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Abstract

Large margin learning approaches, such as support vec-
tor machines (SVM), have been successfully applied to nu-
merous classification tasks, especially for automatic facial
expression recognition. The risk of such approaches how-
ever, is their sensitivity to large margin losses due to the in-
fluence from noisy training examples and outliers which is
a common problem in the area of affective computing (i.e.,
manual coding at the frame level is tedious so coarse labels
are normally assigned). In this paper, we leverage the re-
laxation of the parallel-hyperplanes constraint and propose
the use of modified correlation filters (MCF). The MCF is
similar in spirit to SVMs and correlation filters, but with
the key difference of optimizing only a single hyperplane.
We demonstrate the superiority of MCF over current tech-
niques on a battery of experiments.

1. Introduction

Research into affective computing has been very active
over the past decade, mainly driven by social, economic and
commercial interests (such as behavioral science, human-
computer-interaction, health-care, security, etc). The main
goal of this research is to have a computer system being able
to automatically detect/infer the emotional state of any per-
son based on various modes (e.g., face, voice, body, actions)
in real-time.

The plurality of this research has been anchored in facial
expression recognition, which consists generally of track-
ing/registering faces automatically and then training corre-
sponding models for supervised classification. To accom-
plish the former, one may opt for a coarse form of face
registration (e.g., Viola-Jones [4]) followed by a mapping
to higher-dimensional feature spaces (e.g., Gabor magni-
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Figure 1. Given labels at the frame-level, facial expression recog-
nition may be accomplished relatively accurately, but this accu-
racy rapidly declines once coarse labels which produce ambiguous
codes are introduced at the sequence-level. (a) Support vector ma-
chines require labels which are precisely defined, and therefore do
not adapt well to much noisier coarse labels because they require
both hyperplanes to be (i) strictly parallel to each other, and (ii) at
a tangent to the support vectors. (b) By relaxing one or both these
requisites (e.g., in PSVM [1], GEPSVM [2] and TWSVM [3]), the
resulting classifier can be accommodated to be much more robust
against noisy and outlying training examples.

tudes [5], local binary pattern operators [6], histogram of
oriented gradients [7], etc); or choose an algorithm (e.g.,
active appearance models [8], constrained local models [9],
etc) which administers more precise registration but allows
the feature extraction step to be bypassed (if illumination
conditions are known to be consistent). Whichever the
choice, both avenues ultimately lead to the final pattern clas-
sification stage, which is usually realized in the literature
through support vector machines (SVM).

Unfortunately, the SVM still bears several imperfec-
tions in its traditional formulation. Numerous modifica-
tions had been proposed over the years, but in spite of
all these encouraging recommendations, there remains a



lingering concern regarding the fundamental geometrical
reasoning which demands that both hyperplanes are to be
strictly parallel and at a tangent to the support vectors.
Fung and Mangasarian [1] proposed proximal support vec-
tor machines (PSVM) which abolishes the latter rule, and
as a consequence managed to deliver impressive improve-
ments. Generalized eigenvalue proximal support vector ma-
chines (GEPSVM) [2] and twin support vector machines
(TWSVM) [3], are two notable advancements to the PSVM
which abolish both rules altogether. These valuable con-
tributions all persuades one to break free from the tradi-
tional “parallel-hyperplanes” train-of-thought (see Fig. 1),
and begs the question − why is the requirement for two hy-
perplanes always necessary?

In this paper, our goal is to improve generalization per-
formance by optimizing only a single hyperplane, that of
which corresponds to the positive set. Intuitively, the ad-
vantages of doing so are twofold − a) the trade-off result-
ing from the joint-optimization of two hyperplanes is di-
minished, and b) outliers in the negative set are no longer
allowed to significantly influence the positioning of the pos-
itive hyperplane. The proposed algorithm, which we refer to
as “modified correlation filters” (MCF), may be considered
very similar in principle to correlation filters, but closely-
related mathematically to SVMs.

The central contributions from this paper are,

• Propose a novel supervised classifier (MCF) which is
inspired by correlation filters and similar in spirit to
support vector machines, but the key difference being
that it functions with only a single hyperplane.

• Show that MCF exhibits superior robustness against
noisy/outlying training examples, and thus enable sig-
nificant improvements in generalization performance
to be gained.

