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Abstract

In this paper, we propose a method to select a discrim-

inative set of image processing operations for Linear Dis-

criminant Analysis (LDA) as an application of the use of

generating matrices representing image processing opera-

tors acting on images. First we show that generating matri-

ces can be used for formulating LDA with increasing train-

ing samples, then analyze them as image processing oper-

ators acting on 2D continuous functions for compressing

many large generating matrices by using PCA and Hermite

decomposition. Then we propose Linear Discriminative Im-

age Processing Operator Analysis, an iterative method for

estimating LDA feature space along with a discriminative

set of generating matrices. In experiments, we demonstrate

that discriminative generating matrices outperform a non-

discriminative set on the ORL and FERET datasets.

1. Introduction

Pattern recognition techniques need a lot of training sam-

ples for better performance, however, collecting a huge

number of samples is usually expensive or impractical.

When there are not enough training samples, the problem

is sometimes called small sample size problem, or single

(training) image per person in face recognition. Many stud-

ies have been done for this problem [1, 2, 3], and many of

them use an approach to increase the number of training

samples by synthetically generating new training samples

by various image processing operations, as surveyed in [4].

Focusing on Linear Discriminant Analysis (LDA), the

method proposed in this paper finds the most discrimina-

tive set of image processing operations to increase training

samples. We represent an image processing applied to an

image x by a matrix G (called generating matrix) to gener-

ate a new training sample x′ represented by x′ = Gx. This

equation is similar to those in [5, 6] in which they have for-

mulated transformation between two images by the equa-

tion for parameter estimation such as optical flow, depth

[5], or object pose [6]. In contrast, we intend to use the

equation for recognition. We first analyze image processing

operations that can be represented by linear operators, then

implement those operations as a generating matrix. We de-

compose a matrix implementation of such an operator into

two Hermite matrices. Then, we propose a method to find

the most discriminative generating matrices by linear com-

bination of eigen-generating matrices obtained by Princi-

pal Component Analysis (PCA). Those matrices are further

compressed with Hermite decomposition. We call the pro-

posed method Linear Discriminative Image Processing Op-

erator Analysis (LDIPOA).

1.1. Related work

There are three directions of previous work related to

the proposed method. The first is related to tangent prop-

agation [7, 8] or convolutional neural networks [9]. Those

approaches make a classifier (neural network) invariant or

insensitive to small changes in the original image. Simi-

lar to those, our method also provides invariance to image

processing operations. However, our approach finds an ap-

propriate image processing for recognition rather than con-

structing a classifier invariant to image changes.

A second direction of related work is represented by met-

ric learning [10, 11] or discriminative kernels [12] which

put class information into classifier metrics. The main dif-

ference is that our approach pays attention to image process-

ing operations, in other words feature extraction of holistic

image features, while metric learning uses training samples

to train a metric or distance.

A third group of related methods learns intra-personal

variations using generic training samples [18, 19, 17].

Those methods assume that intra-personal variations can be

learned from a separated dataset different from the training

and test sets, while our approach emphasizes variations in-

duced by practically possible image processing operations,

in particular, those which can be represented by linear op-

erators.

1.2. Contributions

Here we list some of the main contributions of this paper.

First, we show that the feature space of LDA with increasing

samples can be formulated by using generating matrices,



which means the same feature space is obtained without ac-

tually increasing samples if generating matrices are stored.

Second, we show that, in general, linear image processing

operators are normal operators that can be decomposed into

eigenspaces. Therefore, operators can be constructed by a

linear combination (like a vector space) rather than multi-

plication (like a group). Third, analyses of generating ma-

trices are shown: they are almost symmetric or orthogonal,

although those are a naive implementation of actual opera-

tors. Finally, LDIPOA is proposed to estimate LDA feature

space and a set of discriminative generating matrices at the

same time.

The organization of the paper is as follows. In section 2,

we discuss how generating matrices work on training sam-

ples for LDA. Then, in section 3 we analyze image process-

ing operations as linear operators acting on 2D continuous

functions. Finally, eigen-generating matrices are obtained

and each of them is decomposed into two Hermite matri-

ces. In section 4, we propose an iterative method, LDIPOA,

to find a discriminative set of generating matrices for LDA.

In section 5, we show some experimental results.

2. Generating matrix with LDA

In this section, we discuss how generating matrices work

on training samples for LDA and derive the LDA feature

space.

2.1. LDA

Here, we briefly review LDA for c classes (c ≥ 2):

let Xi be a set of ni samples of class ωi in d dimensional

space. For each class, the between-class scatter matrix SB

and within-class scatter matrix SW are defined as follows:

SW =

c∑

i=1

Si, Si =
1

ni

∑

x∈Xi

(x−mi) (x−mi)
T
, (1)

SB =

c∑

i=1

(mi −m) (mi −m)
T
. (2)

A d × d̃ matrix A is used for dimensionality reduction to

make d̃ dimensional features y = ATx. Then, the scatter

matrices of y are given as:

S̃i =
1

ni

∑

y∈Yi

(y − m̃i) (y − m̃i)
T
= ATSiA, (3)

S̃W =
c∑

i=1

S̃i = ATSWA, (4)

S̃B =

c∑

i=1

(m̃i − m̃) (m̃i − m̃)
T
= ATSBA. (5)

A typical choice of a criterion to be maximized is the

Rayleigh quotient
tr(S̃B)

tr(S̃W )
which is equivalent to the follow-

ing optimization problem: max tr(S̃B) such that S̃W = I .

The solution is given by the generalized eigenvalue prob-

lem SBA = SWAΛ, where Λ is a diagonal matrix. Hence,

the columns of A are the eigenvectors of SW
−1SB which

correspond to the largest d̃ eigenvalues.

However SW becomes singular when d is large because

the rank of SW is smaller than n− c (n is the number of all

samples). Therefore, PCA is usually used to project data by

a matrix P to a lower dimensional space before LDA, like

in Fisherface [13]. A d× d′ matrix P is obtained by eigen-

decomposition of the covariance matrix X of all samples:

X =
1

n

∑

x∈X

(x−m) (x−m)
T
. (6)

The columns of P are the eigenvectors of X which corre-

spond to the largest d′(= n− c) eigenvalues.

Finally, the within/between class scatter matrices S̃W

and S̃B of d′ dimensional feature vectors y = ATPTx are:

S̃W = ATPTSWPA, S̃B = ATPTSBPA. (7)

Then A is obtained by solving the eigenvalue problem(
PTSWP

)−1
PTSBP .

2.2. LDA with increasing samples

Next, we show that the use of generating matrices pro-

duces the same LDA feature space without actually increas-

ing the number of samples.

Suppose J generating matrices {Gj} (one of them is the

identity matrix) are used to represent new images {xj} from

x: xj = Gjx. The average of all samples m′ and class

averages m′
i of ωi are given by:

m′
i =

1

Jni

J∑

j=1

∑

x∈Xi

Gjx =
1

J

J∑

j=1

Gjmi = Ḡmi, (8)

m′ = Ḡm, (9)

where Ḡ is the average of {Gj}. By substituting these into

the scatter matrices, we have

S′
i =

1

Jni

J∑

j=1

∑

x∈Xi

(Gjx−m′
i) (Gjx−m′

i)
T
, (10)

= Ḡ (Si −Ri) Ḡ
T +

1

J

J∑

j=1

GjRiG
T
j , (11)

S′
W = Ḡ (SW −RW ) ḠT +

1

J

J∑

j

GjRWGj
T , (12)

S′
B =

c∑

i

(m′
i −m′) (m′

i −m′)
T
= ḠSBḠ

T , (13)

where Ri = 1
ni

∑
x∈Xi

xxT is the autocorrelation matrix

of class ωi, and RW =
∑c

i Ri.

To project data to a d′(= Jn− c) dimensional space, P



is obtained by PCA of

X ′ =
1

Jn

J∑

j=1

∑

x∈X

(
Gjx− Ḡm

) (
Gjx− Ḡm

)T
, (14)

= Ḡ (X −Rall) Ḡ
T +

1

J

J∑

j=1

GjRallG
T
j , (15)

where Rall =
1
n

∑
x∈X

xxT is the autocorrelation matrix

of all samples.

Now, scatter matrices S̃′
W and S̃′

B in the feature space

are given with {Gj} as follows:

S̃′
i =

1

Jni

∑

yj∈Yi

(
yj − m̃′

i

) (
yj − m̃′

i

)T
= ATPTS′

iPA,

S̃′
W =

c∑

i

S̃′
i = ATPTS′

WPA,

S̃′
B =

c∑

i

(
m̃′

i − m̃′
) (

m̃′
i − m̃′

)T
= ATPTS′

BPA,

where yj = ATPTxj , m̃′
i = ATPTm′

i, m̃
′ = ATPTm′.

Then the eigen-problem
(
PTS′

WP
)−1

PTS′
BP is

solved, similar to normal LDA.

It should be noted that we don’t need to increase train-

ing samples to calculate S′
W and S′

B because SW , SB , RW

can be computed from the given set of samples, and {Gj}
are given in advance. Therefore, increasing samples by im-

age processing can be replaced with computing Ḡ and auto-

correlation matrices, which requires less computational cost

but more storage memory. In the next section we give a

method to reduce the memory cost . However, the most im-

portant point is that an equivalent process can be reproduced

by using generating matrices without actually increasing the

samples.

3. Analysis of image processing operators

In this section, we analyze image processing operations

as linear operators.

3.1. Hermite, unitary, and normal operators

Definition 1 Let f(x), g(x) ∈ L2(R2) be complex-valued

2D functions where x ∈ R2. The inner product is defined

as

(f, g) ≡
∫

R2

f(x)g(x)dx, (16)

where ḡ is the complex conjugate of g.

An operator G : f 7→ g is linear if it satisfies G(af +
bg) = aG(f) + bG(g), ∀a, b ∈ R.

G∗ is the adjoint operator of G if it satisfies (Gf, g) =
(f,G∗g).

We suppose that f, g are images and G is an operator

which represents an image processing. A liner operator is

the most interesting and important one because many image

processing operations belongs to this type 1 as shown below.

At first, we choose a filtering (e.g. averaging, blur, or mo-

tion blur) which is represented by convolution with a filter

kernel.

Proposition 1 A filtering is defined as

Gf(x) =

∫
G(x,y)f(y)dy, (17)

where the kernel is symmetric G(x,y) = G(y,x) and real

valued. G is an Hermite operator which satisfies G∗ = G.

Proof

(Gf, g) =

∫∫
G(x,y)f(y)g(x)dydx, (18)

=

∫∫
f(y)G(y,x)g(x)dxdy = (f,Gg). (19)

Therefore G∗ = G.

Many filters satisfy the symmetric assumption even if not

being rotationally symmetric. In our experiments, motion

blur is modeled by an anisotropic Gaussian-like kernel.

A second type of commonly used image processing we

choose is the affine transform.

Proposition 2 A geometric (affine) transformation G is de-

fined as

Gf(x) = |A|1/2f(Ax+ t), (20)

where |A| 6= 0. G is a unitary operator which satisfies

G∗G = I .

Proof

(Gf, g) =

∫
|A|1/2f(Ax+ t)g(x)dx, (21)

=

∫
|A|1/2f(y)g(A−1(y − t))|A|−1dy, (22)

= (f,G∗g), (23)

therefore the adjoint of G is the inverse transformation:

G∗f(x) = |A|−1/2f(A−1(x− t)), (24)

hence G∗Gf(x) = f(x) and therefore G∗G = I .

In addition to the affine transformation, many other geo-

metric transformations can be represented as unitary opera-

tors if the transformation has an inverse.

Corollary 1 Filtering or geometric transformation opera-

tors G are normal operators which satisfy G∗G = GG∗.

1Operations which involve intensity change such as histogram equal-

ization or gamma correction are not linear in this sense.



(a) x (b) Gx (c) GTGx (d) GTx

Figure 1. Examples of a generating matrix G for counter-

clockwise rotation by 30 degrees. (a) An image x (size 64 × 64,

from [14]). (b) Gx. (c) GTGx. (d) GT
x. In (c), GTG is not

identical to the identity matrix due to aliasing and corners cropped

as black regions, however most pixels in the center region remain

by the successive transformations.

A normal operator can be orthogonally decomposed into

eigenspaces as G =
∑

λiPi, where Pi is a projection oper-

ator onto an eigenspace corresponding to eigenvalue λi.

This is important to show because (1) many of the com-

monly used image processing operators are normal opera-

tors; (2) operators can be decomposed into eigenspaces and

expressed by a linear combination rather than multiplication

of operators; (3) eigenspaces with small eigenvalues can be

eliminated for approximation in order to reduce the memory

cost.

3.2. Naive implementation

To implement these operators, we use generating ma-

trices. In our current naive implementation a generating

matrix corresponding to Hermite or unitary operator is not

guaranteed to be symmetric or orthogonal matrix. However,

all generating matrices G of filters (i.e. Hermite) we have

used for experiments are almost symmetric: ||G − GT || <
10−6. Generating matrices G of the affine transform do not

satisfy GGT = I , but results of GTx are quite promising: if

G represents a rotation, GTx gives an inversely rotated im-

age (shown in Fig.1). Therefore, we assume that the prop-

erties of the operators shown above are still valid for the

matrix implementation.

One problem when approximating a generating matrix

by eigenspaces is that it has complex eigenvalues when G is

almost orthogonal (in the sense mentioned above). There-

fore, we use the decomposition of an operator G into two

Hermite operators H1, H2 as follows:

G = H1 + iH2, H1 =
G+GT

2
, H2 =

G−GT

2i
, (25)

where i =
√
−1. The benefit of using this Hermite decom-

position is that any generating matrix can be approximated

by a pair of eigen-decompositions because both H1 and H2

are Hermite and all eigenvalues are real (not complex) num-

bers.

x E1x E2x E3x E4x E5x E6x

Figure 2. Images obtained when the first six eigen-generating ma-

trices Ei are applied to an image x (32× 32, from [14]).
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(a) H11, H21
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(b) H12, H22
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(c) H13, H23

Figure 3. Eigenvalues of H1j (top row) and H2j (bottom row) in

descending order.

3.3. PCA of generating matrices

Combining PCA and Hermite decomposition, we pro-

pose a two–step approximation of the generating matrices.

First, eigen-generating matrices Ej are obtained by PCA.

Second, each of Ej is decomposed into two Hermite matri-

ces H1j , H2j . Finally, H1j , H2j are approximated by their

eigenspaces:

G ≃
∑

j

ajEj =
∑

aj(H1j + iH2j), (26)

≃
∑

j

aj
∑

i

(λ1jiP1ji + iλ2jiP2ji), (27)

where Pkji is a projection matrix to the eigenspace of eigen-

value λkji of Hkj .

Fig. 2 shows results when applying Ei to x, which

shows how eigen-generating matrices work on images (ma-

trices are difficult to visualize). Ei are obtained by PCA of

567 generating matrices (3 scaling, 7 rotations, 3 Gaussian

filters and 9 motion blurs).

Fig. 3 shows the eigenvalues of two Hermite matrices for

E1, E2, and E3. There are few small eigenvalues of H1j ,

however, many eigenvalues of H2j are relatively small in

magnitude and hence can be removed for approximation.

Fig. 4 illustrates eigenspaces of Hermite matrices (again,

the figure shows how matrices work on an image). Each

column shows the results of Pkjix. It is worth noting that

the sum of Pkjix provides Ejx, a face, even though each of

Pkjix looks like a geometric pattern (like Gabor or Fourier

basis) rather than a face.



P11ix P21ix P12ix P22ix P13ix P23ix

Figure 4. Images obtained when Pkij are applied (for i = 1, . . . , 6

from top to bottom) to x (same x in Fig. 2). The two columns of

P2jix correspond to the real (left) and imaginary (right) parts be-

cause P2ji are unitary (complex) matrices, while P1ji are orthog-

onal (real) matrices.

4. Discriminative generating matrix for LDA

In this section, we propose Linear Discriminative Im-

age Processing Operator Analysis (LDIPOA), a method for

combining generating matrices and LDA. In previous work,

just the number of training samples is increased by a lot

of image processing operations, however, those increased

samples may not be useful for recognition. Our method al-

lows to select discriminative image processing operations

suitable for LDA from the given generating matrices.

4.1. Our approach

We estimate a single generating matrix G(k) at each

step. To this end, the Rayleigh-Ritz variational technique

is used: i.e., G(k) is represented by the linear combination

of J given generating matrices {Gj}, G(k) =
∑J

j α
(k)
j Gj ,

where (α
(k)
1 , α

(k)
2 , . . . , α

(k)
J )T = α(k) are the coefficients

to be estimated by maximizing the same criterion with

LDA, the Rayleigh quotient E.

The proposed algorithm maximizes E in terms of A, P ,

and α: maxA,P,α E(A,P,α), where A,P are the same as

those defined in section 2. Since this problem is difficult to

solve in a closed form, we propose a solution based on two

maximization steps (Algorithm 1). In the following subsec-

tions, we give the details of the algorithm.

Algorithm 1 LDIPOA

1: Compute PCA P and LDA A. G0 ← I .

2: for k = 1, . . . , do

3: repeat

4: α step: α(k) = argmax
α
E(A,P,α)

5: PCA step: Compute P with α(k).

6: LDA step: A = argmaxA E(A,P,α(k))
7: until E converges

8: end for

4.2. α step

Suppose that a sample x in class ωi is transformed to

x(k) by G(k) at the kth step as x(k) = G(k)x. Let Ḡ(k) =
1

k+1

∑k
l=0 G

(l). Now D = PA are known, and the scatter

matrices S̃
′(k)
W , S̃

′(k)
B are given as follows:

S̃
′(k)
W = DT Ḡ(k) (SW −RW ) Ḡ(k)TD

+
1

k + 1

k∑

l=0

DTG(l)RWG(l)TD (28)

S̃
′(k)
B = DT Ḡ(k)SBḠ

(k)TD (29)

Now the criterion E(A,P,α(k)) can be rewritten 2 as the

ratio of

tr
(
S̃
′(k)
W

)
= α(k)TH

′(k)
W α(k) + 2q

(k)
W

T
α(k) + π

(k)
W , (30)

tr
(
S̃
′(k)
B

)
= α(k)TH

′(k)
B α(k) + 2q

(k)
B

T
α(k) + π

(k)
B , (31)

where H ′, q, π are variables defined in the supplemental

materials. Since this is not a usual form of the Rayleigh

quotient, we prove the following proposition.

Proposition 3 Let β(k)
be a J + 1 dimensional vector

β(k) = (α(k)T , 1)T . Then, the solution that maximizes the

ratio of the equations above is given by the solution to the

eigenvalue problem for Q
(k)
W

−1
Q

(k)
B , which maximize

β(k)TQ
(k)
B β(k)

β(k)TQ
(k)
W β(k)

, (32)

where

Q
(k)
B =

[
H

(k)
B q

(k)
B

q
(k)
B

T
π
(k)
B

]
, Q

(k)
W =

[
H

(k)
W q

(k)
W

q
(k)
W

T
π
(k)
W

]
. (33)

Proof See the supplemental materials.

4.3. PCA step

The covariance matrix at the kth step is given as follows:

X ′(k) = Ḡ(k) (X −Rall) Ḡ
(k)T +

1

k + 1

k∑

l=0

G(l)RallG
(l)T ,

(34)

and then the eigenspace P of dimension d′ = (k + 1)n− c

can be obtained.

2Details of this derivations are given in the supplemental materials due

to the page limitation.



4.4. LDA step

The scatter matrices are given by

S
′(k)
W = Ḡ(k) (SW −RW ) Ḡ(k)T +

1

k + 1

k∑

l=0

G(l)RWG(l)T ,

(35)

S
′(k)
B = Ḡ(k)SBḠ

(k)T . (36)

Then the LDA feature space A is obtained by solving the

eigenvalue problem for
(
PTS

′(k)
W P

)−1

PTS
′(k)
B P .

5. Experimental results

Experimental results obtained by the proposed method

are shown here. We compared recognition rates by using the

ORL [15] and the FERET [16] datasets. The ORL dataset

includes 10 images of 40 people. The first five images

were used for training (200 images in total), and the other

five images for testing (200 images in total). The FERET

dataset used in this experiment includes the subset of the

target set ’fa’ and the query set ’fb’. There are 1002 peo-

ple in ’fa’ and 1001 in ’fb’, and person has only one image

(this setting is the same as in [17]). Therefore, this exper-

iment can demonstrate the ability of the proposed method

to handle the challenging problem called learning from a

single image per person. For this case, we need to extend

the proposed method because LDA can not be performed

on a dataset with a single sample for each class. A sim-

ple strategy we employed here was to just blur each image

and add the blurred images to the training set for computing

and storing SW , SB , and RW . Face regions were extracted

and resized to 32 × 32 pixels. We prepared 567 generating

matrices, from which eigen-generating matrices were ob-

tained and used for computing G(k) by PCA that gives 80%

and 95% cumulative contribution rates (“G-PCA” in the fig-

ures). For recognition, the nearest neighbor classifier was

used.

First, by using ORL, we confirmed that the two steps can

really maximize the Rayleigh quotient E. Figure 5 shows

the values of E at each α and LDA step for estimating the

first generating matrix G(1). We can see that it converges

after only a few iterations. Figure 5 also shows the corre-

sponding recognition rate.

