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Abstract

An important modeling decision made while designing
Conditional Random Fields (CRFs) is the choice of the po-
tential functions over the cliques of variables. Laplacian
potentials are useful because they are robust potentials and
match image statistics better than Gaussians. Moreover, en-
ergies with Laplacian terms remain convex, which simplifies
inference. This makes Laplacian potentials an ideal model-
ing choice for some applications.

In this paper, we study max-margin parameter learning
in CRFs with Laplacian potentials (LCRFs). We first show
that structured hinge-loss [35] is non-convex for LCRFs
and thus techniques used by previous works are not appli-
cable. We then present the first approximate max-margin
algorithm for LCRFs. Finally, we make our learning al-
gorithm scalable in the number of training images by using
dual-decomposition techniques. Our experiments on single-
image depth estimation show that even with simple features,
our approach achieves comparable to state-of-art results.

1. Introduction

Undirected graphical models such as Markov Random
Fields (MRFs) and Conditional Random Fields (CRFs)
have been successfully applied to a number of vision prob-
lems, such as image denoising, optical flow and single-
image depth estimation. While designing an MRF/CRF for
an application, especially one with continuous random vari-
ables, an important modeling decision is the choice of the
family of potential functions over the cliques of variables.

In the context of natural images, this question has
been studied as the search for suitable natural image pri-
ors [36,38]. Some of the earliest works [12] used quadratic
disagreement pairwise potentials, corresponding to Gaus-
sian priors on images. Since then however, a large body
of work [21, 34, 36, 38] has found that histograms of fil-
ter responses for natural images tend to be highly “non-
Gaussian”, in that they have sharp peaks at zero and heavy
tails. Consequently, recent works have focused on non-
convex priors [2,22,23,32,36].

A similar situation holds for range images, i.e. images
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Figure 1: Logl0 of the normalized histogram of relative depths
(between adjacent pixels) from 400 laser scans collected by Sax-
ena et al. [24,25]. Notice that the relative depths are better mod-
eled by a Laplacian distribution than a Gaussian.

captured by laser range-scanners as opposed to traditional
cameras. Huang et al. [13] presented the first analysis
of range images and found that log-gradient-histograms of
range images of natural scenes were also heavy-tailed and
peaked at zero. More recently, Saxena et al. [24,25] made
similar observations in the context of monocular depth es-
timation, and found that relative depths are better modeled
by a Laplacian distribution than a Gaussian.

Model. The model we consider is a CRF with Laplacian
potentials, which we refer to as Laplacian CRF (LCRF) for
ease of notation. Although non-convex models like Fields
of Experts (FOE) [22, 36] or hyper-Laplacian priors [14]
may be a better fit to natural statistics than LCRFs, there
are a number of good reasons for using LCRFs.

Laplacian potentials represent a sweet spot in the trade-
off between the conflicting goals of modeling and optimiza-
tion. Gaussian potentials lead to easy (inference and learn-
ing) optimization problems, but are a poor match to im-
age statistics. Non-convex models (e.g., FOE) match image
statistics well but result in difficult (non-convex) optimiza-
tion problems. Laplacian potentials are robust potentials
and match image statistics better than Gaussians, yet ener-
gies with Laplacian terms remain convex, which simplifies
inference. Moreover, in recent work, Schmidt et al. [29]
found that Laplacian models actually outperformed hyper-
Laplacian models on the task of image restoration, when



used with MAP inference.

Goal. In this paper, we study discriminative parameter
learning in LCRFs. This is a challenging problem because
LCRFs involve ¢1-norm terms and thus the energy function
(negative log probability) is a non-linear function of the
parameters. Thus, well understood techniques like Struc-
tured SVMs (SSVMs) [35] and Max-Margin Markov Nets
(M?3Ns) [5] are not directly applicable.

Contributions. We first show that the key object in max-
margin learning, i.e. the structured hinge-loss [35] is non-
convex for LCRFs. Thus, an exact max-margin learning
algorithm is unlikely to exist. We then present an approx-
imate max-margin algorithm for LCRFs by linearizing the
non-convex f;-norm constraints. This broadens the class
of energy functions that may be learnt via SSVMs, albeit
approximately. To the best of our knowledge, this is the
first max-margin discriminative training algorithm for CRFs
with Laplacian potentials.

In addition, we use ideas from the dual-decomposition
[3, 7] literature to decompose the problem of learning pa-
rameters from a dataset of images into smaller learning
problems over individual training images. We present an ef-
ficient dual-decomposition-based algorithm that scales lin-
early with the number of training images and is very effi-
cient in practice. This makes our approach highly paral-
lelizable and scalable to a large number of training images.

We apply LCRFs to the problem of single-image depth
estimation, which is a difficult mathematically-ill-posed
problem due to the ambiguities introduced by the projec-
tion of the 3D world onto a 2D image. Interestingly, for this
problem, Saxena et al. [24] originally proposed an LCRF
to model depth as a function of the image features. How-
ever, in the absence of a parameter learning algorithm, they
resorted to a heuristic approach that neglected the partition
function. In this work, we show that by using a principled
approximate learning algorithm, we obtain improvements in
depth estimates, not only over their heuristic approach but
also other techniques. Specifically, we achieve state-of-art
performance on one common error metric and are competi-
tive with the state of the art on another metric.

2. Related Work

Most relevant to our work are algorithms for parameter
learning in continuous random field models, max-margin
methods and techniques for single-image depth estimation.

Parameter Learning in Continuous Random Fields. In
the FOE model, Roth and Black [22] used contrastive diver-
gence [10] to approximate the maximum likelihood estima-
tion of the parameters. Weiss and Freeman [36] proposed a
basis rotation algorithm for approximating the same. Note
that these are generative training methods while we are in-
terested in a discriminative training algorithm.

Tappen et al. [33] presented a Gaussian CRF model, and
showed that discriminative learning in GCRFs boils down to
linear algebra operations, and is thus tractable and efficient.
Scharstein and Pal [28] used MAP estimates to approxi-
mate the gradient for max-conditional-likelihood learning
of parameters. In [32], Tappen trained FOE parameters
by minimizing a loss function with stochastic gradient de-
scent. Samuel and Tappen [23] presented an improved
version based on implicit-differentiation. Li and Hutten-
locher [18] presented a discriminative learning algorithm
based on simultaneous perturbation stochastic approxima-
tion. Barbu [2] used marginal space learning to learn the
parameters. Note that for LCRFs, any reasonable loss func-
tion will be non-differentiable due to ¢;-norm terms, and
thus gradient-based methods are not directly applicable. In-
stead of exploring smooth approximations (which are often
slow to converge), we formulate our problem as a Structured
SVM (solved via a cutting-plane algorithm).

Structured Max-Margin Learning. Taskar et al. [5]
proposed a max-margin method for training Markov net-
works and Tsochantaridis et al. [35] proposed a Struc-
tured Support Vector Machine (SSVM) framework for
learning structured-output models. Both techniques have
been widely used since their introduction. Li and Hutten-
locher [19] proposed an SSVM-based algorithm in the con-
text of stereo. Szummer et al. [31] used graph-cuts within
an SSVM learning algorithm in the context of segmenta-
tion. We note that in both cases, the energies of the models
were linear in the parameters. This is not true for LCRFs,
and thus max-margin methods are not directly applicable.
Overcoming this restriction is the main focus of this paper.

Single Image Depth Estimation. Saxena er al. [24,27]
considered the problem of depth estimation from a single
image using a CRF. They found that CRFs with Lapla-
cian potentials significantly outperform those with Gaus-
sian potentials, even with their heuristic learning approach,
in which they ignored the partition function. Sudderth et
al. [30] used hierarchical Dirichlet Processes in order to
model the depth of objects. Liu et al. [20] proposed a
semantic-category based depth-estimation model that is the
current state-of-art (in terms of one error metric) on the
dataset of Saxena et al. [24,27]. More recently, Li et al. [16]
proposed a feedback-enabled cascaded classification model
that achieved state-of-art performance (in terms of another
error metric) on this dataset.

Laplacian terms. We note that Laplacian terms have been
explored in several contexts, including Lasso shrinkage [8]
and sparse coding [6]. These methods focus on inference
techniques, i.e. how to efficiently minimize objective func-
tions with ¢;-norm terms or constraints. This paper, on
the other hand, is concerned with the problem of parame-
ter learning in CRFs that contain these potentials.



Finally, we should also point out that although the work
of Zhu et al. [37] uses a similar name as us, they use Lapla-
cian priors for a sparse structural bias, while we use Lapla-
cian potentials on the variables of the model.

3. Laplacian CRF

We now describe our model in detail before presenting
our proposed learning algorithm in Section 4.

Notation. Let [n] be shorthand for the set {1,2,...,n}.
Consider a collection of continuous random variables ) =
{y; | i € [n], yi € R}, and a graph G = (V, &) defined
over these variables, i.e. V = [n], & C ([g]). For a vector
y € R™, we use P(y) as a shorthand for P(Y = y). Our
goal is to jointly predict ) from a collection of local features
{z; € R¥ | i € [n]} extracted at these labeling sites. Let
X = [zT; 2. . .; 2T] be the matrix holding these features
as rows. Finally, let Q@ = [fI;...; £7] be a matrix of
linear filters operating on ).
We define a Laplacian CRF as:

Pyl X,0) = 2 exp (“E@IX,0), where (1)

E(y|X,0) = |ly — X6l +1|1Qyll1, @
and where ||al|; = Y. |a;| for a € R™, Z is the par-
tition function, and @ € R” is the vector of model parame-
ters (to be learnt). We can see that this model penalizes for
deviations from linear predictions and for having large re-
sponses to the filters (. Comparing our model with popular
models like [32], we note that they penalize filter responses
via a non-convex Lorentzian penalty function, while we use
a convex /1-norm penalty.

Although the algorithms we develop are valid for arbi-
trary filters (), in this paper we only focus on gradient fil-
ters, i.e. the case when () is the (weighted) incidence matrix
of G, such that rows of Qy give the (weighted) differences
of neighboring labels. Thus:

By X,0) =lly— X0l + 3 |wiy (i — )l O
(i,5)€E

where w;; are edge-weights. These edge-weights may
themselves be functions of edge-features, i.e. w;; = zcz; R
where x;; is a feature extracted at edge (7,7), and (3 is
the (shared) edge parameter vector. For ease of explana-
tion and to match our current implementation, in this pa-
per we only describe learning techniques for 6 and assume
w;; to be known constants. However, the algorithm for
learning [ is a straightforward generalization, and is pre-
sented in the supplementary material [1] (Section 1). Fi-
nally, note that we place no restrictions on the size or type of
the graph-neighborhood and there could be arbitrary “long-

range” links between the variables.

4. Learning and Inference in LCRFs

Before we go into details about parameter learning we
need to describe inference in LCRFs.

4.1. Inference
We focus on maximum a posteriori inference in this
model, which can be written as:

§(0) = argmax P(y|X,0) (4a)
yERn

= argmin {||y — X0[|1 +[|Qyl|1} (4b)
yeRn

This is an ¢;-norm minimization problem. It is well-
known [4] that such problems may be formulated as a linear

program. Let @ £ X0, A 2 [ I,xn; Q ] (where I,,5,, is
the n x n identity matrix) and b 2 [ q; 0,,,x1 ]. Now:

§(0) =argmin {|[Iy —q|1 +||Qy — O||1} (52)
YyERM

=argmin ||Ay — bl|1, (5b)
YyERM

= argmin v-1 (5¢)

yeRn’ueR(n+7n)
st. v>Ay—b, (5d)
v > —(Ay —b) (5e)

where v is an auxiliary variable. Notice that (5c¢) is now

a Linear Program (LP). The trick above is to notice that
absolute value minimization can be replaced by two linear
lower bounds. As we will see next, this trick helps us more
than once.

