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Abstract

We introduce a new discriminative learning method for

image classification. We assume that the images are repre-

sented by unordered, multi-dimensional, finite sets of fea-

ture vectors, and that these sets might have different cardi-

nality. This allows us to use consistent nonparametric di-

vergence estimators to define new kernels over these sets,

and then apply them in kernel classifiers. Our numerical

results demonstrate that in many cases this approach can

outperform state-of-the-art competitors on both simulated

and challenging real-world datasets.

1. Introduction

There are numerous examples in computer vision where

images are represented by unordered sets of features. For

example, the shapes of objects can be represented by sets

of local descriptors at edges and corner points [8]. Human

faces can also be described by sets of local image patches

containing certain facial parts. The SIFT [17], HOG [4], and

PHOG [1] features extractors find stable image representa-

tions by detecting sets of local-affine invariant regions and

other regions of interest.

To compare images represented by feature sets, a

straightforward approach is to treat the sets as if they con-

tained instances sampled from an unknown and possibly

high-dimensional distribution. A common way to handle

these distributions is to use (high-dimensional) histograms,

and compare these histograms by some appropriate metric.

“Bag-of-words” (BOW) based image processing algorithms

use a similar approach, but include an additional clustering

step: They treat each image as a bag of visual words, where

the words are clustered feature vectors from local regions

[5, 15]. Then each image is represented by the empirical,

one-dimensional histogram of these words. The collection

of these words is called a codebook or dictionary.
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Histogram-based features been used in many state-of-

the-art computer vision algorithms. However, they have

some obvious limitations. When we quantize continuous

distributions into bins, we lose information — potentially

a lot of information. This problem is especially severe in

high dimensions, where the curse of dimensionality makes

histogram-based density estimators unreliable. Similarly,

BOW algorithms quantize the distributions into clusters,

which might lead to loss of information. Selecting the bin

sizes for the histograms [27] and the size of dictionary for

the BOW model are also difficult model selection problems.

In this paper we propose new image classification al-

gorithms that operate directly on the set-of-features rep-

resentation of the images. We assume that the elements

of these sets are i.i.d. sample points from unknown distri-

butions that characterize the images. In order to classify

the images, we classify these distributions based on their

i.i.d. sample set representations. The kernel-based approach

is adopted: we introduce and estimate the kernel functions

between these distributions. Having the estimated kernel

matrix (also called a Gram matrix), we then apply kernel

classifiers such as SVM for classification. The proposed

kernels avoid the traditional clustering, quantization, or his-

togram building steps that could lead to loss of information.

These kernel functions on sets will be defined in terms

of divergences/distances, just as the Euclidean distance is

used to define Gaussian/RBF kernels on individual vectors.

To this end, we will need to estimate the divergences be-

tween distributions. A straightforward approach would be

to estimate the underlying densities and plug them into the

corresponding divergence formulas. Histogram and BOW

approaches follow this paradigm. Density estimation, how-

ever, is among the most difficult problems in statistics due

to the curse of dimensionality. To avoid this problem, we

develop our kernels based on a direct (no density estimation

required) and nonparametric (minimal assumptions about

the true distributions) approach. We show how to estimate a

large family of divergences that includes the Rényi, Tsallis,

Hellinger, Bhattacharyya, KL, L2, and many other diver-

gences. The estimator is provably consistent, nonparamet-

ric, and does not use histograms, kernel density estimators



(KDE), or any other density estimators. It depends on only

simple k-nearest neighbor (k-NN) statistics.

We evaluate the empirical performance of the proposed

kernels on both simulated and real-world datasets, and

compare them to alternatives based on density estimation

or parametric approximations. We show that our kernels

achieve performances that match or beat the state of the art

in several image classification tasks.

The paper is organized as follows. In the next section

we review some related work. We formally introduce the

distribution classification problem and show how to define

kernels on distributions in Section 3. Section 4 describes

how to evaluate kernels on distributions when the densities

are unknown. Section 5 presents the results of numerical

experiments. We conclude with a discussion in Section 6.

2. Related Work

Although several methods exist to measure the distance

between sample sets, and kernels have also been defined on

sets, all of these previous methods have their shortcomings.

We will now review the most popular methods.

Nguyen et al. recently proposed a method for f -

divergence estimation using its so-called “variational char-

acterization properties” [20]. This approach involves an in-

tractable optimization over an infinite-dimensional function

space. When this function space is chosen to be a reproduc-

ing kernel Hilbert space (RKHS), this optimization problem

reduces to an m-dimensional convex problem, where m is

the sample size. This can be very demanding in practice for

a only few thousand sample points, which is quite common

in computer vision applications.

