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Abstract

We present a novel framework for multiple object track-

ing in which the problems of object detection and data as-

sociation are expressed by a single objective function. The

framework follows the Lagrange dual decomposition strat-

egy, taking advantage of the often complementary nature

of the two subproblems. Our coupling formulation avoids

the problem of error propagation from which traditional

“detection-tracking approaches” to multiple object track-

ing suffer. We also eschew common heuristics such as “non-

maximum suppression” of hypotheses by modeling the joint

image likelihood as opposed to applying independent like-

lihood assumptions. Our coupling algorithm is guaranteed

to converge and can handle partial or even complete oc-

clusions. Furthermore, our method does not have any se-

vere scalability issues but can process hundreds of frames

at the same time. Our experiments involve challenging,

notably distinct datasets and demonstrate that our method

can achieve results comparable to those of state-of-art ap-

proaches, even without a heavily trained object detector.

1. Introduction

Although the problem of multiple object tracking has

been studied for decades, a robust solution for analysis of

visual data does not exist yet due to two major reasons: the

lack of robust methods for object detection and poor scala-

bility of data association methods to large numbers of ob-

jects. Most previous efforts have therefore followed two

distinct directions of research: building stronger object de-

tectors and designing better data association methods. As a

result, almost all existing tracking systems use a “detection-

tracking design” with two separate modules to address the

detection and data association tasks.

We point out that the detection-tracking design has the

inherent weakness that it requires the output of the detec-

tion module to be reliable in order for the data association

module to work properly. Detection errors such as “false
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alarms” and “missed detections” otherwise propagate to the

data association module and false matches need to be cor-

rected later. In contrast, we show that error propagation

from detection to data association can be avoided if both

tasks, detection and data association, are combined into a

single module and solved simultaneously by optimizing a

single objective function. This coupling idea appears attrac-

tive but introduces new challenges as well: 1) What type of

objective function should be used? Many existing detection

methods have not even been formalized with an objective

function. 2) How can the new objective function be solved?

Many current data association methods are complicated and

approximate solutions to intractable problems. A new ob-

jective function that couples detection and data association

might be even more difficult to optimize. 3) How can scala-

bility of the proposed method be ensured? Computer vision

systems face demands for being able to track large num-

bers of objects in dense formations. Given such large input

sizes, an efficient algorithm to optimize the new objective

function must be found. In this paper, we address all the

questions above with a formulation of a coupling function

and a method to optimize it. Our method was tested both

for monocular and multi-view video.

Inspired by the work of Alahi et al. [1], we propose a de-

tection method with the classic sparse-signal recovery tech-

nique [8] for the dense-object tracking scenario, where the

number of objects can be up to one hundred per frame and

inter-object occlusions occur regularly. This method can

be used to detect objects moving on the ground plane as

well as objects moving in free 3D space. The sparsity con-

straint is important here because it can significantly reduce

the number of false alarms and serves as a replacement of

the heuristic technique of non-maximum suppression of hy-

potheses. We have to take care, however, that the approach

does not lead to overly sparse results, that is, missed de-

tections. We also impose a smoothness constraint for data

association where we assume the state of each object fol-

lows a first-order Markov process and adopt the classical

network flow formulation [9].

The overall objective function has a simple form and

can be solved through Lagrange dual decomposition. The
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method distributes the coupling formulation to subproblems

and coordinates their local solutions to achieve a globally

optimal solution. For each subproblem, a very efficient off-

the-shelf algorithm is available. The proposed paradigm

also permits distributed computing.

Related Work. Our detection method is closely related to

the method proposed by Alahi et al. [1], which addressed

the pedestrian localization problem without tracking. We

assume that foreground pixel estimation is possible, that is,

binary foreground images are available as an input, for ex-

ample, via a background subtraction method [20]. How-

ever, instead of using the L2-norm to explain the image ev-

idence [1], we chose the L1-norm which strengthens the

sparsity constraint without imposing any additional regular-

ization terms. Furthermore, we extended the approach by

Alahi et al. to handle the “ghost effect” caused by triangula-

tion of objects in 3D space. We also enriched the formula-

tion, which relied on a single object template, by supporting

multiple templates for each object category.