• Demonstrate the benefits of MCF on a variety of
challenging facial expression databases, which include
posed, acted and spontaneous expressions.

2. Related Work
2.1. Classifiers Utilized in Expression Recognition

At the discipline’s infancy, a significant amount of ef-
fort had been expended into establishing which classifica-
tion algorithm was most suitable for expression recogni-
tion. Classifiers that had generated considerable excitement
include [10] artificial neural networks, linear discriminant
analysis, hidden Markov models, dynamic Bayesian net-
works and various expert rules. Following the seminal work
of [11], however, a consensus was generally agreed upon
that soft-margin support vector machines (SVM hereon)
were deemed to be more applicable for expression recogni-
tion problems, mainly due to the following properties [11]:

i) good generalization performance, ii) capitalizing well on
well-correlated input spaces (a characteristic of facial ex-
pressions), and iii) relatively short training times O(102)
required.

Enthusiasm into classifier research had since steadily
declined. Recently, the greater part of research interests
had been proposed in favour of the classifier, suggesting
that a large number of researchers appear generally satis-
fied with SVMs. Much of the attention that was diverted
away from the classifier appear converged onto interests
such as: i) minimizing the registration error resulting from
face-tracking [12, 13], ii) exploring different forms of fea-
ture representations [7, 5, 14], and iii) modelling space-time
relationships of various facial components [14, 15]. Even
though these research concerns are amply justified, but the
relevance of pursuing new suitable classifiers should not
be undermined because final decisions are ultimately de-
termined at the classification stage. Before proceeding to
SVM theory, we shall discuss shortly on correlation filters
which was instrumental in motivating our proposed MCF.

2.2. Correlation Filters

Fundamental principles which had aided in the develop-
ment of MCF were originally drawn from correlation filters,
and as such, due acknowledgments shall be accorded here.
However, it should be mentioned that the similarity between
these algorithms exist solely in terms of philosophy, and not
mathematically. Using a variety of cross-correlation meth-
ods, correlation filters are generally employed to detect the
presence of a pattern in a target (e.g., face verification [16],
visual speaker verification [17], etc). One usually applies
the Fourier Transform to speed up computation. For exam-
ple, the Minimum Average Correlation Energy (MACE) fil-
ter [18] attempts to emphasize the correlation peak by min-
imizing the average correlation plane energy, and hence en-
hancing the peak-to-sidelobe ratio.

A shared objective between correlation filters and MCF
lies in minimizing the energy of non-targets (i.e., negative
examples) in order to emphasize the targets (i.e., positive
examples). To the best of the authors’ knowledge, there had
been no prior application of correlation filters to facial ex-
pression recognition problems, probably due to their poor
generalization capability. Nonetheless, the empirical per-
formance of MACE filters (H = D−1X(X+D−1X)−1u)
[18] shall be presented alongside those of the SVM and
MCF in §6. As shall be discussed in §4, the mathematics
behind MCF and correlation filters are shown to be entirely
unrelated.

3. Evolution of the SVM
In contrast to correlation filters, SVMs have played an

instrumental role in the facial expression recognition litera-
ture. In this section, we review SVMs from a probabilistic



perspective, and then use the ensuing insights to motivate
our proposed MCF in §4. Traditional approaches to super-
vised classification consider the following: in a binary prob-
lem where we are given two sets of patterns, the goal is to
assign an unknown test pattern to one of the two sets,

(xi,yi) ∈ χ× {±1}. (1)

Here, the objective is to learn the mapping f : χ 7→ {±1},
where we assume thatX and Y are two sets of random vari-
ables, and χ consists of m samples which are drawn iid
(independently and identically distributed) from the proba-
bility distribution X × Y . This suggests that the random
variables must be generated from a fixed but unknown prob-
ability distribution p(x, y) from either one set or the other,

p(xi, yi|f) =
m∏
i=1

p(yi, xi|f)p(xi). (2)

The problem of achieving good generalization can then be
cast as learning a mapping fχ which reduces the probabil-
ity of obtaining incorrect label assignments by as much as
possible [19],

zi := Pr(sign(fχ(xi))) 6= yi. (3)

(3) can be equivalently interpreted as minimizing the ex-
pected or empirical risk,

Rexp[f ] =

∫
X×Y

bz+ 0.5c dP, (4)

Remp[f ] =
1

m

m∑
i=1

bzi + 0.5c. (5)

In practice, Remp[f ] is usually employed as Rexp[f ] is an
intuitive quantity; but (5) still manifests as an ill-posed
problem due to the set of functions {fχ} which remain un-
known. To regularize this, an upper-bound on Remp[f ] is
enforced on Remp[f ], and a subset of feasible regions in fχ
is constrained to lie within ||f ||K and bounded by R (this
method is commonly referred to as Ivanov regularization),

min
fχ∈H,||fχ||K≤R

1

m

m∑
i=1

b(f(xi) 6= yi) + 0.5c, (6)

where K is a positive-definite kernel function [20] living in
a Reproducing Kernel Hilbert Space. Even though the for-
mulation now appears better defined, the optimization prob-
lem (6) is still NP-complete [19], and therefore intractable
as a result of the non-smooth and non-convex summands
(which are essentially zero-one losses). A remedy for this
involves replacing all these loss terms by a smooth and con-
vex loss function V (y, f(xi)) while still enforcing an up-
per bound on Remp[f ]. Again, it is not always tractable in

practice for a smooth V (y, f(xi)) to co-exist in (6). Instead
of minimizing Remp[f ] subject to strict bounds on ||f ||2K ,
it is far more tractable to smoothly trade-off ||f ||2K and
Remp[f ]; thus giving rise to the closely-related Tikhonov
regularization problem,

min
f∈H

1

m

m∑
i=1

V (yi, f(xi)) + λ||f ||2K . (7)

Here, λ effectively controls the regularization trade-off be-
tween ||f ||2K with Remp[f ]. SVMs are often interpreted as
a form of Tikhonov regularization problem expressed in the
form of (7) where,

V (yi, f(xi)) = [1− yiwTh(xi)]+, (8)

||f ||2K = ||w||pp, (9)

and [f(z)]+ = max(0, f(z)), (8) and (9) represent the hinge
and margin loss terms respectively, and p ∈ {1, 2}. A typ-
ical choice of SVM in automatic facial expression recog-
nition problems is the linear `2-SVM (i.e., p = 2), mainly
because of their rapid training times and good generaliza-
tion capabilities,

argmin
w,b

1

m

m∑
i=1

[1− yi(wTxi + b)]+ +
λ

2
||w||22. (10)

3.1. A Limitation of SVMs

One of the inherent drawbacks of SVM lies in its sensi-
tivity to large margin losses due to the influence from noisy
examples and outliers. Firstly, [21] pointed out that it is not
a trivial task for overlapping distributions to be modelled.
This is mainly due to a lack of probabilistic insight into the
margin loss λ||f ||H , where an intuitive procedure of tuning
λ still does not yet exist. However, [21] and [22] did point
out that this inadequacy may be redressed to some degree
by enforcing an upper bound on the slack variables, so as
to diminish the influence from extreme outliers in the train-
ing set (since these outliers contribute significantly to the
largest margin loss).

Similarly, other researchers had looked at working with
the non-twice-differentiable (and hence non-convex) prop-
erty of the hinge-loss functional. In [23], non-convexity was
dealt with through a multi-stage relaxation of the hinge-loss
using semi-definite programming methods. Others had pro-
posed to replace the hinge-loss altogether with − a smooth
sigmoid function [24], a least-median-loss function [25] and
a non-linear Gaussian error function [26] to depreciate the
leverage that extreme outliers hold on the margin loss.

From this plethora of literature, we observed one com-
monality shared among these modifications was that most
had been directed at the loss-functional V (yi, f(xi)). Equa-
tions (1) to (9) had illustrated how SVMs may be interpreted



as a Tikhonov regularization problem that attempts to min-
imize the empirical risk (which is equivalent to the loss-
functional). From these perspectives, we appreciate the im-
portance of the loss-functional’s role in the objective func-
tion, and its significance in filtering out outliers in χ. This
intuition forms a primary motivation for MCF.