Figure 6 (thick solid line shown as “PCA 95% (no blur)“)

shows recognition rates for ORL when increasing the num-

ber k of generating matrices from 0 to 10: k = 0 means

that no generating matrices were used, but only G(0) = I

was used, which is just normal LDA. k = 1 uses G(0) and

G(1), and k = 10 uses G(0) and G(1) + · · · + G(10). The

maximum recognition rate of 91.5% was achieved at k = 5,

which is 1% higher than that of the normal LDA. More-

over, this result outperformed the case that used all orig-

inal 567 generating matrices (“567 Gs” in Tab. 1) to in-

Figure 5. Rayleigh quotient (for α and LDA steps) and recognition

rate over iterations for G(1).

Table 1. Recognition rates on the ORL dataset. Numbers in braces

are corresponding values of k.

G-PCA 95 95 80 80

LDA-PCA 95 80 95 80

LDIPOA

(no blur) 90.5 (0,5) 87.5 (10) 93.0 (9) 87.0 (2)

(blur) 91.5 (5) 87.5 (9) 92.0 (10) 87.5 (2,5)

LDA

(no blur) 90.5 (0) 87.5 (0) 90.5 (0) 87.0 (0)

(blur) 90.5 (0) 86.5 (0) 90.5 (0) 86.5 (0)

567 Gs (no blur) 78.0

crease the training samples to 113,400 images (2,835 for

each class). This clearly demonstrates our concept: a dis-

criminative set of image processing operations outperforms

a non-discriminative one.

We also explored the effect of changing the cumulative

contribution rate of PCA for recognition. Figure 6 shows

the resulting performance when changing the value from

80% to 95% (“LDA-PCA” in the figures). This figure also

compares the performance for the cases when blur (Gaus-

sian σ2 = 0.5) is either added or not added to the test im-

ages. The maximum recognition rate was 93% , which is

much better than that of the normal LDA. Performances are

summarized in Tab. 1.

Next, the proposed method was applied to the FERET

dataset. Figure 7 shows the change in performance when

increasing the number k of generating matrices {G(k)}. In

this case, the combination of cumulative contribution rates

(G-PCA and LDA-PCA) of 95% perform much better. In

particular, after k = 5 the recognition rate improves by

about 10% compared to the normal LDA (k = 0), and the

maximum performance achieves 82.72% (k = 6, with blur)

and 82.62% (k = 6, no blur). Table 2 shows a comparison

of performances with state–of–the–art results of single im-

age per person which extend LDA and use a whole image as

a feature. Since each paper uses different experimental set-

tings, we compare how the performance can be improved

from the baseline LDA. The results show that the highest

relative improvement is achieved by our method.



0 1 2 3 4 5 6 7 8 9 10
k

0.84

0.86

0.88

0.90

0.92

0.94

Re
co

gn
iti

on
 ra

te

G-PCA 95%, LDA-PCA 95% (with blur) G-PCA 95%, LDA-PCA 80% (with blur)
G-PCA 80%, LDA-PCA 95% (with blur) G-PCA 80%, LDA-PCA 80% (with blur)
G-PCA 95%, LDA-PCA 95% (no blur) G-PCA 95%, LDA-PCA 80% (no blur)
G-PCA 80%, LDA-PCA 95% (no blur) G-PCA 80%, LDA-PCA 80% (no blur)

Figure 6. Performance change on ORL when increasing the num-

ber k of generating matrices. Note that k = 0 is the normal LDA.
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Figure 7. Performance change on the FERET dataset.

Table 2. Recognition rates on the FERET dataset.

Ref. method recognition

rate

improvement

from LDA

ours

(no blur)

LDIPOA 82.6 9.2

LDA 73.4

ours

(with blur)

LDIPOA 82.7 10.2

LDA 72.5

[18]
Adapted FLD 88.5 4.4

LDA (Generic FLD) 84.1

[19]

KNN ADA 90.1 6.0

Lasso ADA 91.2 7.1

LDA (Generic FLD) 84.1

6. Conclusions

In this paper, we proposed a method for finding the

most discriminative set of image processing operations to

increase the number of training samples for LDA. By repre-

senting linear image processing operators as generating ma-

trices, a two–step method was proposed that estimates LDA

feature space and the most discriminative generating matri-

ces at the same time. Experiments on the ORL and FERET

datasets demonstrated that the proposed method can provide

a set of discriminative generating matrices. Future work in-

cludes applying the generating matrix to other types of di-

mensionality reduction methods and classifiers such as the

Mutual Subspace Method and Support Vector Machines.

Most derivations have been omitted due to the page lim-

itation. Those will be given in the supplemental materials.
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