Probabilistic Occupancy Maps were proposed by Fleuret

et al. [11] so that, during the detection step, “hard de-

cisions” about the presence of objects do not have to be

made. The maps enable the system to make “soft deci-

sions” about the presence of objects on a grid in a prob-

abilistic way. However, unless the estimated density map

is very selective around the true locations of objects, non-

maximum suppression of hypotheses is needed in order to

avoid producing multiple tracks that only slightly differ.

Non-maximum suppression is a greedy local operation and

does not consider the overall effect for the entire image. In

past work, it has been applied during the detection or data

association stages. For many approaches to data associa-

tion, for example that use the classical network flow formu-

lation [3, 9, 19], suppressing false alarms is still a critical

issue. Our proposed coupling of detection and data asso-

ciation provides an effective solution for suppressing false

alarms. Furthermore, because of the modeling of the joint

image likelihood, which is a global operation, our system

does not need to perform any type of non-maximum sup-

pression in the detection or data association stages. We also

want to emphasize that our coupling framework is general

in the sense that it does not require a particular approach to

data association. The network flow approach used here may

be replaced by other types of data association methods.

We note that the idea to couple detection and data associ-

ation in a single objective function was proposed by Leibe et

al. [14], who coupled the two through a quadratic Boolean

function and optimized it according to the Minimum Length

Description criterion. We instead base our method on the

foundations of Bayesian estimation theory. Our objective

function is linear and straightforward to extend to higher-

order cases. We stress the problem of scalability, which

was not discussed by Leibe et al. Once the number of object

grows, the explosion of track hypotheses is always the most

difficult challenge, no matter what the exact form of the ob-

jective function is. Another important difference is that the

trained detector proposed by Leibe et al. is fixed and all de-

tection hypotheses are accumulated in a pool waiting for

further selection. In contrast, the behavior of our detector

changes under the influence of data association.

An important motivation for designing the coupling

framework was to perform occlusion reasoning. By in-

troducing temporal information, we wanted to improve the

detection rate of our tracking system, especially when ob-

jects are partially or completely occluded. A part-based

detector may be able to handle partially occluded objects

with sufficient resolution [16], but it fails when objects are

completely occluded or the resolution of an object is too

small. Research efforts for multiple object tracking typi-

cally treat occluded objects as missed-detection events and

iteratively grow or stitch tracklets together before and af-

ter occlusions [2, 17, 19]. These approaches follow the

“detection-tracking strategy” and rely on good detectors for

initialization. The output of our approach can be used as an

improved starting point for their methods, because our for-

mulation is less sensitive to initialization and requires very

few parameters to be set. Our contributions are:

1. A novel framework for coupling the subproblems of

detection and data association of multiple-object track-

ing in a single objective function.

2. A system that optimizes the objective function using

a sparsity-driven detection method and a network flow

data association method and achieves a high detection

rate and tracking accuracy, even when objects are tem-

porarily occluded.

3. A mechanism to suppress false alarms without having

to perform non-maximum suppression.

Our framework is flexible – the methods for solving the

tracking subproblems are not unique and may be substi-

tuted. Because there are opportunities for other instantia-

tions of the coupling framework, we hope that our work pro-

vides a new direction for multiple-object tracking research.

2. Coupling Detection and Data Association

We formulate the multiple object tracking problem as a

maximum-a-posteriori estimation problem. Given a collec-

tion Y of binary image evidence (foreground pixels), we

estimate the state of all objects X in the scene as follows:

max
X

p(X|Y)

∝ max
X

p(Y|X)p(X)

= max
X

∏

t

p(Yt|Xt)p(X1)
∏

t

p(Xt|Xt−1)

= max
X

∏

t

p(Yt|Xt)
∏

i

p(xi,1)
∏

t

p(xi,t|xi,t−1) (1)
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Figure 1. The graphical model for the multiple object tracking

problem. The image observation Y is jointly generated by all ob-

jects in the scene, here x1, x2, and x3.

Here, p(Yt|Xt) is the image likelihood conditioned on all

objects. The joint state of all objects is governed by a

Markov process and objects are independent from each

other, so p(X) can be factorized with respect to each in-

dividual object. We do not further factorize the image like-

lihood because all objects jointly generate the image. This

enables us to handle occlusions. The graphical model for

our generative process is depicted in Fig. 1.

