
Model Recommendation for Action Recognition

Pyry Matikainen1 Rahul Sukthankar2,1 Martial Hebert1

pmatikai@cs.cmu.edu rahuls@cs.cmu.edu hebert@ri.cmu.edu
1The Robotics Institute, Carnegie Mellon University

2Google Research

Abstract

Simply choosing one model out of a large set of possibil-
ities for a given vision task is a surprisingly difficult prob-
lem, especially if there is limited evaluation data with which
to distinguish among models, such as when choosing the
best “walk” action classifier from a large pool of classi-
fiers tuned for different viewing angles, lighting conditions,
and background clutter. In this paper we suggest that this
problem of selecting a good model can be recast as a rec-
ommendation problem, where the goal is to recommend a
good model for a particular task based on how well a lim-
ited probe set of models appears to perform. Through this
conceptual remapping, we can bring to bear all the collab-
orative filtering techniques developed for consumer recom-
mender systems (e.g., Netflix, Amazon.com). We test this
hypothesis on action recognition, and find that even when
every model has been directly rated on a training set, rec-
ommendation finds better selections for the corresponding
test set than the best performers on the training set.

1. Introduction

Consider the following near-future scenario: John wishes to
use his smartphone to solve some particular vision task —
it might be face detection, or object recognition, or action
classification, or any of a number of different tasks in dif-
ferent vision areas (in this paper we consider action recog-
nition, but the method is general). John only has the time
and patience to collect a very limited number of training
samples for his task, on the order of ten samples at most.
Because this is the near and not the far future, John does
not have access to some super-representation of the visual
world, some ‘ultimate feature’ that would let him directly
train a good classifier from his ten samples. Instead, he is
faced with an array of competing techniques and represen-
tations, all of which tend to produce classifiers or models
that are very dataset specific and brittle to variation.

The problem faced by John is this: given a large, un-

?
?

?
?

Model
(classifier)

Task

0.1

0.6 Probe
set

vs
+1

-1

walk

stand

vs
+1

-1

running

all actions
Probe
Ratings

Predicted
Ratings

Rating
(accuracy)
of a model
on a task

Figure 1: The goal of model recommendation is to predict the
accuracy of models (classifiers) on a task based on how well a
probe set of classifiers perform on that task, and a database of how
well the classifiers perform on other tasks. In this way a good
classifier can be selected from a large pool by only testing a small
number of classifiers from the pool.

organized, heterogeneous collection of models (classifiers)
trained from different data sources, how should he select a
good one for his immediate task? In principle, he might just
evaluate every model against his training data, but this is
complicated by two issues. First, for a large library it will
be impractical to evaluate all of the models on John’s task.
However, the more serious issue is that evaluating a large
number of models against a very small dataset will be very
noisy, and the apparently best performing models are just as
likely to be due to chance as to any real superiority.

The key insight of this paper is that the problem of se-
lecting some option (in this case, a classifier) from a large
library can be conceptually reinterpreted as the type of rec-
ommendation problem addressed by collaborative filtering
methods such as those employed by Netflix to make movie
recommendations (Fig. 1). Through this transformation, the

Ratings of all classifiers
on many tasks

True ratings on target

Predicted ratings on target
Ratings of a sparse set of classifiers

Figure 2: This figure illustrates the general concept of Fig. 1 in
one specific case: view-dependent action recognizers. Given a
pool of 1600 classifiers (black ‘+’s), trained to recognize an ac-
tion from different viewpoints and a ratings store describing their
performance on other tasks, we identify the best classifier to recog-
nize “walk” from a particular viewpoint (white dot) by accurately
predicting the performance of each classifier in the pool on the
novel task using just 12 probes (black dots). Note that the system
is not given meta-data about classifier locations, but must learn the
correlations between classifiers.

performance ratings (accuracies) of a small subset of classi-
fiers on a target task can be used to predict, or recommend,
a good classifier from the full library in the same way that a
user’s historical ratings of a small set of movies can be used
to recommend unseen movies that are likely to be enjoyed.

However, because the typical domain seen in recom-
mender systems is so vastly different, it is only right to
be skeptical; what reason is there to believe that methods
developed to predict the preferences of human beings will
have any real traction when applied to predict the accura-
cies of classifiers? We experimentally demonstrate that this
conceptual reinterpretation reflects an exploitable parallel,
rather than being merely a cute metaphor. Because we wish
to demonstrate how tight this analogy is, we apply an exist-
ing collaborative filtering algorithm without modification.

The metaphorical ‘near future’ scenario serves as a il-
lustration for a formulation that can be applied to a variety
of current, real-world situations. For example, it is possi-
ble to tune action recognizers for a variety of conditions,
such as time of day, viewing angle, clutter, or crowdedness.
However, at the time of application simply estimating these
conditions may be a difficult problem, complicating the se-
lection of the appropriately tuned classifier, especially if the
amount of training data is limited. Model recommendation

sidesteps the problem of estimating the conditions by di-
rectly learning the relationships between models to recom-
mend ones that are likely to perform well on a new task.

Furthermore, there is an interesting difference between
model recommendation and typical recommender systems:
in a typical recommender system, where the ratings are hu-
man preferences, the system can never do better than if a
person were to directly rate every item, because the per-
son’s preferences are ground truth. However, the same is
not true for model recommendation, because the ratings (ac-
curacies) are derived from known training data, but what is
really wanted is to predict which classifiers are best on the
withheld testing data. Thus, it is theoretically possible with
recommendation to do better than trying every option and
picking the best, and we find that this is not simply a curi-
ous theoretical possibility, but a consistent empirical effect.

2. Overview and terminology
We formulate the problem as follows (see Fig. 1): a user
wishes to find a model that performs well on a (action recog-
nition) target task, but has limited training data. The user
evaluates, or rates, only a small subset, called the probe set,
of the models on their task, and returns the rated perfor-
mance of that small subset. The goal is to use that subset of
ratings to predict the ratings of the remaining models in the
pool, and return the model with the highest predicted rating.

Formally, a task Tj is assumed to be a forced choice
classification problem. We denote a task

Tj = {(xj1, yj1), (xj2, yj2), . . .}, (1)

where xj,z is the zth data sample associated with task Tj ,
and yj,z is the label corresponding to that sample. The
data sample xj,z might be some large representation (e.g.,
a video clip), while the target label yj,z is a binary value
indicating the class to which a data sample belongs. Note
that labels have different interpretations across tasks; in one
task the binary labeling may mean “run vs. jog”, while in
another it may mean “jump vs. all”.

A model is a classifier whose accuracy can be measured
on a task (or more generally, any algorithm that can be as-
signed a quality rating on a task). A model can vary from
having no free parameters (a pre-trained classifier) to be-
ing simply a methodology (e.g., STIP+HOG+MKL) that
is trained on a task’s training data. In this paper we use
libraries of pre-trained classifiers that all share the same
methodology (STIP+HOG3D+SVM), but which differ in
their training data.

The rating of a model on a task is a number describ-
ing how ‘good’ that model is for that task, where higher
is better. The rating of a model on a task is denoted by
R(mi, Tj) = ri,j , and is restricted to the range [0, 1]. In
practice, we simply use the classification accuracy of a
model on a task as the corresponding rating.

2.1. A Thought Experiment

As a thought experiment as to how model recommendation
might work, consider a set of models where each model is
trained to recognize walking from a different viewing an-
gle, and a set of tasks where the objective of each task to
recognize walking from a given viewing angle.

Now, for a new task with an unknown viewing angle,
the goal is to pick the best model. Intuitively, we would
expect the performance or rating of a model trained for
angle θm on a task with target viewing angle θt to be in-
versely correlated with the difference in angles. If we let
fm = 〈sin(θm), cos(θm)〉 and ft = 〈sin(θt), cos(θt)〉, we
might expect the rating to be proportional to the dot product
between the respective factors vectors, or rm,t ∝ fm · ft =
fTmft, with some constant offsets and scales. If this hypoth-
esis were true, then ideally by evaluating only two models,
the performance of every other model could be predicted.

A critical distinction must be noted: while every rating
could ideally be predicted from only two ratings, it does
not follow that every corresponding model could be recon-
structed from only two models. That is to say, by rating only
the 0◦ and 90◦ models on a task, the ratings of all the other
models might be predicted, but no ensemble of those two
models would produce a model optimized for 45◦. In prac-
tice, the estimated rating for any model is noisy, so combin-
ing ratings from additional models beyond two should still
improve prediction quality.

We test this scenario in the evaluation section (Sec. 5.1)
and find that the hypothesis is largely correct.

3. Related work

Our work is conceptually related to domain adaptation and
multi-task learning, in that the objective is to adapt or
learn from the database of tasks to the target task. In do-
main adaption, many methods, such as those by Gopalan et
al. [10] and Saenko et al. [22], use a source domain to im-
prove performance in a target domain by mapping samples
from the source to the target. However, in the model recom-
mendation problem the training samples for the models are
not available, making this type of transfer difficult.

More closely related to our method are techniques fo-
cused on adaptation or transfer through feature selection.
Blitzer et al. use a set of ‘pivot features’ [4] to perform
domain adaptation, by learning the relationships between a
small number of labeled pivot features and a larger number
of unlabeled features in both domains. Through the pivot
features they attempt to transfer models built on the unla-
beled features between domains. Likewise, a meta-learning
approach by Mierswa and Wurst [18, 19] attempts to select
good features for a given task given a small set of evalu-
ated features by training a linear SVM on each task using
a small set of ‘base features’ as inputs, and then computing

the similarity between tasks according to the SVM weights
assigned to the base features. Lee et al. [15] use additional
information about features in order to learn an association
between those ‘meta-features’ and the usefulness of the un-
derlying features on tasks.

Other approaches consider feature selection in which
a shared sparse set of features must be chosen for all
tasks [2,20], which is similar to SVM learning with sparsity
constraints [9]. Other work in multi-task learning uses neu-
ral network architectures to structurally force all the tasks
to share intermediate representations [1,6]. An approach by
Rückert and Kramer [21] on kernel learning shares our ap-
proach’s attempt to predict useful models for a target task,
but concentrates on predicting a good kernel for a task us-
ing a “meta-kernel” of heuristics to compare how similar
datasets are.

Compared to these techniques, our method does not as-
sume any privileged set of ‘base’ or ‘pivot’ features, and
does not require any ‘meta’ features. Our method is com-
pletely agnostic to the type of model, and does not assume
kernel learning or any other specific learning framework.
The core contribution of our work is to explicitly reformu-
late the model selection problem as collaborative filtering,
which allows for a wide variety of techniques to be used
unmodified, and suggests a number of interesting directions
for exploration.

We initially explore the collaborative filtering ap-
proaches used by the BellKor team to (as a combined ef-
fort with two other groups) win the Netflix prize [3,12]. As
the final result was a blend of a large number of different
approaches, spanning the gamut from neighborhood meth-
ods to factorization to regression techniques, their method
serves as a fairly comprehensive overview of collaborative
filtering techniques. For this paper we concentrate on ba-
sic factorization techniques [8, 13]. Although we consider
offline factorization, where the entire ratings matrix is avail-
able at once, a strength of our method is that by taking ad-
vantage of recent work by Mairal et al. [16] on online matrix
factorization and sparse coding, our method can easily ex-
tend to the online case, where the matrix is very large and
continually growing through the addition of new tasks and
features.

4. Method
Our method is conceptually straightforward: we start with a
database of ratings, termed the ratings store. This database
can be seen as a matrix where rows correspond to models,
and columns correspond to tasks. For this paper we assume
that in the store every model has been rated on every task
(the matrix is complete). Then, given a new target task and
a subset of rated models on that task, we use collaborative
filtering techniques to predict the ratings of all the models,
and return those with the highest predicted ratings as the

recommended models. We evaluate on several datasets, ex-
amples of which can be seen in Fig. 3.

(a) UCF-YT-50 (b) Mind’s Eye (c) Semi-synthetic

Figure 3: Sample frames from the datasets, including the semi-
synthetic videos that are rendered from motion capture data.