4.2. Parameter Learning

Parameter learning involves finding the optimal values of
parameter # from labeled training data. Let us first consider
a single training sample (X, y*), where y* is the ground-
truth labeling. We start with the margin-rescaled Structured
SVM formulation of Tsochantaridis et al. [35], which min-
imizes the following problem:

R 1
min o |loll3 +C¢ (6a)
sit. E(y'|X,0) — B(y*|X,0) > Ay, y*) — € vy' (6b)
§20, (6¢)

where A(y*, y*) is a user-specified risk function measur-
ing the separation between labelings, and C' is a positive
multiplier. Intuitively, we can see that SSVM minimizes a
quadratic objective subject to constraints that enforce a soft
margin between the energy of ground-truth and any other
labeling, such that the margin is scaled by the risk function.
It is known [35] that all of the above constraints (6b),(6¢)
may be expressed compactly via the structured-hinge-loss:

HLoss(0) = max {07 E(y*|Xx,0)
— min (E(yi\X, 0) — A(y?, y*)) } ™)
i

It can be shown [35] that hinge-loss is a convex upper-

bound on risk incurred by the MAP solution g, i.e.
HLoss(6) > A(§(0),y*). Thus, SSVMs can be under-
stood as minimizing a regularized structured hinge loss:

min % 16112 + C HLoss(6) ®)
Note that for a continuous-valued CREF, the set of all pos-

sible other labelings is an infinitely large set, and thus the
above program cannot even be written down. Following the



work of Tsochantaridis et al. [35], we address this problem
by using a cutting-plane approach. Specifically, we initial-

ize this program with a small set of “bad” labelings 7, then
learn 0, and if the optimal labeling corresponding to this

learnt 6, i.e. the solution to (4), is not already in the set Z
(within some tolerance factor), we add it to the set and re-
peat. Formally, we repeatedly solve:

~ 1
(MM :Z) wpin o [|6]13 +C¢ (%a)
st |yt — X0+ [|Qy' |1
—lly* —Xx0|L - |Qy*|1 >1—¢& Vi€l (%)
£>0. (9¢)

Nonconvexity of Hinge-Loss. Recall that in a typical
SSVM or M?N, the energy function is linear in parameters.
In our case, the energy function contains ¢;-norm terms, and
thus constraints (9b) are not linear in §. Unfortunately, this
makes the corresponding hinge-loss non-convex. Formally,
we can state the following:

Theorem 1 Hinge Loss for the LCRF model, i.e.
HLoss(6) = max{0, lly* - X6/l + [|Qu"[l: —

ming: (lly* — X0l + [1Qull — Aly',y")}, is
non-convex in 6.

Proof. See Supplementary Material [1], Section 2.

Due to this non-convexity, standard techniques like sub-
gradient descent and cutting-plane methods cannot be used
to minimize the LCRF hinge-loss. Furthermore, note that
the variables # multiply with X and therefore every abso-
lute value term contains all the components of 6. This does
not allows use of search algorithms such as in [15].
Approximate Max-Margin Learning. We now show how

the non-convex program (MM : 7) can be approximated
by a convex QP. The following exposition is described with
a 0-1 risk, however any risk-function (e.g. hamming) may
be used as long as the risk-augmented energy minimization
problem [35] is tractable. We use the same trick as we did in
(5¢) to convert an ¢;-norm minimization into an LP, using

auxiliary variables: d*, {d'} € R™:
(MMQP : 1)