There are RKHS based approaches for defining kernels

on unordered sets as well. The method proposed by Smola

et al. [28] uses the interaction between pairs in the sample

set, and hence its computation time is O(m2). The diver-

gence estimator we propose, by contrast, uses only k-NN

distances in the sample set, a well-studied problem with ef-

ficient solutions such as k-d trees. Note also that choosing

an appropriate kernel function for the RKHS can be a diffi-

cult model selection problem, a challenge not faced by our

proposed divergence estimator.

Sricharan et al. [29] developed k-nearest-neighbor based

methods similar to our method for estimating non-linear

functionals of the density, of which divergences are a spe-

cial case. In contrast to our approach, however, their method

requires k to increase with the sample size m and diverge to

infinity. k-NN computations for large k values can be very

computationally demanding. In our approach we fix k on a

small number (typically between 1 and 5), and are still able

to prove that the divergence estimator is consistent.

Jebara and Kondor [11] have also studied the question

of how to define kernels on distributions. Their approach

fits a parametric family (e.g. exponential family) density to

each set of points, and then using these fitted parameters es-

timates the inner products between the densities. Moreno

et al. [19] also fit a parametric density to the data and use

it to define a KL divergence-based kernel. Parametric ap-

proaches can work better than nonparametric methods when

the sample size m is small, or if we know from prior knowl-

edge that the true densities belong to these parametric fam-

ilies. When the assumptions do not hold, however, para-

metric methods introduce bias in estimating the inner prod-

ucts between densities. In contrast, our proposed method is

completely nonparametric and provides provably asymptot-

ically unbiased kernel estimations for certain kernels.

Kondor and Jebara [12] earlier introduced a kernel be-

tween distributions defined as Bhattacharyya’s measure of

affinity between finite dimensional Gaussians in a Hilbert

space. This approach fits a Gaussian distribution to the fea-

tures in a Hilbert space, but it can lead to a large bias when

the data in the Hilbert spaces is not Gaussian. Furthermore,

the approach is developed only for Bhattacharyya’s mea-

sure. Our proposed method is asymptotically unbiased and

can be used for many other divergences.

The Pyramid Matching Kernel [8], which also operates

over unordered sets, has recently become popular in com-

puter vision. In this approach each feature set is mapped

to a multi-resolution histogram. These histogram pyramids

are compared using a so-called “weighted histogram inter-

section computation.” A shortcoming of this approach is

that it needs to calculate d-dimensional histograms, which

can become very inefficient for large d due to the curse of

dimensionality. Selecting appropriate bin sizes is also a dif-

ficult problem for which only heuristics are known [27].

Póczos et al. [23] used a slightly less general version of

our nonparametric divergence estimator similar to solve cer-

tain machine learning problems in the space of distributions.

This paper studied only simple k-NN based classifiers, how-

ever. Here we use kernel methods that are more discrimina-

tive in classification tasks, and evaluate their performance

on various image datasets.

3. Formal Problem Setting

In this section we formally define our image classifica-

tion problem and show how kernel classifiers can be gener-

alized to sample sets of distributions. Assume we have T in-

puts X1,. . . ,XT each representing one image, where the tth
input Xt = {Xt,1, . . . , Xt,mt

} consists of mt i.i.d. samples

from density pt. That is, Xt is a set of sample points, and

Xt,j ∼ pt for j = 1, . . . ,mt. Let X denote the set of all

such sample sets (Xt ∈ X , t = 1, . . . , T ).
Further assume we are given T labels for these inputs

{(Xt, Yt)}
T
t=1. Here Yt ∈ Y

.
= {y1, . . . , yc} denotes the

class label of the tth image. We seek a function f : X → Y
such that for a new input and output pair (X,Y ) ∈ X × Y
we ideally have that f(X) = Y . For simplicity, we dis-



cuss only binary classification. The ideas below can be ex-

tended to c-class classification in the standard ways, e.g.

voting among c(c − 1)/2 pairwise classifiers or taking the

most confident of c one-vs-all classifiers.