3.2. Recent Advancements of SVMs

More recently, these machines have subtly but clearly
evolved into different embodiments of their original form.
Keen interest was noted in disputing the elementary axioms
of the SVM, which require: i) hyperplanes to be parallel,
and ii) hyperplanes to be positioned at the support vectors.
Proximal-SVMs (PSVM) [1] defy the latter rule,

argmin
w,b

ν

2
||δi||22 +

1

2
(wTw + b2) (11)

s.t. yi(w
Txi + b) = 1− δi.

where b refers to the bias, and δi refers to the slack vari-
ables. It is worth noting that this was achieved by trans-
forming V (yi, f(xi)) from an inequality constraint into an
equality constraint. Here, the equality sign allows the paral-
lel bounding planes to “break free” from the support vectors
and to be pushed as far apart from each other.

Generalized eigenvalue proximal SVMs (GEPSVM) [2]
and Twin-SVMs (TWSVM) [3] are algorithms that have re-
cently evolved from the PSVM. Both inherited the PSVM’s
concept of ‘hyperplane repulsion’, but the parallelism rule
had been further dropped.

4. Modified Correlation Filter

PSVM, GEPSVM and TWSVM all suggest an alternate
perspective in how SVMs may be formulated. These mod-
ifications, as well as those described in §3.1, all appear to
place important emphasis on V (yi, f(xi)). A key concept
behind the modified correlation filter (MCF) had emanated
from similar standpoints, and then merged with the philos-
ophy behind correlation filters (see Fig. 2).

Instead of relying on error-loss variables from both posi-
tive and negative sets to define V (yi, f(xi)), MCF uses only
error variables from the positive set,

w∗ = argmin
w,b

1

m

m∑
i=1

[1−wTx
(+)
i + b]+ +

λ

2
wTQw,

(12)

Q = [X e][X e]T , (13)

X = [X(+) X(−)]. (14)
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Figure 2. An intuitive comparison between SVM, correlation fil-
ters and MCF. (a) SVM computes the widest margin between
classes in order to detect ‘+1’, (b) Correlation filters minimizes
the correlation plane energy of ‘-1’ in order to emphasize the cor-
relation ‘+1’ peak. (c) MCF had drawn inspiration from both SVM
and correlation filters, and operates by seeking to emphasize ‘+1’
by minimizing the energy of all examples except ‘+1’ examples,
as cast in a SVM optimization framework.

Here, the goal is learn an optimal uni-hyperplane classifier
w∗ ∈ Rn, from positive and negative sets which are rep-
resented by X(+) ∈ Rn×|X(+)| and X(−) ∈ Rn×|X(−)| re-
spectively, b refers to the bias, λ > 0, m = |X(+)|, e ∈ Rn
indicates a vector of ones, and | · | refers to set cardinal-
ity. Note that in (12), only examples from the positive set
reside in V (yi, f(xi)). There are several advantages in do-
ing so. First and foremost, the number of outliers in χ re-
quired for optimization are considerably decreased (since
|X(+)| << |X(+)|), and therefore the empirical risk is in
turn reduced. In order to distinguish positive from nega-
tive examples, we insert both positive and negative sets into
the precomputable matrix Q in (13). From a Tikhonov reg-
ularization standpoint, this may be interpreted as a trade-
off between empirical risk and a margin loss that is defined
upon the energy of all training examples in χ. It is in this
respect that MCF share a common philosophy with corre-
lation filters, but note that the similarity does not extend to
their mathematical definitions.
The Lagrangian corresponding to the problem (12) is given
by,

L(w, b, δ, α, β) =
1

2
[Xw + e1b]

T [Xw + e1b] + λe2δ (15)

−αT [X(+)w + e2b+ δ − e2]− βT δ,

where α and β represent the Lagrange multipliers, and e1
and e2 are vectors of ones of appropriate dimensions. The
Karush-Kuhn-Tucker [27] necessary and sufficient optimal-
ity conditions are given by,

XT [Xw + e1b]−X(+)Tα = 0, (16)

eT1 [Xw + e1b]− eT2 α = 0, (17)

λe2 − α− β = 0, (18)

X(+)w + e2b+ δ ≥ e2, (19)
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Figure 3. Experiments were conducted on a wide variety of facial expression databases: (a) CK+ dataset (posed expressions), (b) UNBC-
McMaster Shoulder Pain Archive (spontaneous expressions), and (c) GEMEP-FERA dataset (acted expressions).

αT (X(+)w + e2b) + δ − e2 = 0; βT δ = 0, (20)

α ≥ 0, β ≥ 0. (21)

From (18) and (21) we have,

0 ≤ α ≤ λ. (22)

By combining and then simplifying (16) and (17),

[XT eT1 ][X e1][w, b]
T − [X(+)T eT2 ]α = 0, (23)

G := [X e1], H := [X(+) e2], u := [w, b]T , (24)

u = (GTG)−1HTα. (25)

Using (25) and the KKT conditions (16-21) we obtain the
Wolfe Dual of MCF as,

arg max
0≤α≤λ

eT1 α−
1

2
αTH(GTG)−1HTα. (26)

4.1. Robust Primal Form

By relinquishing a need for the joint-optimization of two
sets, there is little justification for choosing the value ‘1’ as
reference points in the hinge-loss functional (unlike in the
SVM). Instead, we can replace the constant with an offset
parameter ρ,

w∗ = argmin
w,b

1
m

∑m
i=1[[ρ−wTx

(+)
i + b]+]− (27)

+ λ
2w

TQw,

ρ = 1− sign(min{w0
Tx

(+)
i }

m
i=1). (28)

where [f(z)]− = min(ρ, f(z)). Because ρ ensures that
[f(z)]+ is never allowed to be negative during the first
iterate, all examples in X(+) are guaranteed to be opti-
mized. Furthermore, [f(z)]− diminishes the influence from
extreme outliers by upper-bounding the maximum value of
the slack variables to be at most ρ.

5. Facial Expression Databases
All experiments conducted in this paper were designed

to evaluate all classifiers under study for the tasks of
frame-level action unit (AU) detection and sequence-level
emotion-related expression detection. These experiments
were designed to: (i) evaluate the classification response of
MCF, and (ii) reference the recognition accuracy of MCF
with respect to SVM1 and correlation filters2. In this sec-
tion, we describe three facial expression databases (Fig. 3)
which had been carefully selected to reflect varying levels
of noise conditions usually encountered in practice.

5.1. The Extended Cohn-Kanade database (CK+)

The CK+ database [28] consists of 593 FACS coded se-
quences from 123 subjects eliciting posed facial expres-
sions. The image sequences vary in duration (from 10 to
60 frames) and incorporate the onset to peak formation of
the facial expressions. In our experiments, we focused on
the following AUs: {1 2 4 6 7 12 15 17 25 26}, and all
seven emotions (i.e., anger, contempt, disgust, fear, happi-
ness, sadness and surprise).

5.2. The GEMEP-FERA Database

The GEMEP-FERA database [6] contains recordings of
10 actors expressing a total of 15 emotions together with
a variety of AUs which had been FACS coded. In all of
these recordings, actors were instructed to utter meaning-
less phrases (such as the sustained vowel ‘aaa’) with the

1We used linear SVM, PSVM and GEPSVM in all of our experiments.
2We used MACE filters in all of our experiments.
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Figure 4. AU detection performance of MACE, SVM, GEPSVM, PSVM and MCF on: (a) CK+ dataset, (b) GEMEP-FERA dataset, and
(c) Pain-AU dataset. Performance was evaluated using the weighted F1-score, which are indicated numerically as shown.
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Figure 5. Emotion detection performance of MACE, SVM, GEPSVM, PSVM and MCF on: (a) CK+ dataset, (b) GEMEP-FERA dataset,
and (c) Pain-OPR dataset. Performance was evaluated using confusion matrices computed through majority voting. The trace of the
respective confusion matrices are indicated numerically as shown (details for the Pain-OPR intensity confusion matrices can be found in
Fig. 6).

aid of a professional director. The key difference between
this dataset with the CK+ and UNBC-McMaster Shoulder
Pain Archive is that expressions had been displayed in the
presence of speech, which generated a substantial amount
of rigid head and body motion. In our experiments, we fo-
cused on the following AUs: {1 2 4 6 7 10 12 15 17 18 25
26}, and all five emotions (i.e., anger, fear, joy, relief and
sadness).