Without modeling the likelihood for the entire image but

instead making certain independence assumptions, one can

further factorize the first term of Eq. 1, a technique used by

most earlier tracking approaches. A side effect of the inde-

pendence assumption is that it yields ad-hoc choices (e.g.,

non-maximum suppression) because the number of objects

is also a hidden variable to be inferred. In contrast, if the

likelihood for the entire image is modeled, context and the

relationship between objects are naturally brought into con-

sideration. This observation has been recognized widely for

the topic of scene recognition [10]. Directly estimating the

joint hidden states is difficult here because we do not even

know the dimension of the joint state! We propose a decom-

position technique to tackle the MAP estimation problem.

After taking the negative logarithm of Eq. 1, we rewrite the

optimization problem as follows:

min
X1,X2

g(X1, Y) + h(X2)

s. t. X1 = q(X2), (2)

where g is the function that models the detection problem,

h the function that models the data association problem and

q the function that enforces the agreement between the so-

lutions X1 and X2 of the two subproblems. More specif-

ically, g(X1, Y) is minimized to estimate the states X1 of

objects from image evidence Y and h(X2) is minimized to

infer the states X2 of objects from motion or other types

of prior knowledge. Both coupling variables X1 and X2

could be discrete or continuous. If a filtering technique that

works in the continuous domain is used to solve the data as-

sociation subproblem, q here could be a quantization map-

ping. Eq. 2 is a classic setup in operation research: a min-

imization problem with a coupling constraint. This type of

formulation has been applied to the labeling problem, e.g.,

MRF-based image segmentation [13]. In the remainder of

our paper, we will show that the coupling formulation is

also useful for solving the tracking problem. We first define

functions g and h in Sections 2.1 and 2.2 respectively, by

giving specific examples of detection and data association

methods.

2.1. Multiple Object Detection

Inspired by the sparsity-driven people localization

method proposed Alahi et al. [1], we propose the follow-

ing L1-norm minimization formulation as our object detec-

tor. First we discretize the space in which objects move.

If our target is a rigid object, then for each possible loca-

tion in 3D, we can reproject the object to the image plane.

The reprojected foreground image can be seen as a tem-

plate or a “codeword.” The codeword can be just an im-

age in the single-view case, or a concatenation of images

in the multiple-view case. By collecting all codewords in

discretized 3D space, we build the dictionary D for a par-

ticular category of objects, see Figs. 2 and 3. The length of

each codeword is the size of the observed image(s), while

the number of entries in the dictionary is determined by the

discretization. Usually, the step of creating the codeword

dictionary can be performed offline. But for tracking small

objects in a 3D volume, as in Fig. 3, the discretization of

the entire volume is infeasible. In this case, we only con-

sider valid triangulations formed from 2D detections using

epipolar geometry and build the dictionary on the fly. Here

a triangulation is valid if the reconstruction error is within a

certain tolerance.

Figure 2. For objects that move on the ground plane, our method

discretizes the plane into a grid, where the binary image of the

instantiation of an object at each grid point is a codeword (e.g.,

d1, d2, and d3).

Given the binary foreground image Y after background

subtraction, we want to to find the best way to instantiate

the codewords from the dictionary such that the generated

image is as close to observation Y as possible. Mathemati-

cally, we want to minimize the following L0-norm, defined

as the Hamming distance from zero, where X is an binary

vector to indicate which codeword to select from the dictio-
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Figure 3. For objects that move in a 3D volume, our method con-

structs the pool of candidate locations in 3D by triangulation,

keeping the reconstruction error below a threshold. The images

of the re-projection of each candidate object is one codeword.

nary and N the number of codewords:

min
X

‖Y − DX‖0, where X ∈ {0, 1}N . (3)

Because of the way we construct the dictionary, the selec-

tion variable X also encodes the positions of objects in 3D.

The L0-norm can be seen as our approximation to the nega-

tive logarithm of image likelihood p(Y|X) defined in Eq. 1.

It is in general difficult to optimize, so we take the L1-norm

instead. According to the well-studied sparse signal recov-

ery theory [8], the recovery of X using the L1-norm is “al-

most” accurate if X is sparse (only has a few of non-zero

entries). Because of occlusion, the real imaging process

we model here should actually be a linear combination of

codewords followed by a quantization step, i.e., Q(DX). A

common way to handle quantization is to treat its effect as

noise. When the observation Y is considered to be noisy,

the sparse signal recovery theory still applies.