Let K, which will serve as our feature space, denote a

Hilbert space with inner product 〈·, ·〉K. Let P stand for the

set of density functions, and φ : P → K be an operator

that maps the density functions to the feature space K. In

what follows we will use the SVM kernel machine for the

classification problem. The dual form of the “soft margin

Support Vector Machine” can be described as follows [26]:

α̂ = argmax
α∈RT

T∑

i=1

αi −
1

2

T∑

i,j

αiαjyiyjGij , (1)

subject to
∑

i αiyi = 0, 0 ≤ αi ≤ C, where C > 0 is a pa-

rameter, yi ∈ {−1, 1} are the class labels, and G ∈ R
T×T

is the Gram matrix: Gij
.
= 〈φ(pi), φ(pj)〉K = K(pi, pj).

Now, the predicted class label of a test density p is simply

f(p) = sign(
∑T

i=1 α̂iyiK(pi, p) + b), where the bias term

b can be obtained by averaging b = yj −
∑

i yiαiGij over

all points with αj > 0.

There are many tools available to solve the quadratic

programming task in (1). All that remains is to estimate

{K(pi, p)}i and {K(pi, pj)}i,j from the i.i.d. samples.

3.1. Constructing Kernels

Having two finite i.i.d. sample sets from densities p and

q, we need to estimate K(p, q), the kernel value between

them. Many kernel functions, i.e. positive semi-definite

functionals of p and q, can be constructed from

Dα,β(p‖q) =

∫
pα(x) qβ(x) p(x) dx, (2)

where α, β ∈ R, including linear
∫
pq, polynomial

(c +
∫
pq)s, and Gaussian kernels exp(− 1

2µ
2(p, q)/σ2),

µ2(p, q) =
∫
p2 + q2 − 2pq. In the Gaussian ker-

nel, one can also try to use other “distances” µ(p, q),
e.g. the Hellinger distance (1 −

∫
p1/2q1/2)1/2, the Bhat-

tacharyya distance (− log
∫
p1/2q1/2)1/2, the Tsallis-α di-

vergence 1
α−1 (

∫
pαq1−α − 1), or the Rényi-α divergence

1
α−1 log

∫
pαq1−α. Note that the α → 1 limit of the Rényi-

α divergence is the KL divergence. These divergences are

nonnegative and vanish iff p = q almost surely. Nonethe-

less, the Rényi and Tsallis divergences are not symmetric,

do not satisfy the triangle inequality, and do not lead to pos-

itive semi-definite Gram matrices. In Section 4.1 we will

show how to address this problem.

4. Nonparametric Kernel Estimation

Let X1:n
.
= (X1, . . . , Xn) be an i.i.d. sample from

a distribution with density p, and similarly let Y1:m
.
=

(Y1, . . . , Ym) be an i.i.d. sample from a distribution of den-

sity q. Let ρk(i) denote the Euclidean distance of the kth

nearest neighbor of Xi in the sample X1:n, and similarly let

νk(i) denote the distance of the kth nearest neighbor of Xi

in the sample Y1:m.

In order to estimate the values of the kernels in Sec-

tion 3.1, we need to estimate Dα,β(p‖q) for some α, β. Bor-

rowing the tools that have been applied for Rényi entropy

[14], Shannon entropy [6], KL divergence [31], and Rényi

divergence estimation [22], one can prove that the following

estimator is L2 consistent under certain conditions:

D̂α,β =
Bk,α,β

n (n− 1)α mβ

n∑

i=1

ρ−dα
k (i) ν−dβ

k (i), (3)

where Bk,α,β
.
= c̄−α−β Γ(k)2

Γ(k−α)Γ(k−β) , c̄ denotes the vol-

ume of a d-dimensional unit ball, and Γ is the gamma func-

tion. Assume supp(p) is a finite union of bounded convex

sets. The following theorems claim the asymptotic unbi-

asedness and L2 consistency of the estimator (3):

Theorem 1 (Asymptotic unbiasedness) Let −k < α, β <
k. If 0 < α < k, then let p be bounded away from zero

and uniformly continuous. If −k < α < 0, then let p be

bounded. Similarly, if 0 < β < k, then let q be bounded

away from zero and uniformly continuous. If −k < β < 0,

then let q be bounded. Under these conditions we have that

lim
n,m→∞

E

[
D̂α,β(X1:n‖Y1:m)

]
= Dα,β(p‖q), (4)

i.e., the estimator is asymptotically unbiased.

In the previous theorem we have stated conditions that

lead to asymptotically unbiased divergence estimation. In

the following theorem we will assume that the estimator is

asymptotically unbiased for (α, β) as well as for (2α, 2β),
and also assume that Dα,β(p‖q) < ∞, D2α,2β(p‖q) < ∞.

Theorem 2 (L2 consistency) Let k ≥ 2 and −(k−1)/2 <
α, β < (k − 1)/2. If 0 < α < (k − 1)/2, then let p
be bounded away from zero and uniformly continuous. If

−(k − 1)/2 < α < 0, then let p be bounded. Similarly, if

0 < β < (k − 1)/2, then let q be bounded away from zero

and uniformly continuous. If −(k− 1)/2 < β < 0, then let

q be bounded. Under these conditions we have that

lim
n,m→∞

E

[(
D̂α,β(X1:n‖Y1:m)−Dα,β(p‖q)

)2
]
= 0;

(5)

that is, the estimator is L2 consistent.

The supplementary material contains proof outlines.



4.1. Projecting to the Cone of PSD Matrices

Under certain conditions D̂α,β is a consistent estimator

of Dα,β , and thus by plugging these estimators into the for-

mulae in Section 3.1 we get consistent estimators for those

kernels. Any particular estimated Gram matrix, however,

might not be symmetric or positive semi-definite. We there-

fore symmetrize the estimated Gram matrix (by taking half

the sum of it and its transpose), then project to the cone of

positive semi-definite matrices by discarding any negative

eigenvalues from its spectrum [9].

Rather than projecting the estimated kernel and then

solving a dual SVM, one can actually combine these two

steps into a single convex problem [18]. We do not pursue

this approach in this paper, however.

5. Experiments

In this section, we show the empirical performance of the

proposed kernels in both simulation studies and real-world

image classification tasks. Code and datasets used here are

available at autonlab.org/autonweb/20680.html.

In all these tasks, the objects of interest are represented

as “bags of features” (BOF), i.e. unordered sets of feature

vectors. The proposed kernel estimators as well as several

other kernels between sets of points are used to calculate

kernel matrices for these sets. The full kernel matrices are

projected to be symmetric positive semi-definite and given

to a multi-class SVM for classification.

Nonparametric divergence kernels These kernels are

based on the proposed nonparametric Rényi-α diver-

gence estimators (NPR-α) and Hellinger distance estima-

tors (NPH). We use the k = 5th nearest neighbors in

these estimators, except in Section 5.1, where small sample

sizes necessitate k = 1. For NPR, we test the performance

with α ∈ {0.5, 0.8, 0.9, 0.99}. Note that when α = 0.99
the Rényi-divergence approximates the KL divergence, and

when α = 0.5 it is twice the Bhattacharyya distance.

Parametric kernels These kernels are based on a Gaus-

sian or Gaussian Mixture Model (GMM) assumption. We

first fit the density to each group, and then compute the KL-

divergence (G-KL, GMM-KL) [19] and product probability

kernels (G-PPK, GMM-PPK) [11] with α = 0.5 between the

groups (therefore they are actually the Bhattacharyya Coef-

ficients between Gaussians). Tuning the number of GMM

components for each group is not feasible, so we always

use 3 components. GMM-KL has no analytic form, so we

use a Monte Carlo approximation with 500 samples.

BOW kernels To convert BOF to BOW, we quantize the

feature to “words,” and then compute the histogram of

words for each group. The chi-square distance between

these BOW histograms is used to construct the Gaussian ker-

nel. The histograms can be further processed by PLSA [10]

and then used in kernels based on Euclidean distance.

Pyramid matching kernel We also use the vocabulary-

guided pyramid matching kernel (PMK) [7]; this variant per-

forms better for high-dimensional data. We use the authors’

implementation libpmk1 with the suggested parameters.

We use LibSVM [3]’s multi-class SVM for classification.

All kernel matrices are projected to be symmetric PSD as

in Section 4.1 before use. The penalty to points within the

margin C is chosen from {2−9, 2−6, · · · , 218}. For PPK and

PMK, we use their kernel values directly. For other kernels,

we use Gaussian kernels exp
(
− 1

2µ
2/σ2

)
, where µ is the

divergence/distance estimate. The kernel width σ is chosen

from σ0 × {2−4, 2−2, · · · , 210}, where σ0 is the mean of

the pairwise divergences. C and (when used) σ are chosen

through joint 3-fold cross-validation on the training set.

