary the exposure time between frames
and adjust the gain to compensate.

The first real sequence consists of a tabletop scene with
the camera moving in front of a collection of books. Depth
in the scene combined with motion of the camera contribute
to spatially-varying motion blur in the frames. The results
for a pair of frames are shown in Figure 6. As in the syn-
thetic sequences, the baseline method tries to warp the sharp
source frame to match the blurred target frame. The result
is that text which was legible in the source frame is dis-
torted and mostly illegible after being warped. Our method
does significantly better: the text is properly warped to the
space of the target frame while retaining the legibility of the
source. Similar improvements are seen in Figure 1, which
shows the results for a different pair of frames. See the sup-
plementary material for more results on real sequences.

8. Conclusions
In this paper, we have proposed an accurate optical flow

algorithm for videos with spatially-varying motion blur.
Unlike many other works in the field of motion estimation,
we do not assume uniform blur kernels. Our algorithm pro-
vides significantly more accurate and consistent flow than
the baseline method from which it is derived. We have also
devised error metrics for evaluating flow in the presence of
motion blur that do not force the choice of a ground truth
time instant. There are several avenues for future work.

The slight bias in some of the flows produced by our
algorithm could pose a problem for applications which re-
quire flow fields to be concatenated. As the fields are con-
catenated, the biases may accumulate leading to significant
drift. Correcting the bias is an important subject for future
work and may involve finding better ways to approximate
the blur kernels or adding temporal constraints that directly
address the problem of drift.

Since our algorithm is an extension of the classical
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Figure 5. Close-ups of results from the synthetic falcon sequence. As the two inputs are both blurred, the improvements made by our
method are more subtle. Some distortion is visible in the left wing for the baseline result that is mostly corrected in our result. The tail
feathers are also more accurately warped in our result. Overall, our method is more consistent and has lower spatial error.

warping-based flow method, it could benefit from many of
the recent innovations made in warping-based optical flow.
Of particular importance are modifications to the smooth-
ness term that help to better preserve edges [27, 28], and
weighted median filtering of intermediate results to reject
outliers in the flow [26]. We leave the exploration of such
enhancements for future work.

While the run-time efficiency of our algorithm is fairly
good, it currently has a large memory overhead due to the
blurred image grids. This makes pipelining and other par-
allelization techniques difficult since multiple instances of
the algorithm may not fit in main memory. Future work
can investigate optimizations to the space efficiency of the
algorithm. For example, a caching scheme for the blurred
images could be devised that maintains run-time efficiency
by exploiting the local smoothness of the optical flow field.
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