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Abstract

Substantial ambiguities arise in hand tracking due to
issues such as small hand size, deformable hand shapes
and similar hand appearances. These issues have greatly
limited the capability of current multi-target tracking tech-
niques in hand tracking. As an example, state-of-the-art
approaches for people tracking handle indentity switch-
ing by exploiting the appearance cues using advanced ob-
ject detectors. For hand tracking, such approaches will
fail due to similar, or even identical hand appearances.
The main contribution of our work is a global optimiza-
tion framework based on binary quadratic programming
(BQP) that seamlessly integrates appearance, motion and
complex interactions between hands. Our approach effec-
tively handles key challenges such as occlusion, detection
failure, identity switching, and robustly tracks both hands in
two challenging real-life scenarios: retail surveillance and
sign languages. In addition, we demonstrate that an au-
tomatic method based on hand trajectory analysis outper-
forms state-of-the-art on checkout-related activity recogni-
tion in grocery stores.

1. Introduction

In this paper, we consider the problem of tracking both
hands in challenging real-world environments. This is
a challenging problem, with various confounding issues,
ranging from low-resolution imaging, occlusions, to rapid
hand motion and changing cluttered background. In addi-
tion, the problem itself comes with substantial ambiguities
in tracking caused by the small hand size, deformable hand
shapes and similar or identical hand appearances. In par-
ticular, hand ambiguity has greatly limited the capability
of current multi-target tracking (MTT) techniques in hand
tracking. Current multi-object tracking approaches based
on advanced object detectors and appearance models per-
form very well on benchmark datasets for tracking people,
cars and other objects [18, 4, 17, 12]. However, when the
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Figure 1. (a) A frame from the retail dataset. (b) Trajectories of
both hands projected on the vertical axis are plotted over time
along side with ground truth. The hand trajectories are shown to
align well with the ground truth.

appearances of different objects are less discriminant, or
even identical, as in tracking both hands, these approaches
are prone to issues such as identity switching, and lose
tracks. As an example, a state-of-the-art approach for peo-
ple tracking was introduced in [24] as a recent extension of
[4] to account for individual identities. In this work, identity
switching is handled by assigning available appearance cues
to preserve identities of each track. However, as pointed out
by the authors of [24] themselves, identity switching is still
a common failure case of their approach, when objects with
similar appearances meet and separate.

This problem is even more pronounced in retail. Figure 2
illustrates a frequently occurring case, when the two hands
with identical appearances meet and split in reverse direc-
tions. Such cases happen extremely frequently, since the
two hands meet almost every second, each time the cashier
registers an item. Avoiding identity switching in these cases
is the key challenge for tracking both hands in the retail sce-
nario.

We believe the key idea to bypass this challenge is to
exploit the interaction between hands. Since the two hu-
man hands work together in a synchronized way to perform
a lot of tasks, they naturally have strong inherent interde-
pendencies. This is contradicting to tracking people, cars,



insects, etc, in which the objects being tracked behave inde-
pendently, and the inter-object interactions are only limited
to mutual occlusions and/or collisions.

Our main contribution is a seamless integration of hand
detection, motion model and hand interactions into a novel
global optimization framework for hand tracking, using the
binary quadratic programming (BQP) formulation. A big
advantage of the BQP model is the ability to incorporate
any computable pairwise function to model the interactions
between hands. Our tracking algorithm automatically finds
optimal hand tracks in batches of frames, with no track ini-
tialization needed. We validate the effectiveness of our pro-
posed approach on two real-life challenging datasets, i.e.
retail surveillance and sign language. Our approach effec-
tively handles key challenges of hand tracking such as oc-
clusion, detection failure, identity switching, and robustly
tracks both hands in real-life scenarios. Comparative eval-
uation shows the superiority of our BQP approach against
state-of-the-art approaches.
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Figure 2. A frequently occurring case in retail: the two hands with
identical appearances meet and split in reverse directions. Avoid-
ing identity switching in these cases is a key challenge for tracking
both hands.

Hand tracking has found a wide range of applications
such as gesture recognition [2], sign language recognition
[6] and HCI-based applications [23]. The second contribu-
tion of this paper is to explore a novel application in retail
activity recognition.

The predominant cashier activities at the checkout
counter include: pick-up, scan and drop, corresponding to
the process of registering one item by the cashier in a trans-
action. (Figure 3) Many commercial systems including so-
phisticated machine learning and vision-based approaches
have been proposed to recognize such cashier activities for
fraud detection [26, 1, 8, 9, 27, 28, 11]. The retail fraud
detection problem have gained great attention recently, due
to billions of dollars of annual revenue loss in retail world-
wide.