For the image experiments, we extract features as fol-

lows unless indicated otherwise. The BOF representation we

use is based on the dense SIFT descriptors. We put a regular

2D grid with step size 10 on each image, and compute SIFT

descriptors on each grid node. These descriptors are 128-

dimensional. In an attempt for scale invariance, we usually

compute three SIFT descriptors with bin sizes of {6, 9, 12}
pixels at each point. After the feature extraction, each im-

age is represented by a variable number of 128-dimensional

feature vectors. Following [2], we can also include color

information in the SIFT features by converting the images

to HSV color space and separately extracting SIFT features

from each color channel. Then SIFT features with the same

location and bin size are concatenated together to construct

the more descriptive “color SIFT” feature with dimensional-

ity 384. Finally, we use PCA to reduce the feature vectors’

dimensionality. Our implementation uses the PHOW func-

tion of the VLFEAT package [30] for feature extraction.

For BOW, these SIFT vectors are quantized by K-means

into visual words, for which the vocabulary size (number

of clusters) is 1000 for color images and 500 for grayscale

images. The number of PLSA topics is 25, as in [2]. Follow-

ing common practice in computer vision, the visual words

are based on the original (uncompressed) feature vectors.

Therefore the BOW methods do not compare to BOF kernels

directly, as they are based on different features. In compari-

son, BOW loses information in the discretization step, while

BOF kernels lose information when the feature dimension

is reduced. We will show that our non-parametric kernels

outperform BOW in most cases, perhaps indicating that less

information is lost in PCA than in quantization.

We report kernel matrix construction times using 40

cores of a machine with four 12-core 2.3 GHz Opteron

K10.5 processors. In this high-dimensional setting, k-d

trees are ineffective, so we use simple brute-force search.

Established techniques for approximate k-NN should result

in significant speedups with limited loss of performance. In

1people.csail.mit.edu/jjl/libpmk
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Figure 1: Densities of the two one-dimensional mixtures.
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Figure 2: 1D mixture classification accuracies.

each case, we estimated divergences for the Hellinger dis-

tance and Rényi-α divergence with 20 values of α: -1, -.5,

-.2, .1, .2, .3, . . . , .9, .99, 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, and 2.

5.1. Artificial Gaussian Mixture Classification

We first compare the proposed kernels to others on artifi-

cial problems, to demonstrate two advantages of our kernel:

its relatively few parameters requiring fine-tuning and its

effectiveness in high-dimensional problems.

Consider the problem of distinguishing between the two

Gaussian mixtures illustrated in Figure 1. The two mix-

tures each have a standard normal distribution with mix-

ture coefficient 10
11 ; the two classes are distinguished by the

variance of the other component, which can be either .005

or .0005. Our task is to learn a classifier which can dis-

tinguish samples of size 30 from these two mixtures. (Al-

though most feature sets will have substantially more than

30 data points for a real-world image, having a low num-

ber of sample points parallels having a moderate number of

sample points in a high-dimensional space.) Note that this

problem is quite difficult, as the expected number of sam-

ples from the distinguishing mixture is below 3.

Figure 2 shows accuracies from 8 runs of 10-fold cross-

validation accuracies for several kernels on a dataset con-

sisting of 200 samples from each mixture. The BOW method

with codebook size K is denoted by BOW-K. The classi-

fication performance obtained by the Bayes-optimal classi-

fier that chooses which mixture had a higher likelihood of

generating the sample is 75%. The BOW kernel performs at

its best only for codebook size 50; smaller and larger sizes

both perform worse, some of them considerably so. In con-
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Figure 3: Mean and standard deviation accuracies on the

high-dimensional artificial dataset.

trast, the proposed NPR and NPH methods perform well with

minimal parameter selection, though it seems the Rényi di-

vergence is better for this problem than the Hellinger.

We also show that our proposed kernel is capable of scal-

ing up to higher-dimensional problems with small sample

sets. This problem is similar, but the samples are of size 15

in R
d. The common Gaussian has diagonal components 1

and off-diagonal components 0.2, while the distinguishing

Gaussian has covariance matrix equal to either Id or Id/2,

where Id stands for the d-dimensional identity matrix. Each

component has mean zero and mixture coefficient 1/2. The

distributions are more distinguishable in higher dimensions,

as the components overlap less.

The results of 16 runs of 10-fold cross-validation for sev-

eral kernels, as well as that of the Bayes-optimal classifier,

are shown in Figure 3. The proposed NPR method out-

performed its competitors in this experiment, and indeed

achieved near-optimal results for all ds. BOW-500 is the

only BOW method shown, but other codebook sizes per-

formed similarly. The dimensionality at which performance

peaked varied with the codebook size, so that e.g. BOW-100

peaked at dimension 8, and BOW-1000 at 14.