1 " noo
SIIE+Ce+ Oy di+ oy 3 di (10w
j=1

min
0,6,{d*},{d* gl
§{a*}.{d} iez =1

n n

st > di—> d; > 141Qy* Il — QY| — & (10b)
j=1 j=1

£>0 VieZ (10¢)

d* >+ (y* — X0), d*>—(y* — X0) (10d)

d' >+ (y'—x0), d'>—(y'—Xx0) Viel (10e)

where C7, Cs are positive weights (see [1] for how to set
them). All constraints in the above program (M MQP : i)
are linear in 0, &, {d*}, {d'}, and this program is a convex
quadratic program, solvable by standard techniques. For-
mally, we can state the following about this approximation:

Theorem 2 If {6, ¢, dA*,cil} is the optimum solution of
MMQP : 7 (10), then é is equal to the LCRF hinge-loss
H Loss(0), and thus an upper-bound on the loss incurred
by the MAP solution, i.e. ¢ = HLoss(0) > A(§(), y*).

Proof. See Supplementary Material [1], Section 3.

Thus, the constraints of the two programs — M M : T 9)
and MMQP : 7 (10) — represent exactly the same object,
i.e. structured hinge-loss. The approximation comes from
the extra terms in the objective function (10a), which are
necessary for linearizing the ¢;-norm terms.

From a computational perspective, it is important to
point out one drawback of this linearization approach. Pro-
gram (M MQP : f) includes vector constraints (10d),(10e)
of dimension equal to the number of random variables (n).
While constraint (10d) does not grow with iterations of
the cutting-plane algorithm, constraint (10e) does. Thus,
each additional “bad” labeling added to the list 7 adds n
more constraints to the QP, which may become impracti-
cal. However, as we see next, we use ideas from the dual-
decomposition [3, 7] literature to restrict this QP to a man-
ageable size.

4.3. Extension to Multiple Training Images
via Dual-Decomposition

Let us now extend our algorithm to learn from multi-
ple images. Consider a training dataset indexed by 7 =

{1,2,...,T}. Let &) denote the slack variable and vec-
tor D = {@*® @' | i € T} hold all auxiliary vari-
ables for a training image ¢. For brevity of description, let
us denote all linear constraints in (10) with the polytope

P Thus, ga,gﬁ),D(t)} € P denotes the set of so-
lutions feasible according to image ¢t. We can now write
down a straightforward generalization of the previous pro-

gram (M MQP : T) to multiple training images:
(MMQP :I7)
1 2 c t ¢’ t
§||0||2+?Z§<)+?ZD()-1 (11a)
teT teT
s.t. {6, DM} ¢ p®)

min
6,{¢®), D®)}
Vvt e T. (11b)

Clearly, as the size of the training dataset increases, this
program becomes larger, and very quickly impractical. The
key here is to notice that this large program (M MQP : Z7)
consists of several almost independent problems over indi-
vidual images, only coupled by the parameter . We fol-
low a dual-decomposition approach, where we solve a La-
grangian relaxation of this problem which easily decom-
poses to smaller independent sub-problems for each train-
ing image. This enables solving the problem over a dis-
tributed architecture or a cloud of machines, and thus scales
well to large datasets. Most importantly, we prove this
Lagragian relaxation achieves zero duality gap and in fact
is a tight relaxation (see Theorem 3). Thus, the solution

to the Lagrangian relaxation converges to the solution of
MMQP:ZI7.



We describe this relaxation next. First, we reparame-
terize the previous program by allocating to each training

image its own copy of the parameters 6(*):
(MMQP :172)

1 C
ST 2 )
oT 110112 + T E 13

min
6,{6(t) ¢() D®)}

teT teT
C/
+= > D® .1 (12a)
teT
s.t. {6W ¢ p®y e p®) (12b)
o) =g vteT. (120)

The above program (MMQP : 772) uses a global

variable 6 to force all training images to have the same
parameters, and thus is equivalent to the earlier program

(MMQP Z7). However, we can now relax con-
straints (12c). We consider a Lagrangian relaxation of
the above program by dualizing [7] the complicating con-
straints (12¢):

(LR:ZI7)
min LSO+ Y€
6.{00 ¢ DB} 2T = T &=
“ D® .1 AD . (6®) —6) (13a
+ teZT +t€ZT ( ) (13a)
s.t. {60 ¢ D®Y e p® vt e T, (13b)

where A(*) € RF are the (unconstrained) Lagrangian mul-
tipliers, which may be thought of as indicating the penalties
or costs for violating their corresponding constraints. Note
that now the above problem is completely separable into in-
dependent sub-problems for each training image.