5.3. The UNBC-McMaster Shoulder Pain Archive

The UNBC-McMaster Shoulder Pain Expression
Archive [29] (Pain dataset hereon) contains 200 video
sequences spanning 25 subjects which were recorded of
their faces while they moved their affected (these subjects
had various shoulder injuries) and unaffected shoulders.
Characteristic of spontaneous facial expressions, the video
sequences have various durations (from 90 to 700 frames)
in which considerable head movement had been exhibited.
In the AU portion of our experiments, we focused on the
following AUs: {4 6 7 9 10 12 25 26 43}. Heavy emphasis
had been placed on the task of distinguishing between
observer-rated pain-intensity levels, which were based on a
six-point scale − from OPR0 to OPR5, in increasing levels
of observed pain intensity.

6. Experiments
As generalization performance was our principal mat-

ter of interest in this paper, a leave-one-subject-out cross-
validation procedure had been adopted in all six experi-
ments3: i) AU and emotion detection on the CK+ dataset, ii)

3All classifiers had been evaluated in the exact same manner.

AU and emotion detection on the GEMEP-FERA dataset,
iii) AU and pain-intensity detection on the Pain dataset
hereon. Normalized pixel representations, acquired using
subject-independent constrained local models (CLM) [9],
were employed as input into the classifiers. Specifically, the
pixel representations employed in this study are referred to
as canonical normalized appearance features (CAPP). The
only exception was in the Pain-OPR experiments where
substantial difficulty in achieving even reasonable levels of
detection was experienced. For this experiment only, we
employed AAM-derived CAPP representations instead. It
was postulated in [12, 30] that no significant benefits could
be obtained from utilizing appearance features once close
to ideal registration had been obtained under consistent il-
lumination conditions (which is valid for all datasets under
analysis here). Hence, we had carefully neglected the use
of appearance features in our experiments.

6.1. Frame-level AU Detection

Of all classifiers examined, MACE had exhibited the
poorest performance in all AU experiments (Fig. 4). Con-
sidering that correlation filters are inherently subject-
dependent by design, and because the filters had been eval-
uated subject-independently, this result was not unusual.
MCF offered significant improvements over SVM on the
CK+ and Pain datasets, but equal levels in performance on
the GEMEP-FERA dataset. GEMEP-FERA contains only
seven subjects, therefore implying lower inter-subject vari-
ability (i.e., noise and outliers) compared to the other two
datasets. Interestingly, MCF still had not performed worse
than SVM. PSVM proved well-suited for AU detection as
noted by its good performance on all three AU datasets. On
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Figure 6. The diagonal elements of the respective confusion matrices obtained for Pain-OPR intensity-level detection experiments are
illustrated . N indicates the number of examples available for each sequence. The traces of these respective confusion matrices can be
found in Fig. 5(c).

the other hand, GEPSVM had not performed too well. One
possible explanation for this could be the sensitivity of its
non-parallel hyperplanes towards position and orientation,
which may have been adversely affected by the presence
of several different AUs that were included in the negative
training set.

6.2. Sequence-based Emotion Detection

The best classification rates were achieved by MCF
(Fig. 5). As with AU detection, similar trends in perfor-
mance were observed in MACE, SVM and PSVM, except
for GEPSVM on the CK+ dataset. Here, the construction
of “non-parallel-hyperplanes” appeared more applicable for
the task of distinguishing between emotions, but only if the
data was relatively noise-free (posed expressions). This ob-
servation, however, became less apparent in the “noisier”
GEMEP-FERA dataset.

6.3. Intensity-based Experiments

The most interesting experiment tasked all classifiers to
identify between six different levels of pain-intensity in the
Pain dataset. The high difficulty of this task lies with the
spontaneity of the expressions, marked by substantially in-
creased levels of both intra-/ and inter-subject expression
variability. Most noticeably, a large component of the diffi-
culty is attributed to the visual similarity between adjacent
intensity levels (e.g., OPR 0 contained numerous frames
which appeared very similar to OPR 1). Hence, there was
considerable overlap between positive and negative training
examples; and therefore provoking large numbers of out-
liers in χ.
As observed in Fig. 5(c), MCF provided the best per-
formance, delivering a two-fold improvement over SVM.
PSVM and GEPSVM both performed better than SVM.
Even so, the difference between MCF and the next-best
classifier (PSVM) was still observed to be very significant.
Details of the respective confusion matrices are presented
in Fig. 6. Referring to the last row of the MCF confusion
matrix (corresponding to OPR 5), there was some difficulty

encountered by MCF at distinguishing OPR 5 from OPR
4. It should be emphasized again that both these intensity-
levels in close proximity to one another appear very similar
even visually. Equally important, there were only very few
(seven) examples for OPR 5 available for training. In spite
of all these, OPR 5 had not been misclassified by MCF to
be of lower-intensity levels (i.e., OPR 0 to 3).