We use the primal-dual interior-point algorithm to min-

imize the L1-norm in the following linear programming

problem, which is equivalent to the minimization problem

in Eq. (3):
min
X,U

1T U

s. t. −DX − U + Y ≤ 0,

DX − U − Y ≤ 0,

0 ≤ X ≤ 1, (4)

where U is an auxiliary variable. At each iteration, the

primal-dual algorithm evaluates a “duality gap” that indi-

cates how accurate the current solution is. This property

is useful because the algorithm can come to an early stop

when sufficiently accurate results have been obtained.

The above formulation with the L1-norm is a relax-

ation version of the original problem (X is continuous in

Eq. 4). We found that, after rounding the continuous solu-

tion, the resulting discrete solution can be further improved

by a greedy local search. Previous work has tried the L2-

norm [1], which leads to a quadratic programming problem.

But so far, throughout our experiments, the L1-norm pro-

duced much better results than the L2-norm, even though

theoretically they are related.

Figure 4. The shape of pedestrians viewed from the front or side

can be approximated by two binary templates.

The original L0-norm minimization can also be directly

solved through a sampling-based technique [12] that sam-

ples from a rich set of templates. Our approach instead en-

forces sparsity and uses a minimal number of templates.

In case we need to consider shape variations of the ob-

jects, we just enrich our dictionary by providing multiple

templates that model these variations. We then impose a

uniqueness constraint on our selection variable X, i.e, the

system can only choose one of the multiple templates to ex-

plain our image evidence as a valid solution. The following

modified minimization formulation supports the two ver-

sions a and b of a pedestrian template shown in Fig. 4 and

is used in our experiments:

min
X

‖Y − (DaXa + DbXb)‖0,

s. t. Xa + Xb ≤ 1, Xa, Xb ∈ {0, 1}N . (5)

Because of occlusion or inaccurate foreground estima-

tion, our detection algorithm cannot always produce the de-

sired solution. We therefore bring in the idea of improv-

ing detection results by “temporally smoothing detections”

through data association – in the sense that we use our data

association results to recover missed detections and sup-

press false alarms within the detection step. The basic idea

is to introduce a temporal prior on our selection variable

X to reflect different preferences. Before we describe this

approach, we first review the classic data association for-

mulation that it uses.

2.2. Network Flow Data Association

Classical data association methods represent every de-

tection in every frame as a node in a network and every

potential match between detections across time as an arc

with an associated cost (Fig. 5). The goal is to find paths

through the network that correspond to the trajectories of

objects, i.e., sequences of associated detections so that the

sum of costs along the paths is minimized. The network

flow data association method [9] represents the number of

objects in the scene as the amount of flow through the net-

work. As the number of objects present is unknown a priori,

the method searches for the amount of flow that produces

the minimum cost. Several techniques, involving augmen-

tation of the network and constraints on the flow capacity

of arcs, ensure that paths are produced that are mutually ex-

clusive and can represent true object trajectories. We here

selected the network flow formulation as our data associa-

tion method because several efficient algorithms exist [6].
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Figure 5. Data association as a minimum-cost network-flow prob-

lem. A flow of amount 1 along a path from the source S (track

initiation) to the sink T (track termination) represents a single ob-

ject. Here, three detections, (1,2,3), (4,5,6) and (7,8,9), were made

in each of three frames. Duplicate nodes with capacity-one arcs

ensure mutually disjoint paths are computed. Here, 3–9 paths can

be represented. Minimizing the costs for flow=4, for example, may

yield paths S115577T, S2266T, S3344T, and S88T.

2.3. The Coupling Framework

To couple our detection and data association meth-

ods, we propose the following objective function, where∑
t ‖Yt − DXt‖1 approximates the negative logarithm of

the image likelihood p(Y|X) and the sum of flow costs∑
t

∑
i

∑
j c

(t)
i,jf

(t)
i,j approximates the negative logarithm of

the Markov motion prior p(X) described in Eq. 1:

min
X,f

∑

t

‖Yt − DXt‖1 +
∑

t

∑

i

∑

j

c
(t)
i,jf

(t)
i,j (6)

s. t.
∑

i

f
(t)
i,n =

∑

j

f
(t)
n,j , ∀ frames t, ∀ codewords n (7)

xt,n =
∑

j

f
(t)
n,j , ∀t, ∀n (8)

fi,j ≥ 0 and Xt ∈ {0, 1}N .