4.1. Low-level input

For this paper we consider models based on two low-level
inputs: a typical STIP+HOG3D combination [11, 14], and
a gridded histogram of optical flow (HOF). We use these
relatively low level representation because HOF and the re-
lated HOG are widely used in computer vision and have
been successfully applied to many applications.

The HOF representation divides the optical flow
into 10×10×5 pixel spatio-temporal cells, and a nine-
dimensional HOF descriptor is computed for each cell in
the standard way. So, for example, a 320×240×100 video
would be represented by a grid of 32×24×20×9 cells, and
a typical trained model might by applied to a 12×12×10×9
scanning windows of the full grid. We use the FlowLib [7]
GPU-accelerated optical flow library.

4.2. Ratings Store Generation

We generate ratings stores from both real and synthetic data.
A synthetic ratings store is used to evaluate on the synthetic
data, and on the real Mind’s Eye data. The UCF-YT ratings
store is generated from withheld UCF-YT data.

Models are generated by training SVM classifiers on the
low-level input, where each classifier is trained as a 1-vs.-
N classifier of actions from the dataset (synthetic or real).
Tasks are generated as 1-vs.-all tasks, where each task is a
binary classification problem between videos of one action
vs. videos of all other actions.

Every model is rated on every task in the database using
its accuracy on that task. The synthetic store uses approxi-
mately 50,000 videos to generate 10,000 models and 1000
tasks. The withheld UCF-YT data is used to produce a store
of 1000 models × 1000 tasks.

The synthetic data is used to evaluate on large libraries
(10,000 models vs. 1000 for the real UCF-YT data). For
this purpose, synthetic videos are rendered from the CMU
motion capture database [5]. Although such synthesis can-
not yet produce photorealistic data, it has seen success when
used for both depth [23] and motion [17] features. Con-

sequently, we concentrate on motion and generate semi-
synthetic data using our earlier work [17].

4.3. Collaborative Filtering

Our goal is to predict which trained action classifiers are
likely to perform well (have high ratings) on a new unknown
action, based only on the accuracies (ratings) of a small
subset of those classifiers (the probe set ratings). We now
describe how collaborative filtering techniques are used to
predict the ratings of the entire library based on the probe
set ratings and the ratings store. The probes are chosen at
random to avoid the worst case scenario of overfitting to the
training data and producing a highly redundant set.

The collaborative filtering has two parts. First, we esti-
mate a baseline, which is intuitively the mean model ratings
(average accuracy for each classifier across all actions) and
mean task ratings (average accuracy of all classifiers on an
action). Then, the deviations from these means (i.e., residu-
als) are represented and subsequently predicted using tech-
niques like factorization and sparse coding. The predicted
rating of a model on a task (predicted accuracy of a clas-
sifier on an action) is the sum of the respective model and
task means from the baseline, and the predicted residual.

Baseline Estimation

We start with a simple additive representation suggested by
Koren [13], in which a model’s rating on a task is repre-
sented as the sum of a global mean rating, a model fac-
tor, and a task factor. This formulation aims to capture the
fact that some models are better overall than others, while
some tasks are easier or harder than average. In practice,
this amounts to subtracting the row and column means from
the matrix. The resulting matrix of residuals is then fed into
more sophisticated collaborative filtering techniques.

Formally, a rating ri,j = µ+φi+ψj ,where µ is a global
mean rating, φi is a model-specific factor, and ψj is a task-
specific factor. Let m be the number of models, and n be
the number of tasks, so that the number of ratings is m · n.

We estimate these factors using Koren’s method [13]:
1. Estimate global mean: µ =

∑
i

∑
j ri,j

mn ;

2. Initial factors: φi =
∑

j(ri,j−µ)
n , ψj =

∑
i(ri,j−µ)
m ;

3. Model factors: φi =
∑

j(ri,j−µ−ψj)

n ;
4. Task factors: ψj =

∑
i(ri,j−µ−φi)

m .
For a new target task, we hold the previously computed
model factors fixed, and estimate only the target task’s fac-
tor, according to

ψt =

∑
i∈P (ri,t − µ− φi)

|P |
, (2)

where ψt is the target task’s factor, P is the set of probe
features, ri,t is the evaluated rating of feature i on the target

task, and |P | is the number of probe features.
This technique will not exactly fit the data; that is, in

general |ri,j−µ−φi−ψj | > 0, and the rating predicted by
the simple additive method (the baseline) will differ from
the observed rating. This difference, called the residual, is
what the following techniques attempt to explain.