5.2. Object Classification

In the following sections we compare the performances

of various kernels on real-world image datasets. We first

examine object classification in the ETH-80 [13] dataset.

This dataset contains 8 categories of objects; each category

has 10 different objects, and each object has 41 images from

different view angles. Following [8], we use a subset of 400
images for the experiment, selecting 5 images per object

that capture its appearance from different angles. Sample

images of two objects are shown in Figure 4. Our goal is to

classify these objects into the 8 categories.



Figure 4: Images of two objects from the ETH-80 dataset.

Each object has 5 different views.

For this dataset, we extract the color SIFT features with

bin size fixed at 6 pixels, as scale invariance is not necessary

for this problem. We then reduce the SIFT features to 18 di-

mensions using PCA, preserving 50% of variance. Each im-

age is then represented by 576 18-dimensional points. Con-

structing our proposed kernels took 47 seconds.

We report the performance of 16 random runs of 2-fold

cross-validation in Figure 5. We can see that our Rényi-

divergence kernels perform better than BOW, and much bet-

ter than the other methods. We note that BOW achieved im-

pressive results only when properly tuned, as in the simu-

lation study of Section 5.1. The improvement of NPR-0.9

(mean accuracy 90.9%) over BOW (88.3%) is statistically

significant: a paired t-test shows a p-value below 10−3. It

is also interesting to see that GMM-based methods perform

worse than simple Gaussian-based methods. This may be

because it is harder to choose the parameters of a GMM, or

because divergences between GMMs could not be obtained

precisely; both of those problems are infeasible to remedy.

PMK is not very accurate here, though fast to compute.
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Figure 5: Classification accuracies on ETH-80.

Figure 6 shows the performance of the Rényi-α kernel

for many values of α, along with the Hellinger performance

for context. The best α values are clearly near 1, i.e. near

the KL divergence, though performance seems to degrade

faster when greater than 1 than when below.

5.3. Scene Classification

Scene classification using BOF/BOW representations is a

well-studied problem for which many methods have been

proposed (e.g. [5, 2, 24]). Here we test the performance of

our non-parametric kernels against state-of-the-art methods.
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Figure 6: Classification accuracies on ETH-80 with Rényi-

α for twenty αs, as well as Hellinger distance.

We use the OT dataset from [21], which contains 8 out-

door scene categories: coast, forest, highway, inside city,

mountain, open country, street, and tall building. There are

2688 images in total, each about 256× 256 pixels. Sample

images are shown in Figure 7. The goal is to classify test

images into one of the 8 categories.

Figure 7: Images from the 8 OT scene categories.

First, we use the grayscale versions of the OT images.

The SIFT features are reduced to 19 dimensions using PCA

preserving 70% of the variance, so that a typical image

is represented by 1542 18-dimensional points. Construct-

ing the proposed kernels took 14,195 seconds (just un-

der 4 hours). The accuracies of 16 random 2-fold cross-

validations are shown in Figure 8. The results here are very

similar to those in the ETH-80 experiments. Our Rényi-

divergence kernels still achieve the best overall accuracy,

reaching 88.8% when α = 0.9. It outperformed the BOW

kernel, which is also very accurate (88.5%); a paired t-test

shows a p-value below 0.03.

There are many methods for enhancing the BOF repre-

sentation. For example, we can use color information as

mentioned before. It is also possible to incorporate spa-

tial information into the BOF representation. In the original

BOF, an image is characterized by the distribution of its lo-

cal features. By concatenating the x and y coordinates of

each patch with the local feature vectors, these sets of new

features allow us to cope with the joint distribution of lo-

cal appearances and their locations in the image. Another
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Figure 8: Accuracies on the OT dataset.

way is to include larger image regions into the feature set,

so that co-occurrences of local objects can be captured at

larger scales; for example, using a large enough SIFT de-

scriptor, we are able to capture global concepts like “the top

half of the image is mostly blank and the bottom half con-

tains a lot of horizontal lines.”

We combine the above approaches to increase the classi-

fication accuracy on the OT dataset. We extract color SIFT

features with the bin sizes of {6, 12, 18, 24, 30}, to capture

large-scale aspects of the images. A typical image then con-

tains 1815 local features. The 384-dimensional color SIFT

features are reduced by PCA to 53 dimensions, preserving

70% of the variance. Then the y coordinates of patches

are appended to the feature vectors. The x coordinates are

omitted, because in these scene images the horizontal loca-

tion of objects usually carries little information. Finally,

each feature dimension is normalized to zero mean and

unit variance. Kernel construction on these larger, higher-

dimensional features took 283,599 seconds (3.3 days).