Selection variable X indicates the presence of an object at

a particular location in discretized space. Flow variable f is

used in the min-cost flow problem, where fi,j = 1 means

there is a match between detections i and j, which belong

to the same track. The cost function (6) is the summation

of two local terms to minimize; the first term represents the

costs of sparsity-driven object detection (Sec. 2.1) and the

second term measures the costs of temporal data associa-

tion in the min-cost flow formulation (Sec. 2.2). The first

set of constraints (7) ensures a balance of flow. The second

set of constraints (8) ensures consistency between the two

local variables X and f. Since this is a linear/integer pro-

gramming problem, we can apply a general large-scale LP

solver to find the optimal solution after linear relaxation.

However, because of the special structure of the objective

function, we can decompose the problem into two kinds of

subproblems, each of which can be solved with an efficient

algorithm, and ensure to coordinate the separate minimizers

until an agreement is achieved. This approach can be pur-

sued by formulating the Lagrangian dual problem (9) to the

minimization problem (6):

L(λ) = min
X,f

∑

t

‖Yt − DXt‖1 + λ
T
t Xt (9)

+
∑

t

∑

i

∑

j

(c
(t)
i,j − λt,i)f

(t)
i,j

s. t.
∑

i

f
(t)
i,n =

∑

j

f
(t)
n,j , ∀t, ∀n

fi,j ≥ 0 and Xt ∈ {0, 1}N .

It can be separated into (T + 1) independent subproblems,

where T is the number of frames:

gt(λ) = min
Xt∈{0,1}N

‖Yt − DXt‖1 + λ
T
t Xt

h(λ) = min
f>0

∑

t

∑

i

∑

j

(c
(t)
i,j − λt,i)f

(t)
i,j

s. t.
∑

i

f
(t)
i,n =

∑

j

f
(t)
n,j , ∀t, ∀n. (10)

Now the dual problem is to maximize
∑

t gt(λ)+h(λ) with

variable λ. Here we use a subgradient method to solve the

“master problem,” the primal-dual interior point algorithm

to solve the first T subproblems with parallel computing,

and the push-relabel algorithm to solve the min-cost flow

subproblem. The dual decomposition technique [7] then

yields the following Coupling Algorithm:

COUPLING ALGORITHM FOR TRACKING

For k = 1, 2, ...,K (max iterations), do

• Solve T sparsity-constrained detection problems with the in-

terior point algorithm:

Xt ← arg min gt(Xt, λ).

• Solve the min-cost flow data-association problem with the

push-relabel algorithm:

f← arg minh(f, λ).

• If xt,n =
P

j
f

(t)
n,j for all t, Then Return Xt, f

• Update dual variables λt,n = λt,n + αk(xt,n −
P

j
f

(t)
n,j),

αk = 1
k

(step size).

Return Xt, f

The Coupling Algorithm performs as desired in our

tracking context: The Lagrange multiplier λ serves as a

weighting parameter. For the detection subproblem, a

higher value of λ implies a lower preference for detection

at a particular location. For the data association subprob-

lem, a higher value of λ leads to a lower edge cost, so it at-

tracts flows passing through that edge. When agreement is
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achieved, the optimal global solution is obtained for the pri-

mal objective function. The detection output is guaranteed

to be smooth because of the influence of data association.

The flow computation produces tracks as the final output.

By changing the value of λ dynamically, false alarms can

be suppressed and detections missed due to occlusions can

be recovered.

3. Experiments

3.1. Datasets and Evaluation Metrics

We applied our approach to solve two notably different

problems: tracking of pedestrians walking on the ground

plane and tracking of wild animals flying in 3D space. We

used five video sequences that contained between 23 and

127 objects to be tracked (#O in Table 1). For pedes-

trian tracking, we used two sequences from the PETS2009

benchmark: the 1st view of sequence S2L1 (795 frames)

and of sequence S1L1-2 (241 frames). The ground truth was

provided by Andriyenko1. For flying animal tracking, we

used the infrared videos and ground truth provided by Wu et

al. [18]. The data consists of three sequences (100,200,100

frames respectively) with increasing densities of up to one

hundred objects per frame. For each sequence, we used the

available three views to perform 3D reconstruction.