Hand trajectories, if available, provide strong cues for
cashier activity recognition. For example, the presence or
absence of the hand in a specific image region is crucial
information to help detect cashier’s activities in Figure 3.
Moreover, as illustrated in Figure 1, the hand trajectories
detected by our proposed approach exhibit strong motion
patterns that are highly associated with the checkout activi-
ties repeated by the cashier during transactions. As a result,
hand tracking leads to a powerful and intuitive method for

Figure 3. Typical checkout-related activities include: (a) pick-up,
(b) scan and (c) drop, corresponding to the process of registering
one item by the cashier in a transaction.

recognizing cashier activities under challenging conditions.

We leverage our hand tracking approach and develop an
automatic approach to detecting cashier’s activities at retail
stores (item-pickup, scanning and drop-off) based on an-
alyzing the hand trajectories found by our tracker. Our ap-
proach achieves superior performance against the our previ-
ous work [9, 27]. Fraudulent events (cashier skipping items
on purpose) can then be detected by standard methods, i.e.
matching these detected checkout events with the barcode
signals, as has been used in other work.

2. Related Work

Hand tracking has long been investigated. Approaches
such as [31, 32, 25] focused on tracking single hands based
on appearance, sometimes combining with motion models.
[19] claimed an approach for tracking both hands, how-
ever, this approach still tracked each hand independently,
with special attention to cases when the two tracks over-
lap. Moreover, all these approaches sequentially track from
frame to frame, which may easily lead to irrecoverable er-
rors.

A more advanced tracking method is through global op-
timization over batches of frames, using linear program[20]
or dynamic programming[30]. Promising results have re-
cently been demonstrated in a number of such work [14, 4,
17, 3].

One may argue that the BQP formulation that we pro-
pose in this paper can be replaced by the simpler linear pro-
gram (LP). However, as we pointed out earlier, the main
contribution of the BQP formulation is the capability to
model complex hand interactions, which is the key to track-
ing both hands effectively. The LP formulation, where only
weak linear inter-object constraints (e.g. by L1-norm) are
considered, has limited ability to model interactions be-
tween hands and therefore will heavily suffer from the per-
vasive hand ambiguity issue and easily lose track of the
hands, or confuse the two hands. As described later in Sec-
tion 4.1, the superiority of our BQP model is demonstrated
by an explicit comparison to the LP approach in [4].

3. Approach

We model the problem of tracking both hands through a
sequence of length 7" as a discrete global optimization prob-
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Figure 4. Each column in the graph corresponds to a frame. Gray
round nodes correspond to hand candidates detected by the hand
detector. Black square nodes represent the missed state of two
hands. The goal is to identify two most likely disjoint hand trajec-
tories through the frame sequence.
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lem as follows:

E =
t
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where E'p is the detection cost which is the cost of appoint-

ing a detected hand candidate to the true hand. The motion

cost E'ys enforces the hand dynamic model. The interaction

cost £1 models the interactions between the two hands. o

and [ are weight parameters.

3.1. Tracking Formulation

To convert the above discrete optimization problem to a
constrained binary quadratic programming (BQP) problem,
we introduce the following binary variables:

e Let I! = (X!, Y}) denote the location of the 7
hand candidate at frame t. For each candidate lf,
we introduce two binary variables for the two hands:
xh,, xh, € {0,1}. 2%, := 1 appoints the hand candi-
date to the left hand, 2, := 1 appoints it to the right
hand.

e To explicitly handle hand missing!, we introduce 2 ad-
ditional binary variables y? , y% (for left and right hand
respectively). y% := 1 indicates that the left hand is
missed at frame ¢ (either it is occluded or not detected),
yt := 0 indicates otherwise.

Figure 4 illustrates a graph representation of the prob-
lem. Each column in the graph corresponds to a frame.
Gray round nodes correspond to hand candidates detected
by the hand detector. Black square nodes represent the
missed state of two hands. The goal is to identify two

UIn the scope of this paper, we will refer to the state of the hand being
occluded or missed by detection failure as missed.

most likely disjoint hand trajectories through the frame se-
quence. A gray node [! is added to the left hand trajectory
iff 4, = 1. A black node y} is added to the left hand
trajectory iff y} = 1. Exactly one node is added to one tra-
jectory from each column. A node cannot belong to both
trajectories.