(LR :Z72)

1 C
> min (Sl0W]F+ A0 90 4+ e
teTg(t),g(t),D(t)

c’ _
+ D™ 1) —min( > AN} .4 (14a)
T ) o <tET )
s.t. {6W ¢ p®y e p®) vteT. (14b)

We can see that the (unconstrained) optimization over
6 forces a constraint on the Lagrangian variables, i.e.
DoieT A® = 0; otherwise the program will not have a
finite value. Let us now define these independent sub-
problems as a function of the dual variables (A(*)):

1

FOA®) = min —
o(t) () D) 2T

116012 + A1) . g®)

C c’
Ze® L Z p®) g 15
7874 (15a)
st. {00 D DBy cP®  (15b)
We can now search for the tightest relaxation by optimiz-

ing over the dual variables {)\ft) }+. Formally, this is the La-
grangian dual of (MMQP : I7):

. TT (t) (x (t) .
(LD :ZI7) s t;f (A®) (16a)
st. > AW =o. (16b)

teT

Algorithm 1. We solve this dual problem via projected
gradient ascent. It is easy to verify that the gradient of
each sub-problem with respect to the Lagrangian multi-
plier is simply the optimal parameter learned from that sub-
problem, i.e. gf((,t)) = 0@, where 0@ is the optimal solu-
tion to problem (15). We also note that each subproblem
is strongly convex in 6(*) and thus has a unique optimum
6(®). The projection step is fairly simple — it involves satis-
fying the zero-mean constraint of (16b), which can be en-
forced by subtracting the mean of the dual variables. Over-

all, the update rule is given by A(*) «— [/\(t) + agffﬁf } .

where « is the step-size and [-], is the projection operator,
ie. [z =2®—1 37, 2. We can see that each step
of gradient ascent requires learning parameters on all sub-
problems. Thus, we have converted a large QP into several
smaller QPs that can be independently optimized in parallel,
although they need to be solved several times.

Most importantly, the following theorem shows that the
Lagrangian relaxation does not introduce a second level
of approximation In fact, our algorithm exactly solves
MMQP:ZI7.

Theorem 3 LD : Z7 (16) has zero duality gap and Algo-

rithm 1 converges to the optimum of MMQP : 7 (11).
Proof. See Supplementary Material [1], Section 4.

S. Experiments

We apply our learning algorithm to the problem of es-
timating depth from a single image (see Fig. 2 for exam-
ples). This is a difficult mathematically-ill-posed problem
due to the ambiguities introduced by the projection of the
3D world onto a 2D image. Local features alone are typ-
ically not enough for estimating depth (e.g., both sky and
water can be blue, a gray patch could be sidewalk or a wall).
We need to use a CRF to model the relations between the
depths at neighboring regions. Hand-tuning weights on fea-
tures is difficult and impractical and thus a good learning
algorithm is essential for this application.

For an h x w image, our model variables {y; | i €
[n], n = hw} indicate log-depth at each pixel, given image
features ¢; € R at the corresponding pixels in the image.
We follow the same parameter sharing scheme as Saxena et
al. [27], i.e. assign each row of an image its own parame-
ter vector. We use two kinds of features: 105-dim texture
features computed using the publicly-available code from
Make3D [24], and 8-dim semantic-category-prediction fea-
tures at each pixel provided by Liu ef al. [20]. When we
compare to other works using the same features, the perfor-
mance difference can be attributed to the choice of model
and learning algorithm used. Moreover, Saxena et al. [24]
used the same (texture) features and model as us (LCRF),
and trained the parameters simply by minimizing the ¢; er-
ror ||y — X0||1. Any performance difference between their
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Figure 2: Results on single-image depth estimation using LCRFs trained with our learning algorithm. (Left) Laser ground-
truth depths. (Middle) Original image. (Right) Predicted depths. We can see that LCRFs model depth discontinuities well.
(Best viewed in color.)