We used the two metrics Mostly Tracked (MT), the num-

ber of objects for which ≥ 80% of the trajectory is tracked,

and Mostly Lost (ML), the number of objects for which

≤ 20% of the trajectory is tracked [16]. We also adopted

the commonly used tracking metrics Multiple Object Track-

ing Accuracy (MOTA) and Multiple Object Tracking Preci-

sion (MOTP) [5]. MOTA takes into account false positives,

missed targets, and identity mismatches. Its ideal value

is 1. In order to compute MOTA, we choose 1 m as the

miss/hit threshold for the PETS data and 0.3 m for the in-

frared data. MOTP measures the average distance between

ground-truth trajectories and system-generated trajectories.

We computed Euclidean distances for the 3D case (infrared

data) and overlap ratio between ground-truth and system-

generated bounding boxes for the 2D case (PETS data).

3.2. Implementation Details

We used an improved version of a mixture model for

background subtraction [20] to estimate the foreground. For

the PETS data, we uniformly discretized the ground plane

into square elements of 30× 30 cm2 (Fig. 2) and, to enable

comparisons with previously published results, restricted

our evaluation to objects moving in the shaded area defined

by Andriyenko et al. [2] and shown in Fig. 7. For template

comparisons, we assume a pedestrian’s height to be 180 cm

(Fig. 4) and that a flying animal can be represented by a

sphere of 15-cm radius (Fig. 3).

1http://www.gris.informatik.tu-darmstadt.de/ aandriye

Our network flow approach computes detection scores

on the nodes and transitional costs on the arcs of the net-

work as follows. The score on a node is − ln ρ

1−ρ
, where ρ

is the ratio between the number of foreground pixels that

can be explained by a codeword and the length of that

codeword. To reduce the size of our dictionary, we re-

moved codewords whose support was less than 0.2 [1]. For

the PETS data, we used normalized correlation to compute

the similarity between the two subimages in the bounding

boxes. Because of the viewing angle of the cameras, the

head of a pedestrian is not very likely occluded. We there-

fore decided to compute transitional costs only for the upper

one-fourth of the bounding box. (This is the only step where

we made use of an appearance feature, which is notably

simple. More advanced feature representations and compar-

isons might be helpful but were not our concern here.) To

reduce the number of arcs, we did not allow transitions that

would model a pedestrian’s unrealistic jump of more than

2 m. For the infrared data, the Euclidean distance between

reconstructed points in 3D space was taken as the transi-

tional cost. Because of our strategy to couple detection and

data association, we only needed to initialize the costs on

the arcs, not the nodes. In the first iteration of the Coupling

Algorithm, without costs on the nodes, the network-flow

minimizer simply chooses a zero flow as the best output.

A drastic cost update (by subtracting λi,j) then occurs in

subsequent iterations of the Coupling Algorithm.

3.3. Quantitative Results

Our quantitative evaluation provides the tracking results

of two versions of our system, the single-template coupling

tracker (CP1) and the two-template coupling tracker (CP2),

on five datasets and compares them to the results of four

related approaches, see Table. 1. We found that our track-

ers are more reliable than competing methods based on the

MOTA, MT, and ML scores and comparably accurate based

on the MOTP scores.

Our MOTA scores are slightly better and our MOTP

scores are slightly lower than those of the occlusion-

modeling OM method [2], which achieved the state-of-art

performance on the PETS dataset by combining explicit

occlusion reasoning, a full-body SVM classifier, tracklet

stitching, and initialization via Extended Kalman Filtering.

Our bounding box alignment cannot be expected to outper-

form a classifier-based detector with respect to the MOTP

score. By simply enriching the templates that capture the

variability of object shape, however, we can already im-

prove performance: The Coupling Algorithm that uses two

pedestrian templates (CP2) indeed produced better results

than the single-template tracker (CP1) or the Integer Linear

Programming (ILP) trackers [3, 4]. These ILP trackers run

the detection and network-flow data association modules se-

quentially and do not take advantage of the complementary
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Data Method #O MT ML MOTA MOTP