The accuracies of 16 random runs are shown in Figure

9. Here we use 10-fold cross-validation, so we can directly

compare to other published results. We can see adding the

extra information greatly increased classification accura-

cies. NPR-0.99 achieved the best mean accuracy of 92.1%,

much better than BOW’s 90.1% (paired t-test p < 10−13).

Notably, this 92.1% accuracy (std dev .2%) surpasses the

best previous result of which we are aware, 91.57% [25].

For comparison, the mean 2-fold cross-validation accura-

cies of NPR-0.99 and BOW are 90.7% and 88.8% respec-

tively. GMM-PPK is not shown because it is too low.

5.4. Sport Event Classification

The BOF kernels can also be used for visual event clas-

sification [16] in the same manner as for scene classifica-

tion. We use the dataset from [16], which contains Internet

images of 8 sport event categories: badminton, bocce, cro-

quet, polo, rock climbing, rowing, sailing, and snowboard-

ing. This dataset is considered more difficult than tradi-

tional scene classification, as it involves much more widely

varying foreground activity than does e.g. the OT dataset.

We use the first 130 images from each category, as in
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Figure 9: The OT dataset with color and spatial information.

Figure 10: Images from the 8 sports.

[16]. We use color SIFT features with dimensionality re-

duced to 57, and add spatial information in the form the

patches’ x and y coordinates. As image sizes vary, each

BOF group contains 295 to 1542 vectors. Constructing our

proposed kernels took 9,327 seconds (2.5 hours).

Figure 11 shows the accuracies of 16 random 2-fold

cross-validations. We again see the kernel based on the

Rényi-.9 divergence achieve the best accuracy of 87.1% (std

dev .4%). This performance is at the same level as state-

of-the-art methods such as [32], which attained 86.7%. It

is worth noting that we used only PCA SIFT without fur-

ther feature learning, as opposed to other methods which

achieved significant performance increases by learning fea-

tures. Compared to previous results, we can see that the

performance of PPK methods decreased; we did not show

GMM-PPK here because its accuracy is too low. The BOW

method, though worse than Rényi-.9 with 83.5% (p below

10−8), again performs well, showing its wide applicability.
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Figure 11: Classification accuracy on the sport dataset.



6. Discussion and Conclusion

In this paper we proposed a new method for image clas-

sification. We defined new kernels on sets of features and

used consistent nonparametric divergence estimators for es-

timating the kernel values. Our goal was not to introduce

new features; instead we were interested in improving the

performance of traditional bag of features image represen-

tations through better dissimilarity measures.

Parametric methods for divergence estimation are usu-

ally biased, since the true distributions may not belong to as-

sumed parametric families. Our nonparametric divergence

estimator, however, is asymptotically unbiased. It is also

easy to compute, requiring only certain k-NN distances.

For bag-of-words methods, setting the appropriate code-

book size is a difficult model selection problem. It is sim-

ilarly unknown how to choose the bin sizes for histogram-

based methods. Our algorithm has comparably fewer pa-

rameters to tune, and avoids the inherent approximations of

histograms, quantization, and clustering, which can lead to

loss of information and decreased performance.

In our experiments, we demonstrated that the proposed

method can outperform its state-of-the-art competitors on

several challenging datasets, both artificial and real.
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A. Supplementary Material

A.1. kNN Based Density Estimators

In the consistency proofs we will use a few basic prop-

erties of k-NN density estimators; we review them here. [2]

defines the k-NN based density estimators of p and q at Xi

as

p̂k(Xi) = k/((n− 1) c̄ ρdk(i)) (6)

q̂k(Xi) = k/(m c̄ νdk(i)). (7)

These density estimators are consistent only when k =
k(n) → ∞, and k = k(m) → ∞. We will use these

estimators below in our divergence estimators; however, we

will keep k fixed and will still be able to prove their con-

sistency. The following theorems are well-known about the

consistency of k-NN density estimators [2].

Theorem 3 (convergence in probability) If k(n) denotes

the number of neighbors applied at sample size n,

limn→∞ k(n) = ∞, and limn→∞ n/k(n) = ∞, then

p̂k(n)(x) →p p(x) for almost all x.