work and ours is specifically attributed to the use of our ing, 134 testing) with ground-truth depths obtained from a
max-margin learning algorithm. laser scanner. The variety of environments (roads, build-
We test our approach on the Make3D Range Image ings, trees, indoor corridors, efc.) presents situations such as

dataset [25,27], which consists of 534 images (400 train- sharp depth changes (due to occlusions) and thin long struc-



30 - —LCRF Sod~. [-crRA & 2 —LCRF
w, . [-PINV ° S bPINV] o E --PINV
7] = -, I

20 & >

--------- z02 -] Zos
0 2 1 0 2 1 0 102

# Training Images # Training Images # Training Images

(a) RMSE (b) Avg-log10 Error (c) Avg-Rel Error
Figure 3: Error on test set vs the number of training images.
(Red) Pseudo-Inverse training. (Blue) Our training algorithm.
Note that our training method performs well even with a small
number of training images.

tures (trees, poles, etc.), making this a challenging dataset.
All results are reported on the 134 test images.

We measure our performance with a commonly used er-
ror metric on this dataset called rel-error, defined as
LN (o :
> 3::1(?{1' — y}‘} /y;, where y; is the ground-truth depth
for pixel j, and §); is the predicted depth. Another error
metric that is also sometimes used is 1og10 error metric
1 i1 |logyq §j—logo y;|. For the sake of completeness,

we also report RMSE errors \/% > i1 (95 — y3)?, which a
number of previous works do not report.

We experimented with decomposition into sub-problems
of various sizes, and found decomposition into 8 fifty-image
sub-problems to be an ideal choice. Note that the zero du-
ality gap statements in Theorem 3 hold for batch decompo-
sition as well. We typically ran Algorithm 1 for 4-8 steps,
and typical cardinality of set 7 was 5-10.

Comparison to State-of-the-Art. We compare our results
to a number of other works that have reported results on this
dataset. The comparison is shown in Table 1. The results
for “Chance” baseline are taken from Saxena et al. [27].
This table also lists the major improvement source over the
original work of Saxena et al. [24] (SCN). We note that a di-
rect comparison with these methods is problematic. Some
methods use more sophisticated models and sometimes ad-
ditional data/features, limiting the conclusions that may be
drawn from the comparison. For example SCN [24] use a
hierarchical MRF; Liu et al. [20] (LGK) use semantic labels
and additional geometry based priors in the CRF. Heitz et
al. [9] and Li er al.’s [16] cascaded classification models
combine information from object detection, image segmen-
tation and scene categorization. Overall, these works fo-
cused on using context in order to improve performance. On
the other hand, our method only uses a single 4-connected
grid and no additional information. Despite the simplicity,
our model achieves 0.362 rel-error, which is better than cur-
rent best of 0.370. We attribute this superior performance
to our learning algorithm, which enables training an accu-
rate model (LCRF) for the problem. On RMSE and log10
errors, our approach is competitive with the state of the art,
but not the lowest. Hopefully, performance can be further
improved by combining these orthogonal ideas — our LCRF
model and learning algorithm, semantic modeling of LGK,

0.8
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0.3
0.2

0.1 I I
L] [ [ [

Chance SCN Make3D LGK LCRF (Our Model)

Figure 4: Effects of learning algorithms on pointwise—-CRF
with Make3D features. Plotting Avg-Rel Error. This figure
shows that even with simple features, our learning technique im-
proves the performance over other methods.

and multi-task information of Heitz et al.

Stability w.r.t. Small Training Set. We also analyzed the
performance of our learning algorithm with the size of train-
ing set. Fig. 3 shows that our algorithm is less prone to over-
fitting as compared to the pseudo-inverse training of SCN,
i.e. even with small amounts of training data, it can perform
reasonably well on the test set.