Our objective is to find:

(z*,y*) = argmin E
zy
This optimization problem can be formulated as the follow-
ing BQP problem:

ZHG{L,R} > e C (1) ¥ (1)

EL, =
b “‘y}{Cocc(t)

(@)

ZHG{L,R}[Ei Zj x]}{zng_jlf (l]z?’l;'_l)
[ - +22; (yfrﬂgjl) f (l%wl;ﬂ) 3)
+ (i ) F (U, U0

D Zj :CtLixf?%j‘P (lﬁ, l;)

+ Zz xtqug%SD (lfv lﬁ%*) (4)
+ 3wt (1G,15,)

YL yRe (1. 1R)

subject to the constraints:
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In (5), the first and second constraints guarantee that for
each frame, a hand (left or right) must either be assigned to
a detected hand candidate or be considered missed, but not
both; the third constraint guarantees that no detected hand
candidate can be assigned to both hands.

In (3) and (4), we use the notation [% to represent the
most likely predicted hand location, in case the hand is de-
clared as missed by the tracker. More details are presented
in Section 3.3.

Other notations:

e In Equation (2): C(I!) is defined in Equation (6).
1 (1!) denotes the hand spatial prior, defined in Equa-
tion (12). Coec(t) is the cost of assigning a hand as
missed at frame t. We set Coee(t) = Ilfltl The idea
is that the more hand candidates are present, the less
likely the hand is missed.



e In Equation (3): f (lf,l;fl) represents the motion

model, defined in Equation (9).

e In Equation (4): ¢ (If,1%) models the spatial con-

straints between hands, defined in Equation (10).

The problem of tracking both hands, after being trans-
lated into the BQP form, can be solved using well-known
discrete optimization techniques,such as the branch and
bound algorithm. Although in theory, BQP is an NP-hard
problem, in practice however, certain instances of BQP can
be efficiently solved. In our implementation, we used the
solver developed by The Hybrid Systems Group at ETH
Zurich 2. The solver actually solved the relaxation of the
BQP program using built-in Matlab functions, then a binary
solution was found by the branch and bound technique.

3.2. Hand Detection

With the challenges in our dataset such as small hand
size, low resolution video, motion blur, it is not suitable to
apply sophisticated hand appearance models [13, 21]. The
approach in [32] using motion residue cannot be applied
either due to the constantly changing background. Here we
use a relatively robust and efficient approach for hand detec-
tion, based on a hand color model and motion cues, similar
to [2] and [27].

Learn the hand color model: Given a training set of
hand examples, the hand color model is modeled as a Gaus-
sian NV (up, Xp) in RGB space. In retail, we could adap-
tively update this model, since new hand examples are con-
tinuously collected from an ROI which is frequently visited
by the cashier’s hands. (Figure 5(b)). This adaptive model
can therefore generalize across different illumination con-
ditions and different cashiers.

Hand candidate detection: A hand probability map is
computed for each video frame (Figure 5(a)), by comput-
ing the Mahalanobis distance of each pixel from the hand
color model. We denote as p(If|1n, X5) the probability of
presence of hand at location [!, given the hand color model.
This probability is computed by the normalized sum of pixel
likelihoods in the square image patch centered at [!. We
then define the appearance cost function that measures how
well a hand candidate matches the hand color model:

clf) = —Inp(lflpn Xn) (6)

Next, from the computed probability map, we extract
N; < Npa; subwindows with max sum of pixel likeli-
hoods, in which the sum of pixel likelihoods is greater than
some threshold. The sum of likelihoods in each subwindow
are computed efficiently using integral images. We apply
non-max suppression to guarantee that none of the subwin-
dows contain the center of others, though they may over-
lap. Figure 9 demonstrates our experimental results with

Zhttp://control.ee.ethz.ch/ hybrid/miqp/
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Figure 5. (a) The block-sum hand probability map. (b) White
boxes are hand candidate locations detected by our approach, yel-
low box is the result of our top-down view human detector, the
center of which is considered the head location. (Best viewed in
color)

Figure 6. When the hand is missed (due to detection failure or
occlusion), our tracker can predict its most likely location at the
current frame (unfilled red and green squares).

different values of N,,4,. Our hand detector is designed
to achieve high recall (few misses), at the expense of po-
tentially low precision (many false positives). Although the
number of hands in each frame is at most 2, our detector
usually detect multiple hand candidates, depicted as white
square boxes in Figure 5(b).