7. Conclusion

We propose MCF, a supervised binary classification al-
gorithm inspired by correlation filters and SVMs. MCF
conserves the energy of the target using linear constraints,
and then minimizes the energy of both targets and non-
targets in the objective function. Doing so effectively re-
duces the influence of outliers and noise in the training
set. We demonstrated the advantages of MCF on automatic
facial expression recognition problems, but we point out
that MCF may also be applied to other similar classifica-
tion problems. Rigorous analysis was conducted through a
battery of posed, acted and spontaneous facial expression
recognition experiments, which had demonstrated the use-
fulness of MCF over SVM (plus several of its variants) and
correlation filters.

8. Acknowledgments

This research was supported in part by the Coopera-
tive Research Centre for Advanced Automotive Technol-
ogy (AutoCRC) and the National Institute of Mental Health
grant R01 MH51435. The authors gratefully acknowledge
the contribution of National Research Organization and re-
viewers’ comments.

References
[1] G. Fung and O. Mangasarian, “Proximal support vector ma-

chine classifiers,” in Proc. Knowledge Discovery and Data
Mining, F. Provost and R. Srikant, Eds., 2001, pp. 77–86. 1,
2, 4



[2] O. Mangasarian and E. Wild, “Multisurface proximal sup-
port vector machine classification via generalized eigenval-
ues,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 1, pp. 69–74, Jan. 2006. 1, 2, 4

[3] Jayadeva, R. Khemchandani, and S. Chandra, “Twin support
vector machines for pattern classification,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 5, pp. 905–910, May 2007. 1, 2, 4

[4] P. Viola and M. Jones, “Rapid Object Detection using a
Boosted Cascade of Simple Features,” in Proceedings of the
International Conference on Computer Vision and Pattern
Recognition, vol. 1, 2001, pp. 511–518. 1

[5] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel,
and J. Movellan, “Automatic Recognition of Facial Actions
in Spontaneous Expressions,” Journal of Multimedia, 2006.
1, 2

[6] M. Valstar, B. Jiang, M. Mehu, M. Pantic, and K. Scherer,
“The First Facial Expression Recognition and Analysis Chal-
lenge,” in Proceedings of the IEEE International Conference
on Automatic Face and Gesture Recognition. 1, 5

[7] N. Dalal and B. Triggs, “Histograms of Oriented Gradients
for Human Detection,” in IEEE International Conference on
Computer Vision and Pattern Recognition, 2005. 1, 2

[8] T. Cootes, G. Edwards, and C. Taylor, “Active Appearance
Models,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 23, no. 6, pp. 681–685, 2001. 1

[9] J. Saragih, S. Lucey, and J. Cohn, “Face Alignment through
Subspace Constrained Mean-Shifts,” in Proceedings of the
International Conference on Computer Vision (ICCV), 2009.
1, 6

[10] B. Fasel and J. Luettin, “Automatic Facial Expression Anal-
ysis: A Survey,” Pattern Recognition, vol. 36, no. 1, pp. 259–
275, 2003. 2

[11] G. Littlewort, M. Bartlett, I. Fasel, J. Susskind, and J. Movel-
lan, “Dynamics of facial expression extracted automatically
from video,” in Computer Vision and Pattern Recognition
Workshop, CVPRW, Jun. 2004, p. 80. 2

[12] S. Chew, P. Lucey, S. Lucey, J. Saragih, J. Cohn, and S. Srid-
haran, “Person-independent facial expression detection us-
ing constrained local models,” in IEEE Workshop on Facial
Expression Recognition and Analysis Challenge, at AFGR,
2011. 2, 6