We define the residuals r̄ that remain after the baseline
estimation by r̄i,j = ri,j − (µ+φi +ψj) . We let R̄ denote
the entire (m × n) residuals matrix for the source tasks.
Similarly, the residuals for the target task are given by r̄i,t =
ri,t − (µ+ φi + ψt) .

Factorization methods

The goal of factorization methods is to represent the resid-
ual rating of a model on a task as the dot product between a
model factors vector and a task factors vector, where the di-
mensionality of these factors vectors corresponds to a cho-
sen number of k latent factors. Formally,

R̄ = FTD, (3)

where FT is a (m× k) matrix of model factors, and D is a
(k×n) matrix of task factors. While there are many factor-
ization schemes, a simple and popular choice is to use the
singular value decomposition, in which R̄ = USV T . Then,
supposing that k latent factors are sought, Sk is the k × k
upper left sub-matrix of S, and Uk is the first k columns of
U . We construct the model factors matrix as FT = UkSk,
and the task factors as D = Vk.

Now, given a target task’s residual ratings of p probe
models (without loss of generality we can assume they are
the first p models), denoted r̄p, we estimate the target task’s
factor vector by solving the linear least-squares problem

(F̂T)x = r̄p (4)

for x, where x is a (k×1) vector of the target task’s factors,
and F̂T is a (p×k) matrix of the first p rows of FT . Finally,
predict the target task’s residual ratings for all the models:

r̄′ = FTx, (5)

where r̄′ are the predicted residual ratings. The final (non-
residual) predicted ratings are produced by adding the base-
line factors back to the predicted residuals, so that r′i =
r̄′i + µ+ φi + ψt .

Note that if the goal is to rank the models according to
their predicted ratings, it is only necessary to add the model
factor φi, since µ and ψt are constant offsets that apply
equally to all models.

Sparse Coding

Another approach is to use sparse coding, which attempts
to represent the column of residual probe ratings as a sparse

linear combination of columns (tasks) from the residual rat-
ings matrix. Sparse coding optimizes the problem

arg min
α
||r̄p − R̄pα||22 + τ ||α||1,

where r̄p are the residuals of the probe ratings after baseline
subtraction, R̄p are the rows of the residuals rating matrix
corresponding to the probe models, and α is the vector of
weights for the sparse reconstruction, one per task in the
ratings store. The parameter τ controls sparsity, with higher
values of τ corresponding to increased sparsity. Once α has
been computed, the predicted residual ratings r̄′ for all mod-
els can be computed simply as the weighted combination of
columns of R̄, or the matrix product r̄′ = R̄α. As with the
factorization approach, the (non-residual) predicted rating
of a model on the target task is just the residual plus the
global mean, target task mean, and model mean.

In a collaborative filtering context this can be seen as
a neighborhood method, where tasks corresponding to the
non-zero αs are the neighbors of the target task, and the
prediction is a weighted combination of the neighbors.

5. Evaluation
We evaluate in two ways. First, using synthetic data of just
the ‘walking’ action, we validate our hypothesis presented
in the “thought experiment” section.

Next, we consider the problem of recommending mod-
els across different actions, evaluating on both held-out
synthetic tasks, and on real tasks pulled from the UCF
YouTube 50 actions (UCF-YT)1 and Mind’s Eye (ME)2 The
ME dataset is composed of outdoor actions, such as run-
ning, jogging and jumping, filmed from stationary cameras.
For example frames, see Fig. 3.