PETS OM [2] 23 20 1 0.88 0.76

S2L1 ILP [4] 23 n/a n/a ≤ 0.6 ≤ 0.5
(795 ILP [3] 23 1 8 0.26 0.67

frames) our CP1 23 20 0 0.94 0.70

our CP2 23 22 0 0.94 0.70

PETS OM [2] 36 20 7 0.64 0.67

S1L1-2 our CP1 36 18 1 0.80 0.50

(241) our CP2 36 24 2 0.89 0.61

Infrared RT [18] 19 19 0 0.80 9.0 cm

S1 S-RT 19 19 0 0.90 9.5 cm

(100) our CP1 19 19 0 0.90 9.5 cm

Infrared RT [18] 75 68 0 0.51 9.9 cm

S2 S-RT 75 62 3 0.81 9.9 cm

(200) our CP1 75 71 1 0.92 9.7 cm

Infrared RT [18] 127 60 8 -0.34 11.6 cm

S3 S-RT 127 72 10 0.43 11.6 cm

(100) our CP1 127 95 5 0.87 11.4 cm

Table 1. Quantitative Results. The OM, ILP, RT, and S-RT trackers

sequentially apply the detection and data association modules. Our

CP1 and CP2 couple the modules. MOTA is ideally 1, MOTP also

1 or 0 cm. Results are either generated by the authors or copied

from published papers. The scores for ILP [4] was read from a

chart and were based on a different source of ground truth.

nature of the two subproblems.

Our experiments with the infrared data show that

our sparsity-constrained detection method successfully

suppressed ghost reconstructions in 3D space. The

Reconstruction-Tracking (RT) method [18] was able to

track true objects very well but also tracked a lot of ghost

objects. By applying our sparsity constraint (S-RT), we

could reduce the false alarm rate significantly. More-

over, the performance improvement between S-RT and CP1

shows the significant impact of our coupling idea.

The variables in the Coupling Algorithm can be opti-

mized separately. This property enables us to process a long

sequence in a batch mode. Throughout our experiments, we

took the whole test sequence as our input. Each detection

subproblem can be solved independently through parallel

computing. The data association subproblem can also be

solved efficiently even for a large network with one million

nodes. This is because the complexity of the min-cost flow

algorithm is typically governed by the number of edges and

a simple “gating” technique allows us to remove most un-

necessary edges during the construction of the network. The

bottleneck is the L1 minimization (5–10 s/frame in our ex-

periments). Faster suboptimal algorithms exist, e.g. greedy

matching pursuit. Because we were optimizing over the

entire discretized space (the size of X in Eq. 3), the over-

all computational complexity is mainly determined by the

quantization N , the number of grid points (2D case) or can-

didate triangulations (3D case), not the number of objects.
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Figure 6. Within the first few iterations of our Coupling Algorithm

(here for PETS-S1L1), the MOTA score quickly increases (left)

and the number of disagreements per frame between the L1 solu-

tions and the network flow solutions quickly decreases (right).

In our experiments, we found that the Coupling Algo-

rithm does not need to run many iterations before it reaches

a good solution (Fig. 6). The same behavior was also ob-

served in optimization work [15]. In practice, an early stop

(25 iterations in our experiments) is sufficient for producing

a good suboptimal solution. Other heuristic stopping crite-

ria could also be used. Trackers, such as ILP, RT, and S-RT,

that sequentially apply the detection and data association

modules could be considered to perform the first iteration

of our coupling algorithm. The results in Fig. 6 seem to in-

dicate that the performance of these trackers may increase

significantly with additional iterations, if they were placed

within our coupling framework.

4. Conclusions

In this paper, we presented a novel multiple-object track-

ing framework that couples object detection and data asso-

ciation. The objective function is derived from Bayesian

estimation theory (1). Its form is general and flexible (2).

Our Coupling Algorithm combines a sparsity-driven detec-

tion method and a network-flow data-association method

within this framework (9). Our approach enabled us to

model the likelihood of the entire image so we could avoid

non-maximum suppression. Through dual decomposition

(10), a coupled objective function is optimized iteratively

with off-the-shelf efficient algorithms for each subproblem.

In future work, we plan to incorporate different detection

and data association methods and seek the best combina-

tion. The experiments with both monocular and multi-view

datasets show that coupling detection and data association

can significantly improve tracking performance compared

to the results of sequentially applying each module. Be-

cause of our evidence that this performance boost can gen-

eralize to existing tracking methods, we hope the proposed

coupling concept inspires a new direction for multi-object

tracking research.
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for feedback on an earlier draft of this paper.

1954



Figure 7. Tracking results. Associated objects are shown with the same colored bounding cylinder/box. The PETS images show sequential

frames; the infrared images are three simultaneously-recorded views of sequence S3. The 3D visualization shows 67 flight paths.
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