3.3. Motion Model

We use a linear motion model, in which the a priori state
estimate [ at time ¢ is modeled as a linear function of the
state at the previous frame [*~1, as in Equation (7).

' = Al oy (7)
=1t + K, (zt _ Hft) (8)

where A is the state transition model, w; is the process noise
with p(w) ~ N(0,Q). In our implementation, we learn
the process covariance () by maximum likelihood from la-
beled data. A predicted observation can then be computed
as 2t = HI' +v; where v, is the observation noise, H is the
observation model.

Given a new observation 2! (a detected candidate hand
location) at time ¢, we measure the discrepancy between the
predicted observation and the actual observation as r; =
||zt — 2t||, which we call the residual. This residual reflects



p (lrighr) p (lright)

P(lkﬁ) p(lleﬁ)
P (lfeﬂ ‘lrvghl p(I,-wm I u)
- s ol ) )
(a) (b) (c)

Figure 7. (a) The conditional spatial distribution of the left hand
(blue ellipse) given the right hand location (green square). (b)
The conditional spatial distribution of the right hand (blue ellipse)
given the left hand location (red square). (c) The conditional spa-
tial distribution of the two hands (blue ellipses) given the head
location (yellow square) compared to the marginal hand spatial
distributions (in green for right hand and red for left hand). (Best
viewed in color).

how well the hand prediction matches the new observation.
The probability of the next hand location given the current
hand location is defined as:

pUH Yy e

We then set the function f (if,15"") in Equation (3) to
be:

fEY =0 ~ —Inpl**—1) 9)

The Kalman model is iteratively updated using the standard
discrete Kalman Filter algorithm. In cases when the hand
is considered missed by the algorithm, our approach can
provide predicted locations to these missed hands using the
a posteriori hand estimate [* computed in 8 (Figure 6).

Note that in cases the hand is missed at frame ¢ and not
assigned to any hand location, we assign the hand to the
best location found at the previous frame ¢t — 1, i.e. the hand
state with the least residual, denoted as li_l. This notation
was used in (3) and (4).

3.4. Modeling Hand Interactions

We model the interactions between two hands using a

cost function ¢ (If,1%) in Equation (4).

@ (I5,15) ~ —Inp(lepr = U, Lrigne = 15)  (10)

where p(lier = U, lright = l;) is the joint probability of
seeing the left hand at I} and the right hand at /5. Using the
Bayes rule, we can compute this probability as follows:

+ ) (11)

where p(lleftumght)’ p(lleft)’ p(lrightuleft)v p(lright) are
all modeled using 2D Gaussian distributions for effi-
ciency. We learn these prior and conditional distributions
by straightforward maximum likelihood estimation, using
labeled training data.

Figure 7(b) and (c) illustrate the strong spatial dependen-
cies between the two hands: the conditional spatial distri-
bution of one hand given the other (i.e.: p(lyight|licr+) and

L [ p(liese|lrignt)p(lright)
l e 7l'ri =3 g "9
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Figure 8. Hand tracking results of our algorithm in the retail
dataset. Selected frames from 3 retail sequences.

P(lieft|lrignt)) has much smaller variance than the marginal
distribution (i.e: p(lics+) and p(lright))-

We also use the head location, when available, to pro-
vide additional spatial constraints to hand tracking. Fig-
ure 7(c) shows a strong spatial dependency of the two hands
on the head location. When head location is detected, we
can derive the function ¢ (I!) from the conditional priors
P(lieft|lhead) and p(lrignt|lhead)- Specifically:

V() ~ —Inp(lhandllhead) (12)

where p(lnana) stands for p(le i) or p(lrignt) accordingly.
When head location is not detected, the priors p(l;e ) and
P(lright) are used instead.

One big advantage of writing F; as an BQP term is the
capability to use any computable pairwise function to model
the interdependencies between hands. We validate the im-
portance of the hand interactions by experimental results in
Section 4.A more complex tree structure such as the picto-
rial structure [10, 22] can be added to our model if needed,
by adding more pairwise constraints. However such an ex-
tension will be much more computationally expensive.

Finally, we note that even when one of the two hands is
missed, we can still enforce the interactions using the pre-
dicted hand (Section 3.3).