5.1. Validating the thought experiment

We use the following synthetic example to validate the
thought experiment discussed in the introduction. The goal
is to recognize “walking” in video, and the only manipu-
lated source of variation is the viewing angle. Each candi-
date model is a classifier trained to recognize walking from
a model-specific viewing angle (for example, 33◦). Like-
wise, each task is a synthetic classification problem, where
the goal is to recognize walking from a task-specific range
of viewing angles (for example, 120◦ − 155◦); see Fig. 4.
For the factorization approach, we would qualitatively ex-
pect the first two factors to encode the angles of the tasks
and models. Indeed, after factorization (Fig. 5), we can see
that the first two factors do encode the angles for both tasks
and models. Note that while the models are arranged in an
unfilled circle, the tasks form a filled circle — the edge is

1http://server.cs.ucf.edu/˜vision/data.html
2http://www.darpa.mil/Our_Work/I2O/Programs/

Minds_Eye.aspx

occupied by tasks with low angular spread, while the cen-
ter is tasks with high angular spread. This is because as the
angular spread of a task increases, its ‘preference’ for any
one model over another decreases. At the limit, that is to
recognize “walk” from any angle at all (0◦− 360◦), there is
no reason to prefer any model over another, corresponding
to factors of (0,0), which rate all models equally.

As a second example (see Fig. 2) we consider a more
complicated synthetic situation with classifiers tuned to dif-
ferent viewing positions (angle from horizontal and dis-
tance), and tasks which vary in a similar manner. Note that
even in this more realistic situation, with only 12 evaluated
classifiers we are able to accurately predict the performance
of the whole set of 1600. In Fig. 6 we use this example to
demonstrate how recommendation is able to do better than
directly rating every model.

(a) Models (b) Tasks

Figure 4: For one action (“walk”), models (a) are trained to rec-
ognize the action from different viewing angles. Each task (b) is
likewise to recognize walking from a specific range of angles.

5.2. Cross-action recommendation

Now, we consider making recommendations for a task on an
unknown action using a database of heterogeneous actions.
So, for example, a target task might be to recognize “jump
on trampoline” (although this label is not known), yet the

Figure 5: Scatter plot of tasks (left) and models (right), accord-
ing to their first two factors. Models are arranged in a circular
pattern according to the angle they were trained from, as are tasks.
However, the center of the task circle is filled by tasks with very
wide angular spreads, because they equally favor all models. Each
“point” is the average silhouette of the positive videos for that task
(best viewed under magnification in digital copy).

(a) Train set ratings (b) Predicted ratings (c) Test set ratings

Figure 6: Recommendation improves results even when all mod-
els are rated because the model ratings on the training set are noisy
and subject to quantization artifacts (a), especially when there are
few training samples. Recommendation (b) uses these noisy rat-
ings to produce a better prediction of the ratings on the test set (c).
The models are arranged as in Fig. 2.

database does not necessarily contain this action, but might
contain similar actions such as “jumping jack” or “jump for
joy”. We caution that these textual labels are for illustrative
purposes, and such meta-data are not available.

For the synthetic data we generate a 10,000 model by
1000 task ratings store using synthetic data in the standard
way, with the motion capture clip used to generate each syn-
thetic task drawn at random from the whole motion capture
database, and no constraints within a task on the range of
viewing angles. The candidate pool of models is gener-
ated by training classifiers on random pairs of synthesized
actions. For the UCF-YT data, we use two-thirds of the
dataset to generate both a library of 1000 models and a rat-
ings store of those 1000 models evaluated on 1000 tasks.

Some factors for the synthetic data ratings store are visu-
alized in Fig. 7. While some factor dimensions correspond
to intuitive concepts (like horizontal motion), others are not
so compactly described. The most obvious distinction be-
tween tasks in this factor space is between walking-type ac-
tions, and in-place actions.

Factor 1

F
a

ct
o

r
3

walks

in place

little
movement

Figure 7: Visualized factors for tasks under the cross-action rec-
ommendation application.

First, we evaluate on the same type of synthetic tasks
used to populate the matrix, using tasks that were held out
from the matrix generation and factorization process. We
use 180 evaluation tasks, where each is divided into a train-
ing portion of 8–32 samples, and a larger testing portion.