Effect of Learning Algorithm. Finally, we try to isolate
the the effect of the learning algorithm from other factors.
To do this, we only compare baselines that all use exactly
the same features and approximate the same MRF/CRF
structure (although different kinds of potentials). These in-
clude SCN [24], the “pointwise CRF” from Make3D [27]
and the “Pixel CRF model” from LGK [20]. For this com-
parison, we trained our model with texture features only.
Fig. 4 shows the results. We see that our learning algorithm
performs significantly better than SCN, LGK and Make3D.

Qualitative Results. In Fig. 2, we show the predicted
depths for a few examples in the test set, together with
the laser ground-truth depths for comparison. Our algo-
rithm makes quite reasonable-looking predictions. In gen-
eral, CRFs suffer from the problem of over-smoothing (e.g.
observed by Saxena et al. [24,27]). However, this prob-
lem seems to be less acute in our method—we believe this
is because our learning method learns the parameters while
taking into account the edge terms in the CRF, and thus re-
sults in sharper (see Fig. 2-E,H,I) and more accurate depths.
The problem still persists in some cases, such as in Fig. 2-
J, where our algorithm was confused by the texture of the
leaves, and produced over-smoothed depths.

Note that the ground-truth labels were limited to a range
of 80 meters, and therefore, in most of the images in Fig. 2,
we see that far-away structures are measured as 80m (same
as sky) by the laser. Our model reasonably predicts even
far-away parts in the image (and the actual ground-truth la-
bel is wrong!). See Fig. 2-A,D,FE,G,H,I. In Fig. 2-B, we
see the reflections of another building, trees and sky into
a glass-paned transparent wall. The laser scanner measures
depths incorrectly because the pulses get scattered by the



Table 1: Summary of results for the depth estimation task. Empty entrees indicate that those numbers were not reported in the prior work.
Note that different methods use different features, different structure of the MRFs/CRFs, as well as other additional information in some
cases. See Fig. 4 for the effect of learning algorithm alone. See text for details.

Method Description (main improvement source) RMSE-linear ~ Avg-logl0  Avg-Rel
Chance predict mean depthmap 28 0.334 0.698
SCN [24] hierarchical, pointwise CRF, Laplacian potentials 16.7 0.198 0.530
HEH [11] surface layout, discrete CRF - 0.320 1.423
Make3D - pointwise CRF [27] tertiary connections - 0.149 0.458
Make3D - superpixel CRF [26] superpixel formulation - 0.187 0.370
LGK - pointwise CRF [20] semantic segmentation, geometry - 0.149 0.375
LGK - superpixel CRF [20] semantic segmentation, geometry - 0.148 0.379
CCM [9] - cascaded models object detection, segmentation, categorization 15.4m - -
Li et al. [16] - feedback cascades object detection, categorization, event, geometric layout 15.2m - -
Lietal [17] probabilistic dependence between parameters 15.2m - -
Our model - pointwise CRF max-margin learning 15.8 0.168 0.362

glass. Our algorithm relies on the image and estimates the
depth of the reflected structures instead.

6. Conclusions

In this paper, we considered continuous-valued CRFs
with heavy-tailed Laplacian potentials. Although LCRFs
are the ideal modeling choice for many applications and
inference in these models is convex and tractable, param-
eter learning could only be performed heuristically in prior
work. We presented the first (approximate) max-margin pa-
rameter learning algorithm for LCRFs, by linearizing the
non-convex ¢;-norm constraints. We also presented a dual-
decomposition-based algorithm to make learning scalable
in the number of training images.

Future work involves exploring more sophisticated de-
composition techniques like Augmented Lagrangian meth-
ods. In addition, ¢;-norm minimization problems are often
convex relaxations for solving ¢y-norm minimization i.e.
cardinality constraints. We believe that the learning algo-
rithm for LCRFs presented in this paper could be useful for
MRFs/CRFs with such potentials as well.
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