4. Experimental Results
4.1. Hand Tracking in Retail Surveillance Videos

Dataset: We evaluate our approach on a dataset of video
sequences capturing checkout activities from two real retail
stores. This challenging dataset presents large variances in
cashiers, backgrounds, camera angles, with significant oc-
clusions, and distractions from customers. The videos are
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Figure 9. Hand detection rate achieved by our approach (BQP-
Full) on the retail dataset and comparison with Flow LP [4], and
with BQP-Partial.

at 20 FPS and low resolution (320x240). We manually an-
notate ground truth square bounding boxes for left and right
hands, and heads for these videos. We use a training set of
~ 1K frames, and a test set of ~ 5K frames. There is no
overlap between the training set and the test set.

Implementation Details: For our approach (full BQP
model), we empirically set « = 8 and 8 = 16 (in equa-
tion (1)). The spatial dependencies between the two hands,
and the dependencies between hands and head are learned
from training data. We use the hand box size of 15 pix-
els. We use the approach in [7] to detect the cashier’s head
from a top-down view camera. Evaluation of our detector
with ground truth results in the RMS errors of 7.33 &= 0.23,
10.74 4+ 0.29 and 14 4 0.35 in terms of x, y and shortest
distance respectively. An example detection is shown as
yellow box in Fig. 5(b).

Evaluation Metrics: We measure the overall hand
detection rate (HDR) obtained by tracking both hands.
We treat the left hand and the right hand as two dif-
ferent objects for evaluation. — The HDR is defined
as HDR = L0 0,(d%,dy) + 6,(d,dY) where
1 Hd —d H <7
0 otherwise

Comparative evaluation: We compare our approach
against:

6-(d,d) = with 7 = 20 pixels.

o A state-of-the-art multi-target tracking approach using
LP in [4] (Flow LP). We use exactly the implemen-
tation from [4], with the neighborhood size of 1, and
the possible entrance/exit point(s) being the complete
boundary of the detection grid. We note that their
method is designed to deal with rather peaky output
from detectors, such as the ones produced by state-of-
the-art people detectors, as opposed to multiple detec-
tions per target, as our hand detector.

e Our own BQP method without the interaction term, i.e.
setting 5 = 0 in Equation (1) (BQP-Partial). With
this change, our model becomes very similar to the LP

Ground Truth RMS
14.1 +11.3

Hor-RMS
10.8 = 8.6

Ver-RMS
6.9+4.7

Table 1. RMS tracking error in pixels (measuring the average Eu-
clidean distance between the tracking result and the ground truth)
over the test set. We also report the RMS in the vertical and hori-
zontal directions.

model in [14], which deals with occlusions, but does
not consider inter-object dependencies.

To this extent, we also tried the Camshift tracking [5] using
OpenCYV, however Camshift quickly lost track of the hands
after a few frames, which yielded its results incomparable.

Figure 9 shows the hand detection rate for each method,
with different number of output hand candidates from the
detector. We believe the key factor to our superior perfor-
mance is the ability to effectively handle the identity switch
issue, based on modeling the hand interactions. Figure 10
shows several failure cases of the Flow LP approach [4] in
our retail dataset. The performance drop of BQP-Partial
compared to BQP-Full, by removing the hand interaction
term, further substantiates the importance of modeling hand
interactions in tracking.

Figure 10. A typical failure case of the LP approach in our retail
dataset: the identities of the two hands are switched as they meet
and split.

We also measure the RMS errors of our tracking results
against the ground truth. Table 1 demonstrates the aver-
age RMS errors (in pixels) in terms of Euclidean distance,
horizontal distance and vertical distance. The ground truth
RMS error of 14.1 pixels is quite acceptable, which is less
than the hand box size (15 pixels). Figure 8 displays se-
lected frames from the videos and the hand tracking results.
In Figure 11, we plot the hand tracking trajectories of the
hands in the horizontal direction across 2 videos, along side
with the ground truth.

Running time: On average, with 8 hand candidates per
frame, the QP solver takes ~ 7 seconds to compute the hand
tracks for 100 frames. (using a Pentium Quadcore 2.53Ghz
PC)

4.2. Hand Tracking in Sign Language TV Footage

Dataset: The publicly available dataset * of sign lan-
guage from BBC news consists of ~ 6K continuous frames
(first introduced in [6]). Although this dataset includes fre-
quently changing background and self occlusion, it is ar-

3http://www.robots.ox.ac.uk/~vgg/data/sign_language/
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Figure 11. Hand trajectories tracked by our algorithm in two retail
sequences. The thresholds for detecting cashier’s hand activities
are shown by the vertical lines.