For real data, we first consider test tasks generated from
the Mind’s Eye dataset, where the test tasks are created as
1-vs.-rest action classification problems, with actions drawn
from the set of “walk”, “jump”, “pick up”, and “fall down”.
So, for example, one task might be “pick up” vs. the re-
mainder. Each task is divided into a training set of 2–16
samples, and an evaluation set of all the remaining samples,
so that the training set is highly restricted in the number of
samples. Note that each ‘positive’ action appears in mul-
tiple tasks, but the tasks differ in the selection of samples.
Due to the limited amount of ME data, we use the synthetic
models and ratings store for the recommendation.

Another set of tasks comes from the UCF-YT dataset;
since this evaluation uses all real data (two-thirds of the
data is used to generate the model library and ratings store,
and one-third to evaluate), we do not use the motion-only
HOF features, but instead employ a typical combination of
STIP [14] and HOG3D [11] in a bag-of-words formulation.
We generate these tasks as 1-vs.-all classification problems,
with 2–16 training samples per task.

In all cases, the objective is to pick the single best model.
We compare against the natural baseline, which is to evalu-
ate the probe set and pick the model from that set with the
best performance. Since tasks vary in difficulty, to report
performance across tasks we report results as mean offsets
of performance vs. the mean model performance. A score
of +0.0 means that the method is statistically no better than
selecting a model at random from the whole pool.

Results for the ME tasks can be seen in Fig. 8. Direct
selection reaches a maximum accuracy with 20 probes, and
then degrades due to overfitting. In contrast, model recom-
mendation shows an upward curve, reaching a maximum
of with 180 probe models. Note that for the ME dataset at
n=180 probe every model is in the probe set, and yet it is
still better to use the recommended model rather than the
model with the best direct rating (in fact, model recommen-
dation shows the greatest advantage over direct selection
when every model is chosen as a probe).

The results for the synthetic and UCF-YT tasks show
similar trends, in Fig. 9a and Fig. 9b. In both cases recom-
mendation does better with only a fraction of rated probe
models than the baseline does when it rates all the models
and selects the best. Interestingly, in these cases the effect of
overfitting in the baseline is less pronounced, with the direct
selection simply plateauing rather than noticeably decreas-
ing. As a second baseline, for the UCF-YT data we also
directly train classifiers on the STIP+HOG3D BOW his-
tograms of the training data; this baseline obtains an accu-

(a) Factorization (b) Sparse Coding

Figure 8: Effect of the number of factors used for the factorization
model on accuracy vs. probe set size for the ME dataset. A larger
number of factors results in a higher asymptotic accuracy, at the
cost of lower performance when few probe models are evaluated.
Sparse coding exhibits the same effect, but with a more graceful
degradation. ‘Direct’ is the direct selection baseline.

racy of 77%, better than direct selection from the model li-
brary, but worse than model recommendation’s 78%. Since
both direct training and model recommendation produce an
estimate of how good their models are (direct training by
cross-validation accuracy on the training set, recommenda-
tion by the predicted accuracy of the top model), we can
easily combine the two by selecting the technique that re-
ports the highest estimated accuracy on each task; this com-
bination produces a mean accuracy of 81%.

Probe models

A
cc

u
ra

cy
 r

e
la

tiv
e

 t
o

 m
e

a
n

 (
%

)

Recommendation

(a) Synthetic (b) UCF-YT

Figure 9: Mean relative accuracy vs. number of probe models for
synthetic (a) and UCF-YT (b) datasets. The same trend is observed
in both datasets, although the magnitude of the effect is larger in
the synthetic data. At the gray line the number of probes is equal
to the number of factors (16 and 64 respectively); for fewer probes,
the factor estimation is underconstrained.

An interesting effect (Fig. 8) for the ME data and Fig. 10
for the synthetic tasks, is the tradeoff between the number
of factors used in the factorization method and accuracy,
which manifests itself as a ‘cusp’ when the number of probe
models is equal to the number of factors used (16 in those
cases). As the factorization method solves for the unknown
factors as a linear problem, if fewer probe models are eval-

Figure 10: Effect of the number of factors in the factorization
model for the synthetic tasks.

uated than factors, the problem is underconstrained, and the
accuracy suffers. Hence, if 16 factors are used, then the
factorization will not reach peak accuracy until 16 probe
models have been evaluated. While sparse coding shows
the same tradeoff (with the caveat that there is no simple re-
lationship between τ and minimum number probe models),
it does not feature this dramatic cusp (Fig. 8b).

