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Abstract

Head pose estimation is a critical problem in many com-
puter vision applications. These include human computer
interaction, video surveillance, face and expression recog-
nition. In most prior work on heads pose estimation, the
positions of the faces on which the pose is to be estimated
are specified manually. Therefore, the results are reported
without studying the effect of misalignment. We propose a
method based on partial least squares (PLS) regression to
estimate pose and solve the alignment problem simultane-
ously. The contributions of this paper are two-fold: 1) we
show that the kernel version of PLS (kPLS) achieves better
than state-of-the-art results on the estimation problem and
2) we develop a technique to reduce misalignment based on
the learned PLS factors.

1. Introduction

Head pose is an extremely powerful communication tool
that conveys important nonverbal messages about subjects.
The work of Langton et al. [10] showed that head pose
is highly correlated with gaze estimation. The main chal-
lenges to accurate head pose estimation include: presence
or absence of structural components (beards, mustaches,
glasses, ...), facial expressions, occlusion, image orienta-
tion, and imaging conditions. Numerous papers have been
published describing algorithms for head pose estimation
and a good recent survey can be found in [15]. It divides
the different methods into categories, including: appear-
ance template methods such as [17], detector array methods
where a dedicated face detector is trained for every pose as
in [29], regression methods like [4], manifold embedding
as [19] and geometric methods akin to [26].

The most successful methods for monocular head pose

estimation are those using nonlinear regression [8, 15].
Work in this area include neural networks with locally lin-
ear maps [18] and multilayer perceptrons [23], in addi-
tion to support vector machine regression after PCA pro-
jection [12]. However, these nonlinear regression methods
are especially sensitive to alignment errors; therefore, their
performance diminishes with small localization error.

Alignment is a well-known problem in many recogni-
tion algorithms and the authors of [9] attribute the scarcity
of fully automated recognition systems to the difficulty of
alignment. Alignment is by now well understood as a ma-
jor subproblem of face recognition [27]. However, it is
rarely considered in evaluations of pose estimation; results
are typically reported on manually aligned data. A notable
exception is Murphy-Chutorian and Trivedi [16]. They de-
veloped a system for measuring the position and orientation
of a driver’s head, and propose the use of localized gradient
orientation (LGO) histograms to offset some of the local-
ization error of the underlying face detector.

We present a regression-based pose estimation method
that achieves better than state-of-the-art results and handles
misalignment effects without the need to include any mis-
aligned sample during training. Given a set of candidate
windows from a noisy face detector, we develop a tech-
nique that predicts which of those windows is best aligned
with the model based on partial least squares (PLS) analy-
sis. The best aligned window is the one to which the pose
regression coefficients are then applied. The remainder of
the paper is organized as follows: section 2 discusses both
linear and kernel PLS regression methods; section 3 shows
the results of the two methods on Pointing’04 and CMU
Multi-PIE databases. In section 4, we show how PLS can
be used to deal with misalignment as well as demonstrate
the results of this framework on simulated noisy detections,
and section 5 concludes the paper.
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2. Partial Least Squares

Although it has been more than three decades since its
introduction [28] and more than two decades since its use in
the domain of chemometrics [3], partial least squares (PLS)
analysis has only recently been attracting attention in com-
puter vision [2, 7, 21]. In its most general form, PLS models
the relationship between sets of observed variables by pro-
jecting them into a latent space; hence, some researchers
refer to PLS as “Projection to Latent Structures”. The mod-
eling is done by selecting orthogonal score vectors (a.k.a.
latent vectors) that maximize the covariance between the
different sets of variables while, at the same time, keeping
most of the variance of each set. PLS can be effectively
applied to solve regression problems where the number of
samples is less than the number of independent variables,
as well as in the presence of high collinearity of those vari-
ables.

2.1. Linear PLS Regression

Consider a matrix of independent variables X formed
from n observations of N dimensional vectors and a matrix
of dependent variables Y obtained as a response to X and
formed of n observations of M dimensional vectors. PLS
decomposes the zero-mean nxN matrix X and the zero-
mean nxM matrix Y as follows:

X = TPT + E (1)
Y = UQT + F (2)

where T and U are nxd matrices of the d extracted score
vectors, i.e. d factors or components. The Nxd matrix P
and the Mxd matrix Q represent the loadings. The nxN
matrix E and the nxM matrix F are residual matrices.
There exist many methods to obtain the decomposition in
equations 1 and 2, the most classical of which is based on
the nonlinear iterative partial least squares (NIPALS) algo-
rithm [28], which finds normalized weights w and c that
maximize the covariance between the score vectors t and
u. In the modification proposed in [11], the normalization
of t and u, rather than the normalization of w and c, is used
and the computation is done in d-iterations where each iter-
ation is as follows:

1. randomly initialize u;

2. w = XTu; t = Xw; t← t/‖t‖;

3. c = YT t; u = Yc; u← u/‖u‖;

4. repeat steps 2-3 until convergence;

5. deflate X: X ← X − ttTX; deflate Y: Y ← Y −
ttTY;

The matrices T, U, W and C are formed by columns of
of the vectors t, u, w and c respectively, obtained at every
iteration.

Once the two sets of variables, X and Y, are projected to
latent subspaces, what is left is to find the NxM regression
coefficients matrix B such that:

Y = XB + F∗ (3)

where F∗ is a residual matrix. From [20], B can be com-
puted as follows:

B = W(PTW)−1CT (4)

where the following equalities hold:

W = XTU (5)
P = XTT(TTT)−1 (6)
C = YTT(TTT)−1. (7)

Given the orthonormality of T, i.e. TTT = I, and substi-
tuting equations 5, 6 and 7 to 4, B can be expressed as:

B = XTU(TTXXTU)−1TTY. (8)

The NIPALS algorithm can be executed in a manner in-
volving only matrix-vector multiplications, rendering the
complexity in the order of O(n2).

2.2. Kernel PLS

Consider a nonlinear transformation of each input vec-
tor x into a feature space F , i.e. mapping Φ: xi ∈
RN → Φ(xi) ∈ F . Denoting all the mapped vectors x,
i.e. {Φ(xi)}ni=1, by Φ and using the theory of Reproducing
Kernel Hilbert Spaces (RKHS) [20], the kernel NIPALS al-
gorithm is:

1. randomly initialize u;

2. t = ΦΦTu; t← t/‖t‖;

3. c = YT t; u = Yc; u← u/‖u‖;

4. repeat steps 2-3 until convergence;

5. deflate ΦΦT : ΦΦT ← (Φ − ttTΦ)(Φ − ttTΦ)T ;
deflate Y: Y ← ttTY;

Using kernel mapping K(.) and the “kernel trick”, one
can notice that ΦΦT represents the kernel Gram matrix
K of the cross dot products between all mapped input,
{Φ(xi)}ni=1. The deflation of ΦΦT in step 5 is now given
by:

K ← (I− ttT )K(I− ttT ) (9)
K ← K− ttTK−KttT + ttTKttT (10)
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Figure 1. MLR, PCR and PLS coefficients calculation.

and the regression coefficients by:

B = ΦTU(TTKU)−1TTY. (11)

In our experiments, an rbf kernel was used; therefore,
the complexity was increased, from the quadratic order re-
quired by NIPALS, to the order of O(n2N).

2.3. PLS, MLR and PCR

Like any regression method, the aim of PLS is to find
a set of coefficients modeling the relationship between the
input data X and its response Y. Other relevant regres-
sion methods include Multiple Linear Regression (MLR)
and Principal Component Regression (PCR). MLR solves
for the regression coefficients directly by establishing a lin-
ear relationship between the input and the output. MLR
cannot be applied when the inverse of XXT does not exist.
PCR determines the coefficients based on the score (or la-
tent) vectors after projecting X to a subspace determined by
the principal components. Since these components are com-
puted only on X, without any consideration of Y, some of
them might be irrelevant in predicting the response. PLS
projects both X and Y each to its latent subspace before
computing the regression coefficients. This can be seen in
Figure 1. As a rule of thumb, MLR models the maximum
correlation between X and Y, PCR models the maximum
variance in X while PLS models the maximum covariance
between X and Y.

3. Head Pose Estimation
In this section, we will show the results of applying lin-

ear and kernel PLS regression to estimate the head pose
in two datasets: Pointing’04 and CMU Multi-PIE. We will
compare the results with state-of-the-art methods. The fea-
ture vector, for each face, is composed of 3-level pyramid
Histogram of Oriented Gradients (HOG) extracted from the
bounding box and quantized into 8 bins. Therefore, each
row of the independent variable X is composed of 640 di-
mensions representing the HOG features of the correspond-
ing face while each row of the dependent variable Y is com-
posed of the corresponding pose; it is two dimensional for

Pointing’04 since the dataset contains values for both pitch
and yaw while one dimensional, yaw, for CMU Multi-PIE.

3.1. Results on Pointing’04

Per subject, the Pointing’04 database [4] contains poses
discretized to 9 angles of pitch: {−90◦,−60◦,−30◦,−15◦,
0◦, 15◦, 30◦, 60◦, 90◦} and 13 angles of yaw: {−90◦,
−75◦, −60◦, −45◦, −30◦, −15◦, 0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦}. However, when the pitch angle is −90◦ or 90◦,
the yaw angle is always 0◦. Therefore, the total number of
poses is: 7x13 + 2x1 = 93 poses. The total number of sub-
jects is 15, each of whom is photographed twice resulting in
2790 images forming the database. The bounding box con-
taining the face for each image is provided. As indicated
before, the features that were used in these experiments are
3-level pyramid HOG and 5-level cross validation is em-
ployed, where every sample is tested using a model trained
on 80% of the remaning samples. The optimal number of
factors was found to be 25 for linear PLS and 40 for kPLS.
For kPLS, a radial basis function (rbf) kernel was used with
a kernel width of σ = 0.05. A comparison between PLS
and other state-of-the-art methods is shown in table 1. It is
interesting to see that kPLS outperforms all other methods
while, at the same time, reducing the feature space signifi-
cantly, from 640 dimensions to 40 latent dimensions. The
error shown in table 1 is the mean absolute error (MAE) be-
tween the continuous predicted pose and the discrete ground
truth pose.

The yaw ‘box and whisker’ plot for kPLS regression is
shown in figure 2, while that for pitch is shown in figure 3.
In the lateral figure, the less accurate predictions at pitch
poses −90◦ and 90◦ are due to the much smaller number of
training samples at those poses compared to the others; be-
tween the two, pitch −90◦ is less accurate due to the higher
variations in the images at this pitch (heads down) com-
pared to those at 90◦ (heads up). Looking at all the poses
in pitch and yaw, one concludes that the regression is able
to accurately predict head pose with little variance and few
outliers. The mean absolute error vs. the number of factors
is shown in figure 4 and vs. the rbf kernel width in figure 5,
justifying the use of 40 factors and σ = 0.05.
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Method Yaw Error Pitch Error Accuracy (Yaw,Pitch) Notes
Ours (kernel PLS) 6.56◦ 6.61◦ (67.36%, 80.36%) -
Stiefelhagen [22] 9.5◦ 9.7◦ (52.0%, 66.3%) 1

Ours (linear PLS) 11.29◦ 10.52◦ (45.57%, 58.70%) -
Human Performance [5] 11.8◦ 9.4◦ (40.7%, 59.0%) 2

Gourier (Associative Memories) [5] 10.1◦ 15.9◦ (50.0%, 43.9%) 3
Tu (High-order SVD) [24] 12.9◦ 17.97◦ (49.25%, 54.84%) 4

Tu (PCA) [24] 14.11◦ 14.98◦ (55.20%, 57.99%) 4
Tu (LEA) [24] 15.88◦ 17.44◦ (45.16%, 50.61%) 4

Voit [25] 12.3◦ 12.77◦ − -
Li (PCA) [13] 26.9◦ 35.1◦ − 5
Li (LDA) [13] 25.8◦ 26.9◦ − 5
Li (LPP) [13] 24.7◦ 22.6◦ − 5

Li (Local-PCA) [13] 24.5◦ 37.6◦ − 5
Li (Local-LPP) [13] 29.2◦ 40.2◦ − 5
Li (Local-LDA) [13] 19.1◦ 30.7◦ − 5

Notes:
1) Used 80% of Pointing’04 images for training, 10% for cross-evaluation, and 10% for testing.
2) Human performance with training.
3) Best results over different reported methods.
4) Better results have been obtained with manual localization.
5) Results for 32-dim embedding.

Table 1. Comparison of our PLS results to state-of-the-art methods (from [15]) in terms of mean absolute error and classification accuracy.

Figure 2. Detailed results of kPLS on Pointing’04 yaw regression.

3.2. Results on Multi-PIE

In this experiment, 2700 face images from the CMU
Multi-PIE database [6] were manually annotated. These im-
ages belong to 144 subjects, under frontal illumination and
varying expressions. Multi-PIE yaw angles range between

−90◦ and 90◦ with increments of 15◦ resulting in 13 dis-
crete poses. Sampled cropped faces are shown in figure 6.
We employed a 2-fold cross validation, where one half of
the data was used for training while the other half for test-
ing and vice versa. No tuning was done for the database, so
the same parameters that were found to optimize the results
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Figure 3. Detailed results of kPLS on Pointing’04 pitch regression.

Figure 4. Mean absolute error vs. number of factors. This figure is
best viewed in color.

Figure 5. Mean absolute error vs. σ. This figure is best viewed in
color.

on Pointing’04 were used, i.e. 25 factors for linear PLS
and 40 factors with σ = 0.05 for kernel PLS. The results
for kPLS and linear PLS regression are shown in Table 2

Figure 6. Sample unnormalized cropped faces under different ex-
pressions from CMU Multi-PIE.

kPLS linear PLS PCR
MAE 5.31◦ 9.11◦ 11.03◦

Accuracy 79.48% 57.22% 48.33%

Table 2. Comparison of the different algorithms in terms of mean
absolute error and classification accuracy.

along with those of PCR (also 25 factors were used). MLR
could not be applied due to the multicollinearity in the data.
kPLS achieved the best results with a mean absolute error
of 5.31◦.

4. Misalignment
Regression (as well as classification) algorithms are gen-

erally sensitive to localization error. If the object is not ac-
curately registered with the learned model, the comparison
between the object features and the model features leads
to errors. Most pose estimation methods are evaluated on
well-annotated data and no analysis of the sensitivity to mis-
alignment is typically reported. To study this problem, we
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Figure 7. Mean absolute error vs. misalignment.

conducted experiments where the training data is kept un-
changed while the test data is regenerated from the images
through shifting the face bounding box by a certain percent-
age of its width. The MAE in yaw pose estimation versus
the shift percentage is shown in figure 7. As expected, the
greater the misalignment, the worse the pose estimation re-
sults. It is also interesting to see that the effect in the kernel
version is close to that in the linear version.

To deal with misalignment, we propose the following:
given that T and U of the PLS model are correlated and
given a set of noisy observations, the observation that pro-
duces the minimum residual when projected to the latent
subspace of X should have the minimum error between its
predicted response and actual response. Therefore, to esti-
mate pose on a candidate face produced by a noisy detection
process, we consider not only the detected location of the
face but also a set of shifted versions of the face, and choose
the instance in the set that produces the minimum residual
when projected to the latent subspace. The estimated pose
for that instant is the face pose. In the remainder of this
section, we derive the equations to calculate this residual
for both linear and kernel PLS, and show how regressing
on the minimum residual instance can reduce misalignment
problems.

4.1. Linear PLS Residual

Given a new vector x and a trained PLS model, as de-
scribed in section 2, x can be approximated as:

x ≈ tPT (12)

where t is the score vector corresponding to x and P rep-
resents the learned loadings. Using equation 6 and the fact
that TTT = I, x can be rewritten as:

x ≈ tTTX. (13)

To approximate t, the following derivation can be made:

xXT ≈ tTTXXT (14)
xXT (XXT )−1 ≈ tTT (15)

xXT (XXT )−1T ≈ t, (16)

substituting equation 16 to equation 13, x becomes:

x ≈ xXT (XXT )−1TTTX, (17)

and the residual is the error in the approximation, given by:

e = x− xXT (XXT )−1TTTX. (18)

However, as we stated earlier (XXT )−1 might not ex-
ist due to multicollinearity in the data. Therefore, a better
derivation, that makes use of equation 6, is:

x ≈ tPT (19)
xP ≈ tPTP (20)

xP(PTP)−1 ≈ t (21)
xXTT(TTXXTT)−1 ≈ t, (22)

replacing equation 22 in equation 13, x becomes:

x ≈ xXTT(TTXXTT)−1TTX, (23)

and the residual is:

e = x− xXTT(TTXXTT)−1TTX. (24)

Therefore, for a candidate face position, a search is done
in its vicinity to find the best aligned window, i.e. the
one whose feature vector produces the minimum residual
in equation 24. Starting with the original ground-truth face
windows, we shifted each of these windows by 5% of its
width in the four directions (up, down, right, left), creating
a bag containing those four misaligned samples in addition
to the original sample. We gradually increased the shifts
from 5% to 50% of the width in steps of 5%; in each step,
four new samples, whose misalignment is worse than the
previous four, are added to each bag. At 50%, each bag con-
tained 41 feature vectors (40 misaligned and the original).
The MAE of applying the regression on the selected mimi-
mum residual sample of each bag, at each step, is shown in
figure 8. Despite the huge increase in the added noise, the
effect on our algorithm is negligibale; the maximum differ-
ence in the lateral figure is for Pointing’04 pitch which goes
from 10.52◦ at 0% shift to 11.68◦ at 50% shift.

4.2. kPLS Residual

Similar to the linear case, and given the formulation de-
veloped in subsection 2.2, the mapped version of x can be
approximated as:

Φ(x) ≈ tTTΦ; (25)
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Figure 8. Mean absolute error as more misaligned samples are
added to the bags (linear algorithm). This figure is best viewed
in color.

also, in a similar manner to deriving equation 16, t in this
case can be approximated as:

t ≈ Φ(x)ΦT (ΦΦT )−1T, (26)

and after the kernel mapping K(.):

t ≈ K(x,X)K−1T. (27)

Unlike the linear product, XXT , we can assume that K is
invertible due to the mapping to a much higher dimensional
space that eliminates linear dependencies.

Starting from equation 25, the following derivation can
be made:

(Φ(x)− tTTΦ)(Φ(x)− tTTΦ)T ≈ 0 (28)
(Φ(x)− tTTΦ)(ΦT (x)−ΦTTtT ) ≈ 0 (29)

Φ(x)ΦT (x)− Φ(x)ΦTTtT − tTTΦΦT (x)

+tTTΦΦTTtT ≈ 0 (30)
K(x,x)−K(x,X)TtT − tTTKT (x,X)

+tTTKTtT ≈ 0. (31)

The same experimental setup as in the previous subsec-
tion is used here and the vector with minimum residual is
defined as the one minimizing equation 31. The results are
shown in figure 9, demonstrating that the method can also
be successfully applied in kernel regression.

4.3. Comparison with MIL

Multiple instance learning (MIL), where a label is asso-
ciated with a bag of instances rather than just a single in-
stance, has been proposed to handle misalignment [1, 14].
We compare our algorithm against Multi-Instance Multi-
Label SVM (MIMLSVM), which was shown to outperform
other well-known multi-instance learning algorithms [30].
Our kPLS results obtained using bags with up to 50% shifts

Figure 9. Mean absolute error as more misaligned samples are
added to the bags (kernel algorithm). This figure is best viewed
in color

Ours MIMLSVM
MAE Pointing’04 Yaw 7.94◦ 10.72◦

MAE Pointing’04 Pitch 9.35◦ 12.32◦

MAE Multi-PIE Yaw 6.06◦ 5.40◦

Table 3. Comparison between MIMLSVM and our kPLS method
when dealing with misalignment

are compared against MIMLSVM on those same bags and
the comparison is shown in table 3. For MIMLSVM, each
dataset was divided equally for training and testing and the
number of medoids was set to 20% of the training data. Af-
ter computing the Hausdorff distance, the SVM cost was set
to 20 and its rbf kernel width to 90 (these values where ex-
perimentally found to provide the best results). Our method
outperformed MIMLSVM on average, despite not having
any misalined sample in the training data. It is also worth
mentioning that computing the Hausdorff distance on the
training data took around 6 hours while our training process
took around 3 minutes in total, on the same machine.

5. Conclusions
In summary, we presented a PLS-based regression

method for head pose estimation that significantly reduces
sensitivity to misalignment. The method outperforms state-
of-the-art methods while simultaneously dealing with mis-
aligned faces.
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