Method | BQP [15] [6] [16]
Result 971% | 96.8% | 95.6% | 86.37%

Table 2. Comparison between different methods on the BBC news
sign language dataset.

guably less challenging than our retail dataset, due to its
higher resolution and high image quality.

Implementation Details: We used the labeled training
set to learn the hand color model, the spatial constraints
between hands, and between hands and face. We used
the Viola-Jones face detector [29] from Open CV to detect
faces. For testing, we detected 5 hand candidates per frame,
with the hand box size of 30 pixels.

Comparative evaluation: To make our results directly
comparable to other state-of-the-art approaches on this
dataset, we used the same training set and test set as in the
experiment of [6]. We also applied the same metrics as in
[6] for quantitative evaluation, i.e., using the overlap mea-
sure o = g;gg, where GT is the ground truth hand mask,
D is our detected hand box, with o > 0.5.

We evaluated our performance against ground truth, and
compared against three state-of-the-art approaches: [6, 16,
15]. Table 2 shows that our tracking approach achieves su-
perior performance to state-of-the-art.

Figure 12. Tracking results on the sign language TV footage.

4.3. Checkout-related Activity Recognition

We leverage our hand tracking results to recognize
cashier’s activities. We observe that the peaks and valleys of
the hand trajectories (as illustrated in Figure 1 and 11) cor-
respond directly to these activities pick-up, scan and drop-

Activity | Alg. Precision Recall F-measure
BOF[9] 0.8440.09 | 0.90£0.04 | 0.86+0.05
Pickup H-FSM[27] 0.84 0.96 0.90
Our method | 1.0 0.97 0.98
BOF[9] 0.884+0.06 | 0.96+0.03 | 0.92+0.03
Scan H-FSM[27] 0.83 0.96 0.89
Our method | 1.0 0.84 0.91
BOF[9] 0.76+0.09 | 0.90£0.06 | 0.82+0.07
Drop H-FSM[27] 0.92 0.86 0.89
Our method | 1.0 0.83 0.91

Table 3. Our performance on retail activity recognition, compared
to state-of-the-art approaches using BOF in [9] and using H-FSM
in [27].

off. Specifically, when a pickup event is performed, the
cashier’s right hand enters then exits the pickup area, which
forms a peak in the right hand trajectory. Similarly, a drop
event forms a peak in the left hand trajectory. Finally, a scan
event forms valleys in both hand trajectories.

Based on this observation, we implement an approach
for detecting these activities, based on analyzing the hand
trajectories found by our tracking algorithm. We first apply
the mean filter for smoothing the hand trajectory curves. We
then select all the peaks above a certain threshold. These
thresholds can be intuitively defined at the borders between
ROlIs, as illustrated in Figures 11. An example is when the
cashier picks up an item, his/her right hand has to cross
the border line between the pickup region and scan region
twice.

Comparative evaluation: We compare our approach to
our two previous methods: an approach using sophisticated
learning-based methods in [9], and an approach using hier-
archical FSM in [27], using the same videos as in their ex-
periments. For evaluation, we compute the temporal over-
lap percentage of two activities as in [9], i.e. 7 = 2522,
with 7 > 0.2 being the acceptance threshold for each de-
tection. Table 3 reports the detection results from our retail
dataset, which shows that our approach achieves better per-
formance on checkout-related activity recognition in most
categories, with only one exception being the scan activ-
ity recognition slightly worse than [9]. Figure 13 illustrates
some examples in which the cashier’s activities are correctly
recognized by our approach.

5. Conclusion

In this paper, we present a novel approach to tracking
both hands, and present a specific application of hand track-
ing to retail activity recognition. We formulate the two-hand
tracking problem as an global optimization problem using
binary quadratic programming, where hand detections, mo-
tion and interactions are combined together to robustly track
both hands in a sequence of frames. Experimental results on
two challenging real-world datasets demonstrate the impor-
tance of hand interactions in tracking, which is enphasized



igure 13. Our approach recognizes checkout activities with 100%
precision. The recognized activities are annotated in yellow text.

by our BQP approach. We also present an automatic method
for cashier activity recognition based on trajectory analy-
sis, which outperforms the state-of-the-art algorithms. In
the future, we plan to close the loop between hand tracking
and activity/gesture recognition, by incorporating activity-
specific information to our tracking model.
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