6. Conclusions and Future Work

We exploit the intuition that the problem of selecting a good
model out of a large set is analogous to the problem of
recommending a consumer item and that the model rec-
ommendation problem can likewise be approached through
the collaborative filtering methods used in recommendation
systems. Our results confirm our counter-intuitive hypothe-
sis that recommendation systems can select better classifiers
than directly evaluating every model on the new training set.

While in this paper we have assumed that the model rat-
ings matrix is complete, collaborative filtering techniques
have been developed to deal with the highly sparse patterns
of ratings assigned by human users. This prompts the ques-
tion of whether it is better to recommend from a smaller
but denser matrix, or a larger and sparser one, if the total
number of ratings is constant. Another future direction is
to extend the system to jointly recommend sets of models,
rather than independently recommending individual ones.

Acknowledgments

This work was partially funded by the Army Research Laboratory
under Cooperative Agreement #W911NF-10-2-0061. The views
and conclusions are those of the authors and should not be inter-
preted as representing the official policies, either expressed or im-
plied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for government purposes notwithstanding any copyright
notation herein. We thank M. Tappen for his valuable feedback.

References
[1] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing. Train-

ing hierarchical feed-forward visual recognition models us-
ing transfer learning from pseudo-tasks. In ECCV, 2008.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature
learning. In NIPS, 2007.

[3] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup
and Workshop, 2007.

[4] J. Blitzer, R. Mcdonald, and F. Pereira. Domain adaptation
with structural correspondence learning. In EMNLP, 2006.

[5] Carnegie Mellon University Graphics Lab. CMU graphics
lab motion capture database, 2001.

[6] R. Caruana. Multitask learning. In Machine Learning, 1997.
[7] A. Chambolle and T. Pock. A first-order primal-dual al-

gorithm for convex problems with applications to imaging.
Preprint.

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science,
41(6):391–407, 1990.

[9] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning mul-
tiple tasks with kernel methods. JMLR, 6:615–637, 2005.

[10] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation
for object recognition: An unsupervised approach. In ICCV,
2011.

[11] A. Kläser, M. Marszałek, and C. Schmid. A spatio-temporal
descriptor based on 3D-gradients. In BMVC, 2008.

[12] Y. Koren. The BellKor solution to the Netflix Grand
Prize. http://www.netflixprize.com/assets/
GrandPrize2009_BPC_BellKor.pdf, 2009.

[13] Y. Koren. Factor in the neighbors: Scalable and accurate col-
laborative filtering. ACM Trans. KDD, 4(1):1:1–1:24, 2010.

[14] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008.

[15] S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learn-
ing a meta-level prior for feature relevance from multiple re-
lated tasks. In ICML, 2007.

[16] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning
for matrix factorization and sparse coding. JMLR, 11, 2010.

[17] P. Matikainen, R. Sukthankar, and M. Hebert. Feature seed-
ing for action recognition. In ICCV, 2011.

[18] I. Mierswa and M. Wurst. Efficient case based feature con-
struction for heterogeneous learning tasks. In ECML, 2005.

[19] I. Mierswa and M. Wurst. Efficient feature construction by
meta learning – guiding the search in meta hypothesis space.
In ICML Workshop on Meta Learning, 2005.

[20] G. Obozinski and B. Taskar. Multi-task feature selection. In
ICML Workshop on Structural Knowledge Transfer for Ma-
chine Learning, 2006.

[21] U. Rückert and S. Kramer. Kernel-based inductive transfer.
In ECML, 2008.

[22] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-
sual category models to new domains. In ECCV, 2010.

[23] J. Shotton, A. Fitzgibbon, M. Cook, and A. Blake. Real-time
human pose recognition in parts from single depth images.
In CVPR, 2011.