[13] A. Dhall, A. Asthana, R. Goecke, and T. Gedeon, “Emotion
recognition using phog and lpq features,” in Automatic Face
& Gesture Recognition and Workshops (FG 2011), 2011
IEEE International Conference on, 2011, pp. 878–883. 2

[14] B. Jiang, M. Valstar, and M. Pantic, “Action unit detection
using sparse appearance descriptors in space-time video vol-
umes,” in Automatic Face & Gesture Recognition and Work-
shops (FG 2011), 2011 IEEE International Conference on,
2011, pp. 314–321. 2

[15] T. Wu, M. Bartlett, and J. Movellan, “Facial expression
recognition using gabor motion energy filters,” in Computer
Vision and Pattern Recognition Workshops (CVPRW), 2010
IEEE Computer Society Conference on, 2010, pp. 42–47. 2

[16] M. Savvides, B. Vijaya Kumar, and P. Khosla, “Face ver-
ification using correlation filters,” in Proceedings of the
Third IEEE Automatic Identification Advanced Technolo-
gies, March 2002, pp. 56–61. 2

[17] D. Ramli, S. Samad, and A. Hussain, “A umace filter ap-
proach to lipreading in biometric authentication system,”
Journal of Applied Sciences, vol. 8, pp. 280–287, 2008. 2

[18] A. Mahalanobis, B. Kumar, and D. Casasent, “Minimum
average correlation energy filters,” Applied Optics, vol. 26,
no. 17, pp. 3633–3640, Sep 1987. 2

[19] R. Rifkin, G. Yeo, and T. Poggio, “Regularized least-squares
classification,” Nato Science Series Sub Series III Computer
and Systems Sciences, vol. 190, pp. 131–154, 2003. 3

[20] G. Wahba, “Support vector machines, reproducing kernel
hilbert spaces and the randomized gacv,” Technical Report
984rr, University of Wisconsin, Department of Statistics,
Tech. Rep., 1998. 3

[21] L. Xu, K. Crammer, and D. Schuurmans, “Robust support
vector machine training via convex outlier ablation,” in Proc.
of the Twenty-First National Conference on Artificial Intelli-
gence (AAAI), 2006. 3

[22] L. Wang, H. Jia, and J. Li, “Training robust support vector
machine with smooth ramp loss in the primal space,” Neuro-
computing, vol. 71, pp. 3020–3025, 2008. 3

[23] X.-C. Zhou, H.-B. Shen, and J.-P. Ye, “Integrating outlier
filtering in large margin training,” Journal of Zhejiang Uni-
versity - Science C, vol. 12, no. 5, pp. 362–370, 2011. 3

[24] Y.-J. Lee and O. Mangasarian, “Ssvm: A smooth support
vector machine for classification,” Computational Optimiza-
tion and Applications, vol. 20, no. 1, pp. 5–22, 2001. 3

[25] Z. Kou, J. Xu, X. Zhang, and L. Ji, “An improved support
vector machine using class median vectors,” in Proc of 8th
Intl Conf on Neural Information, 2001. 3

[26] Y. Zhan and D. Shen, Increasing Efficiency of SVM by Adap-
tively Penalizing Outliers. Springer Berlin / Heidelberg,
2005, ch. Energy Minimization Methods in Computer Vi-
sion and Pattern Recognition, Lecture Notes in Computer
Science, pp. 539–551. 3

[27] M. O.L., Nonlinear Programming. Society for Industrial
Mathematics, 1994, vol. 10. 4

[28] P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and
I. Matthews, “The extended cohn-kanade dataset (ck+): A
complete dataset for action unit and emotion-specified ex-
pression,” in Proceedings of the IEEE Workshop on CVPR
for Human Communicative Behavior Analysis, 2010. 5

[29] P. Lucey, J. Cohn, K. Prkachin, P. Solomon, and I. Matthews,
“Painful data: The unbc-mcmaster shoulder pain expression
archive database,” in Automatic Face & Gesture Recognition
and Workshops (FG 2011), 2011 IEEE International Confer-
ence on. IEEE, 2011, pp. 57–64. 6

[30] P. Lucey, S. Lucey, and J. Cohn, “Registration Invariant Rep-
resentations for Expression Detection,” in International Con-
ference on Digital Image Computing: Techniques and Appli-
cations: Techniques and Applications, 2010, pp. 255–261.
6