Theorem 4 (convergence in sup norm) Assume that

limn→∞ k(n)/ log(n) = ∞ and limn→∞ n/k(n) = ∞.

Then limn→∞ supx
∣∣p̂k(n)(x)− p(x)

∣∣ = 0 almost surely.

A.2. Proof Outline of Theorems 1–2

To prove Theorems 1-2, we can repeat the argument of

[3]. That paper was interested only in estimating the α-

divergence, but we can use similar tools to prove the con-

sistency of the more general D̂α,β(X1:n‖Y1:m) estimator.

If we simply plugged p̂k(Xi) and q̂k(Xi) into (2), then we

could estimate Dα,β(p‖q) with

1

n

n∑

i=1

kα+β

c̄α+β
(n− 1)−αm−βρ−dα

k (i)ν−dβ
k (i). (8)

One can prove that this estimator is asymptotically bi-
ased for any fixed k. Let c̄ denote the volume of a d-
dimensional unit ball. Using the same tools as in [3],
we will see that by introducing the multiplicative term

Bk,α,β
.
= c̄−α−β Γ(k)2

Γ(k−α)Γ(k−β) , the following estimator is

L2 consistent under certain conditions:

D̂α,β =
1

n

n∑

i=1

(n− 1)−α
m

−β
ρ
−dα
k (i)ν−dβ

k (i)Bk,α,β . (9)

The Lebesgue lemma states that any function in L1(R
d)

restricted to a very small ball approximately looks like a

constant function.

Lemma 5 (Lebesgue, 1910) If g ∈ L1(R
d), then for any

sequence of open balls B(x,Rn) with radius Rn → 0, and

for almost all x ∈ R
d,

lim
n→∞

∫
B(x,Rn)

g(t)dt

V
(
B(x,Rn)

) = g(x). (10)

Note that the estimation of 1/p(x) is simply nc̄ρdk(x)/k
with k-NN plug-in density estimators. Using Lemma 5, it

is easy to prove that the distribution of nc̄ρdk(x) converges

weakly to an Erlang distribution with mean k/p(x), and

variance k/p2(x). For the details, see e.g. [1].

Now, if we divide nc̄ρdk(x) by k, then asymptotically it

has mean 1/p(x) and variance 1/(kp2(x)). Therefore (in

accordance with Theorems 3–4) k should indeed diverge to

infinity in order to get a consistent estimator; otherwise, the

variance will not disappear. On the other hand, k cannot

grow too fast: if, say, k(n) = n, then the estimator would

be simply c̄ρdk(x). This is a useless estimator since it is

asymptotically zero whenever x ∈ supp(p).
Fortunately, in our case we do not need to apply consis-

tent density estimators. The trick is that (2) has a special

form:
∫
p(x)pα(x)qβ(x)dx. In D̂α,β this is estimated by

1

n

n∑

i=1

(p̂k(Xi))
α
(q̂k(Xi))

β
Bk,α,β , (11)

where Bk,α,β is a correction factor that ensures asymptotic

unbiasedness. Using Lemma 5 again, we can prove that the

distributions of p̂k(Xi) and q̂k(Xi) converge weakly to the

Erlang distribution with means k/p(Xi), k/q(Xi) and vari-

ances k/p2(Xi), k/q
2(Xi), respectively [1]. Furthermore,

they are conditionally independent for a given Xi. There-

fore, “in the limit” (11) is simply the empirical average of

the products of the (−α)th (and (−β)th) powers of inde-

pendent Erlang distributed variables. These moments can

be calculated in closed form: the γth moments of an Erlang

distribution is λ−γ Γ(k+γ)
Γ(k) , where k, and 1/λ are the shape

and scale parameters, respectively. For a fixed k, the k-NN

density estimator is not consistent since its variance does

not vanish. In our case, however, this variance will disap-

pear thanks to the empirical average in (11) and the law of

large numbers.

While the underlying ideas of this proof are simple, there

are a couple of serious gaps in it. Most importantly, from

Lemma 5 we can guarantee only the weak convergence of

p̂k(Xi), q̂k(Xi) to the Erlang distribution. From this weak

convergence we cannot imply that the moments of the ran-

dom variables converge too. To handle this issue, we will

need stronger tools such as the concept of asymptotically

uniformly integrable random variables [4], and we also need

the uniform generalization of Lemma 5. As a result, we

need to put some extra conditions on the densities p and q



in Theorems 1–2. The details follow from a slight general-

ization of the derivations in [3].
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