Abstract:
Local binary pattern (LBP) and its variants are effective descriptors for face recognition. The traditional LBP like features are extracted based on the original pixel or...Show MoreMetadata
Abstract:
Local binary pattern (LBP) and its variants are effective descriptors for face recognition. The traditional LBP like features are extracted based on the original pixel or patch values of images. In this paper, we propose to learn the discriminative image filter to improve the discriminant power of the LBP like feature. The basic idea is after the image filtering with the learned filter, the difference of pixel difference vectors (PDVs) between the images from the same person is consistent and the difference between the images from different persons is enlarged. In this way, the LBP like features extracted from the filtered images are considered to be more discriminant than those extracted from the original images. Moreover, a coupled discriminant image filters learning method is proposed to deal with the heterogenous face images matching problem by reducing the feature gap between the heterogeneous images. Experiments on FERET, FRGC and a VIS-NIR heterogeneous face databases validate the effectiveness of our proposed image filter learning method combined with LBP like features.
Date of Conference: 16-21 June 2012
Date Added to IEEE Xplore: 26 July 2012
ISBN Information: