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Abstract

We argue for the importance of explicit semantic mod-
elling in human-centred texture analysis tasks such as re-
trieval, annotation, synthesis, and zero-shot learning.

To this end, low-level attributes are selected and used
to define a semantic space for texture. 319 texture classes
varying in illumination and rotation are positioned within
this semantic space using a pairwise relative comparison
procedure. Visual features used by existing texture descrip-
tors are then assessed in terms of their correspondence to
the semantic space. Textures with strong presence of at-
tributes connoting randomness and complexity are shown
to be poorly modelled by existing descriptors.

In a retrieval experiment semantic descriptors are shown
to outperform visual descriptors. Semantic modelling of
texture is thus shown to provide considerable value in both
feature selection and in analysis tasks.

1. Introduction
Visual texture is an important cue in numerous processes

of human cognition. It is known to be used in the separation
of ‘figure’ from ‘ground’ [13], as a prompt in object recog-
nition [22], to infer shape and pose [5], as well as in many
other aspects of scene understanding. Over eons of human
existence this importance has led to the development of a
rich lexicon suitable for concise description of texture. We
may speak of fractured earth, or of a rippling lake, and in
doing so are able to convey considerable information about
the surface and appearance of these objects.

Although computational texture analysis has achieved
fine results over recent decades, there still remains a dis-
parity between the visual and semantic spaces of texture –
the so-called semantic gap. Computational approaches usu-
ally operate on the basis of a priori notions of texture not
necessarily tied to human experience. This means they are
often unsuitable for applications requiring closer or more
intuitive human interaction, such as content-based image re-

trieval, texture synthesis and description, or zero-shot learn-
ing, where a classification system is taught new categories
without having to observe them.

Our work seeks to bridge this semantic gap for texture,
and acts to unify separate research efforts into structuring
the semantic [1] and visual [6, 8, 23] texture spaces, and
into robustly identifying correspondences between semantic
and visual data [21]. Separate semantic modelling has been
shown to improve retrieval of natural scenes [29] and gait
signatures [26], and indoor-outdoor classification of pho-
tographs [27]. In this paper we outline a semantic mod-
elling of texture, allowing it to be described, synthesised,
and retrieved using fine-grained high-level semantic con-
structs rather than solely using low-level visual properties.
As well as the clear benefits this has for human-computer
interaction, the semantic data collected is a rich source of in-
formation in its own right. Humans are capable of analysing
texture in a way resistant to noise, and invariant to illumi-
nation, rotation, and scale [10, 30]. It is of tremendous ad-
vantage to learn – either from human-provided labels, or
from investigation of the underlying biological mechanisms
– methods of image analysis that are similarly robust.

Texture in particular provides interesting challenges of
its own in part because it has historically proven so diffi-
cult to define. We sidestep this thorny issue by adopting a
subjective definition of texture embedded in human experi-
ence. Because our task involves tying some visual texture
space to a semantic space borne from human interpretation
of that visual space, it is fitting to adopt a definition of tex-
ture derived from human perception. In this sense texture
is anything describable by constructions from our semantic
space and emerges as a natural consequence of our eventual
definition of that space. This semantic characterisation of
texture allows us to address the problem of feature selection
in a principled way, due to hundreds of thousands of years
of embodiment within a world of diverse and abundant tex-
ture resulting in an evolved language which provides a nat-
ural balancing between expressiveness and efficiency.

The main contributions of this paper are:
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• A publicly-available1 labelling of over 300 classes of
texture from the Outex dataset. The design and format
of this labelling is described in Section 2.

• An assessment of how well a selection of visual texture
descriptors are able to capture this semantic data. We
show how textures may be ranked according to both
their semantic labels and their visual features in Sec-
tion 3, and then describe the experiment used to com-
pare these rankings in Section 4.

• A demonstration of the benefits of explicit semantic
modelling for texture retrieval, given in Section 5.

We finish with discussion of our results in Section 6.

2. Semantic space of texture
We choose to construct our semantic space using at-

tributes, low-level visual qualities – often adjectives –
shared across objects. In this section we create an expres-
sive but efficient lexicon of attributes to make up our se-
mantic space, select a dataset of texture from which we will
derive our visual space, and finally obtain ‘ground truth’ la-
bellings from human subjects so that we may discover cor-
respondences between these two spaces.

Attributes have received much attention in recent liter-
ature in computer vision, particularly within object recog-
nition. Their use permits a shift in perspective from the
traditional approach of object recognition in which object
classes themselves are atomic units of recognition. They
allow the association of visual data with shared low-level
qualities, facilitating efficient class-level learning and gen-
eralisation [3, 14], and they provide a means for intuitive
and fine-grained description, such as when describing un-
usual features of an object, or in stating the ways in which
one object is similar to another. Farhadi et al. [4] state that
attributes allow us to “shift the goal of recognition from
naming to describing”.

Attributes have been found to be particularly appropri-
ate for domains in which key features exist along continua,
such as in biometrics [12, 24, 26] and scene classifica-
tion [20, 25]. We see texture as being ill-suited to strict
categorisation: key properties in which texture has been
stated to vary include its coarseness, linearity, and regu-
larity [15, 28], all of which may be expected to vary contin-
uously. Texture is particularly suitable for description with
attributes as they may be readily sourced from the rich lex-
icon that has evolved in order to describe it.

Numerous elegant insights into the nature of the English-
language texture lexicon were made by Bhushan et al. [1],
who asked subjects to cluster 98 texture adjectives accord-
ing to similarity, without access to visual data. From the

1www.ecs.soton.ac.uk/t̃m1e10/texture.html

Cluster interpretation Sample words
Linear orientation furrowed, lined, pleated
Circular orientation coiled, flowing, spiralled
Woven structure knitted, meshed, woven
Well-ordered regular, repetitive, uniform
Disordered jumbled, random, scrambled
Disordered linear primitives cracked, crinkled, wrinkled
Disordered circular primitives dotted, speckled, spotted
Disordered circ. 3D primitives bubbly, bumpy, pitted
Disordered woven structure frilly, gauzy, webbed
Disordered, circular blurring blemished, blotchy, smudged
Disordered, linear blurring marbled, scaly, veiny

Table 1: Interpretations of the eleven texture word clusters identi-
fied in [1].

responses, they were able to make two important insights
into the structure of the semantic space of texture:

• A principal components analysis revealed that just
three dimensions were sufficient to account for 82%
of the variability in the similarity responses. Examina-
tion of these three dimensions revealed them to corre-
spond approximately to notions of linearity (linear vs.
circular texture orientation), repetition (disordered vs.
structured texture), and complexity (simple vs. intri-
cate texture).

• Hierarchical clustering of the data identified eleven
major clusters of texture adjectives. These clusters are
shown in Table 1, along with interpretations. To illus-
trate the spread of these clusters within the 3D space
described above, a representative word from each clus-
ter is plotted in Figure 1.

By selecting a single word from each of the clusters iden-
tified by Bhushan et al. we are able to create a new at-
tribute lexicon of manageable size which adequately cov-
ers the semantic space of texture. The words chosen are the
same as those displayed in Figure 1: blemished, bumpy,
lined, marbled, random, repetitive, speckled,
spiralled, webbed, woven, and wrinkled. These
words were chosen above others from the same cluster for
their frequency of use and perceived generality, so as to aid
subject understanding when obtaining labels.

2.1. Dataset

The Outex dataset [18] was adopted for our analy-
sis. We use the 319 texture classes included in test suite
Outex TC 00016 captured with three different illumi-
nants (horizon, inca, tl84), and at four different ro-
tation angles (0◦, 30◦, 60◦, 90◦), giving twelve samples
per texture class, and a total of 3,828 samples all together.



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Spiralled

Repetition

Repetitive

Woven

Webbed

Random

Marbled

Lined

Linearity

Wrinkled

Blemished

Speckled

Bumpy

C
o
m
p
le
x
it
y

Figure 1: Representative attributes from each of the clusters in
Table 1, with approximate locations (normalised between 0 and 1)
across the three texture dimensions identified in [1].

Colour is taken to be a separate visual cue, and so all texture
samples are converted to grayscale before experimentation.

2.2. Obtaining labels

Human-provided labels are required for each of the
eleven attributes selected so that we have some means of
assessing algorithmic performance. It is clear that normal
binary classification is insufficient for the attributes at hand,
as they correspond specifically to the degree of expression
of visual features rather than to simply their presence or ab-
sence. We therefore require some labelling mechanism al-
lowing the Outex textures to be placed along a continuum
according to how strongly they evince each attribute. This
can be done by having subjects directly rate the perceived
strength of attributes within each texture along a bounded
rating scale [23]. However, this is unintuitive when the as-
sumption of an underlying bounded continuum is inappro-
priate: it is not obvious, for example, what form a maxi-
mally marbled texture would take.

This issue may be overcome within the framework of
pairwise comparison, a psychometric procedure in which a
subject is shown two stimuli simultaneously and prompted
to choose the stimulus exhibiting more of some quality. In
this way we can work with so-called relative attributes,
which have been shown to outperform ordinary categorical
attributes in retrieval tasks [21, 24] and to provide a more
intuitive and natural user experience [11]. This technique
has previously been used specifically for texture by Tamura
et al. [28] and it has been hypothesised that the textural pro-
cesses of the human cognitive system operate using such a
comparison mechanism [8].

Our methodology is as follows: a subject is shown two
textures side-by-side along with a single attribute. The sub-
ject is prompted to select the texture that exhibits a greater

Figure 2: Comparison graph for an attribute, where a directed edge
represents a dominance relation, and a double-directed edge repre-
sents a similarity relation. A and B would be the next comparison
pair presented to subjects as no directed path exists between them,
and so it is not possible to infer which one is dominant for the
attribute.

level of expression of the attribute in question, or to rate
them as similar. Subjects are also given the option of stating
that the attribute is completely absent from both textures, so
as to avoid confusion when textures are shown for which a
particular attribute is perceived to not apply. Absence com-
parisons are equivalent to a similarity judgement in all sub-
sequent analysis. The attribute shown is the one involved
in the fewest comparisons at that point. Representing each
attribute’s comparisons in terms of a directed graph (where
vertices are textures and edges are comparisons — see Fig-
ure 2), textures are selected by randomly choosing texture
pairs with no path between them within that attribute’s com-
parison graph. This is to increase the probability of useful,
discriminative comparisons being generated so that fewer
total comparisons are needed to infer a complete ordering.

Initially, 7,689 comparisons were obtained from ten sub-
jects unfamiliar with the work being performed, along with
the paper authors. This is only a tiny proportion of the(
3828
2

)
comparisons possible. We increase the coverage by

assuming comparisons to apply equally to all 12 samples
within each texture class, owing to the natural human vi-
sual robustness to illumination and rotation when describ-
ing surface texture. Because of this assumption only tex-
tures with rotation of 0◦ and illumination of horizon are
displayed to users. After duplicating each comparison for
all 144 possible combinations of between-class samples we
have 1,107,216 comparisons. At around 100,000 compar-
isons per attribute, this is still far fewer than the complete(
3828
2

)
case, but it has been indicated [21] that relatively

few comparisons – in the order of the number of items be-
ing compared – are needed to achieve results comparable to
that of the complete case. In the next section we describe
how these comparisons are used to infer rankings.

3. Ranking textures

In order to bridge the semantic gap we require a way of
measuring the level of expression of each attribute within a
texture, a quality we will refer to as an attribute’s strength.
This section addresses how we may obtain this measure of



perceptual strength both directly from the comparison graph
and from low-level visual data. In what follows, D is a set
of dominance comparisons where each ordered pair (a, b) ∈
D indicates that a subject considered image a to possess a
higher strength of some attribute than image b, and S is a
set of similarity comparisons where each pair (a, b) ∈ S
indicates that a subject considered images a and b to possess
similar levels of some attribute.

3.1. Ranking from visual features

When a new texture is provided we may wish to deter-
mine the strength of an attribute within it based only on its
visual features. To do this we derive a ranking function ca-
pable of mapping a visual descriptor to real value measures
of attribute strength. Using w to represent the coefficients
of a linear ranking function for some attribute, and xi to rep-
resent the location in feature space of the ith texture in the
dataset, the perceived strength of the attribute within that
texture can be given as w · xi . A soft-margin Ranking
SVM [9] is used to derive w where ξij is the misclassifica-
tion error between items i and j, and C is the trade-off be-
tween maximising the margin and minimising the misclas-
sification error. Support for similarity constraints is gained
using the formulation of [21]:

minimise
w

1

2
||w||2 + C

∑
ξ2ij

subject to w · (xi − xj) ≥ 1− ξij , (i, j) ∈ D
w · (|xi − xj |) ≤ ξij , (i, j) ∈ S
ξij ≥ 0

(1)

This is similar to a traditional soft-margin SVM in which
the data being separated are differences between feature
vectors, as opposed to the vectors themselves.

3.2. Ranking from comparison graphs

It is desirable to plot the textures along a continuum re-
flecting as fully as possible the orderings obtained through
the pairwise comparison methodology. This can be done us-
ing the comparison graph directly, and may act as a ‘ground
truth’ measure of each attribute’s perceived strength within
each texture. Taking r to be a vector of numeric ratings for
each of the n textures, we wish to find some r such that for
each dominance relation (a, b) ∈ D, ra > rb, and for each
similarity relation (a, b) ∈ S, |ra − rb| = 0. By introduc-
ing error variables to allow for cases when these constraints
cannot be satisfied, we can in fact express these goals in a
form very similar to Equation 1:

minimise
r

1

2
||r||2 + C

∑
ξ2ij

subject to ri − rj ≥ 1− ξij , (i, j) ∈ D
|ri − rj | ≤ ξij , (i, j) ∈ S
ξij ≥ 0

(2)

Equation 1 is equivalent to the above when x is an n × n
identity matrix. At this point, we illustrate the attributes
chosen in the previous section by displaying in Figure 3 the
highest-rating texture in r for each attribute when C = 1.

In the next section we show how the rankings produced
using these two different methods can be compared in order
to ascertain which low-level visual features best reflect the
high-level semantic attributes at our disposal.

4. Semantic correspondence of visual descrip-
tors

In this section we appraise each of a number of exist-
ing texture descriptors in terms of how well they reflect the
structure of the semantic comparison graph for each of the
eleven attributes. These results allow us to identify regions
within the semantic space of texture which are poorly mod-
elled by current techniques, as well as the visual features
which correspond best with human perception and which
will provide the basis for our semantically-enriched descrip-
tors.

4.1. Visual descriptors

The five different texture descriptors to undergo assess-
ment are:

• Co-occurrence matrices [7] are calculated for points
situated along the perimeters of circles of radii 1, 2, 4,
8, and 16 pixels. Each of these five matrices are sum-
marised in terms of their contrast, homogeneity, uni-
formity, entropy, variance, and correlation, resulting in
a 30-element feature vector. (CoM)

• The mean and standard deviation of the Gabor wavelet
responses of 24 orientation and scale combinations
given in [17], yielding a feature vector of 48 elements.
(Gab)

• The 8 optimal Liu noise-resistant features of the
Fourier transform [16]. (Liu)

• 16-dimensional feature vector derived from the Sta-
tistical Geometrical Features procedure [2] being per-
formed at 31 regularly-spaced threshold levels. (SGF)

• Uniform (local) binary patterns [19] calculated for
eight points around circles of three different radii: 2,
4, and 8. This gives a total concatenated feature vector
of dimension 30. (UBP)

In the next section we describe the methodology used to
assess these five descriptors.
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Figure 3: Illustrative Outex textures for each of the eleven attributes. The texture shown is that with the highest value in the ratings
calculated directly from the comparison graph for each attribute using Equation 2.

4.2. Methodology

The semantic correspondence of each of the visual de-
scriptors described above is evaluated using a 4-fold cross-
validation procedure. For each attribute the optimal rank-
ing function w is learned from the training images using
the Ranking SVM formulation shown in Equation 1. The
free parameter in the Ranking SVM equation, C, is al-
lowed to vary between 21 logarithmically spaced values
(4−10, 4−9, . . . , 49, 410), the optimal value of which is se-
lected through the cross-validation procedure.

A per-attribute ranking of all 3,828 textures is then de-
rived from w. The misclassification rate is calculated over
all dominance comparisons involving at least one of the tex-
tures in the hold-out set by simply comparing the rankings
of the respective textures.

We also measure the correspondence between each
learned ranking and the ‘ideal’ ranking inferred directly
from the semantic comparison graph with the procedure in
Section 3.2. The Spearman’s rank correlation coefficient,
−1 ≤ ρ ≤ 1, is calculated for this purpose, where ρ = 1
indicates a perfect monotonic relationship between the two
rankings and ρ = −1 indicates a perfect inverse monotonic
relationship.

4.3. Analysis

Misclassification rates and Spearman’s rank correlation
coefficients for each combination of descriptor and attribute
are shown in Tables 2 and 3.

It is apparent that the uniform binary patterns descrip-
tor is the most suitable of those tested for capturing the
structure of the semantic comparison graph. In particu-
lar, it performs well for those attributes relating to disor-
dered placement of small-scale primitives – blemished,
bumpy, and speckled – as well as for another attribute
associated with disorder, marbled. The uniform binary
pattern descriptor is calculated as a histogram of local in-

Attribute CoM Gab Liu SGF UBP

Blemished 0.28 0.29 0.31 0.34 0.27
Bumpy 0.26 0.34 0.35 0.29 0.24
Lined 0.33 0.36 0.22 0.34 0.24
Marbled 0.23 0.25 0.24 0.31 0.17
Random 0.30 0.31 0.26 0.33 0.27
Repetitive 0.29 0.35 0.29 0.33 0.28
Speckled 0.27 0.30 0.25 0.26 0.21
Spiralled 0.18 0.27 0.36 0.24 0.22
Webbed 0.24 0.29 0.28 0.28 0.21
Woven 0.23 0.26 0.20 0.23 0.22
Wrinkled 0.28 0.33 0.38 0.36 0.33

Table 2: Misclassification rates for each combination of descriptor
and attribute. Boldface denotes the strongest scoring descriptor for
an attribute.

Attribute CoM Gab Liu SGF UBP

Blemished 0.39 0.34 0.38 0.30 0.47
Bumpy 0.43 0.37 0.29 0.40 0.46
Lined 0.25 0.25 0.53 0.26 0.47
Marbled 0.40 0.41 0.39 0.32 0.48
Random 0.57 0.57 0.70 0.52 0.67
Repetitive 0.37 0.28 0.39 0.35 0.42
Speckled 0.35 0.35 0.40 0.38 0.44
Spiralled 0.26 0.19 0.15 0.24 0.23
Webbed 0.26 0.18 0.24 0.23 0.21
Woven 0.30 0.21 0.34 0.20 0.28
Wrinkled 0.36 0.31 0.24 0.30 0.31

Table 3: Rank correlation coefficients for each combination of de-
scriptor and attribute. Boldface denotes the strongest scoring de-
scriptor for an attribute.

tensity patterns and so it is unsurprising that it performs rel-
atively well for spatially-localised primitives such as speck-
les and bumps. By its nature the histogram makes no regard



for placement rules making it better suited to capturing as-
pects of disorder. However, its structure is not amenable to
deeper understanding as the local intensity patterns it de-
tects have no immediately intuitive definition.

Another descriptor based upon small-scale intensity pat-
terns is that comprising statistics of the co-occurrence ma-
trix. The misclassification rate for the spiralled at-
tribute was unexpectedly low, at just 0.18. Inspection of w
reveals that this is due to variations in the co-occurrence ma-
trix energy at different radii and, to a lesser extent, the cor-
relation. This suggests that the curved lines of the structures
perceived by subjects as being spiralled are of similar
scale to the large shifts in pixel uniformity occurring be-
tween 8 and 16 pixels from each reference pixel. A similar
effect is observed for lined and woven, but due to these
having associations of strong global texture orientation, and
the co-occurrence matrix being based on spatially-localised
patterns, they did not result in similarly low misclassifica-
tion rates scores as for spiralled.

The Liu descriptor – comprising frequency measures
based on the Fourier transform – performs well for the
two attributes involving regular placement of linear texture
primitives: lined and woven. Inspection of w reveals
that a high moment of inertia and low proportion of energy
for the first quadrant of the normalised Fourier transform
are the pertinent features for these two attributes. The Liu
descriptor is also amongst the best performers for the polar
notions of random and repetitive: here, the inertia
and energy of the first quadrant is again decisive. Low in-
ertia and high energy indicates random texture while the
opposite aligns more closely with repetitive texture.

The two remaining descriptors, Gabor and statistical ge-
ometrical features, achieved good correspondence for cer-
tain attributes, but were invariably eclipsed by one of the
other three descriptors.

Overall, the results indicate that there is considerable op-
portunity for improvement in the identification of visual
features corresponding closely to human perception, es-
pecially for attributes exhibiting aspects of complexity or
disorder such as spiralled, webbed, and wrinkled.
These deficiencies are hardly unexpected, and tally with our
knowledge of the workings of visual texture descriptors, but
it is notable too that even correspondence with strongly reg-
ular attributes such as lined and repetitive is only
average. Even despite the lack of correspondence between
these human and machine interpretations of texture, seman-
tic data may still be used to improve performance in tasks
involving texture analysis. In the next section we demon-
strate that semantic texture description results in consider-
able performance gains over a purely visual approach.

5. Retrieval
In this section we demonstrate the practical benefit of

semantic data in a retrieval experiment.

5.1. Methodology

Each of the 3,828 samples in the dataset is used in turn
as a query texture against the remaining 3,827 textures in
the target set, of which only 11 are relevant to the query
(each texture class has 12 samples due to variation in rota-
tion and illumination). All textures in the target set are then
sorted by the Euclidean distance of their descriptors from
the query texture’s descriptor yielding a ranking r where
ri = 1 if the member of the target set at rank i is relevant to
the query, and 0 otherwise. This is done for all five descrip-
tors introduced in Section 4.1.

Next, for each descriptor eleven ranking functions are
learned, one for each attribute. The learning process op-
erates only with the textures in the target set and uses the
cross-validation procedure described in Section 4.2. These
eleven ranking functions are then used to create a new
eleven-dimensional semantic descriptor for each texture
sample. Lastly, we create a concatenated descriptor from
all five visual descriptors which is in turn allows another
semantic descriptor to be learned from the most discrimi-
native features across all descriptors. Again, the distances
between the target set samples and the query sample are
calculated for these concatenated and semantic descriptors,
and a ranking derived.

From the relevance indicators of the n closest textures
(r1, . . . , rn) for each query image we are able to calculate
precision and recall measures, where precision is the pro-
portion of the retrieved samples that are relevant, and recall
is the proportion of the relevant samples that are retrieved:

precision(n) =

∑n
i=1 ri
n

recall(n) =

∑n
i=1 ri
11

Precision and recall are then calculated as n is allowed to
vary from 1 to 3,827. We also calculate two summary mea-
sures of the ranked data:

• Mean average precision (MAP). The average precision
(AP) for a given query is the average of the precision
at each rank at which a relevant item is located:

AP =

∑3,827
i=1 ri precision(i)

11

This quantity is in turn averaged over all 3,828 queries.

• Equal error rate (EER). denoting the error rate at the
point where the true positive rate (the recall) equals the
false positive rate. It is equivalent to the point on an
ROC curve which intersects the diagonal connecting
100% on the X and Y axes.



MAP EER
Descriptor Visual Semantic Visual Semantic
CoM 42.6% 52.3% 8.4% 5.9%
Gab 21.4% 38.7% 20.3% 10.8%
Liu 18.9% 24.0% 22.7% 12.6%
SGF 27.6% 29.2% 14.1% 13.2%
UBP 76.9% 61.0% 5.6% 4.6%
Concatenated 49.6% 63.3% 6.5% 2.5%

Table 4: Mean average precision (MAP) and equal error rates
(EER) for each descriptor across all 3,828 texture queries. Bold-
face denotes the highest scorer of each visual and semantic de-
scriptor pair.

5.2. Analysis

Precision-recall curves for both the visual and semantic
version of each descriptor are shown in Figure 4. MAP and
EER scores are shown in Table 4.

In all but one of the curves – that for uniform binary pat-
terns – it is immediately evident that the semantic descriptor
gives higher retrieval performance than for the correspond-
ing low-level visual descriptor. This benefit is especially
pronounced for higher rates of recall, where the semantic
descriptor often retrieves relevant textures with a consider-
ably higher rate of precision. This improved precision at
higher recall values could be interpreted as being indicative
of greater robustness in the semantic descriptor: whereas
the visual descriptors appear to struggle to recall all varia-
tions of rotation and illumination for a given query, the se-
mantic descriptor is imbued with the invariant qualities that
come from learning from the semantic comparison graph,
and so generally is able to better recall variations of the
same texture. This initial impression from inspecting the
curves is reinforced upon viewing the summary values in
Table 4: the semantic descriptor achieves higher MAP and
EER scores in all cases but one. However, although the se-
mantic form of the concatenated descriptor is the best over-
all descriptor in terms of EER, the visual form of the UBP
descriptor is the best in terms of MAP.

The inferior MAP of the semantic UBP descriptor
against its visual counterpart is possibly due to the relatively
compact 11-dimensional semantic representation failing to
capture as much variability as the 30-dimensional UBP de-
scriptor. Further experimentation is required to investigate
the advantage a more expressive semantic space (in the form
of more attributes) has for precision and recall. Again, how-
ever, the semantic descriptor improves upon the visual one
for higher recall rates. This effect is more obvious in the
ROC curve for this descriptor, reflected by the fact the EER
for the semantic UBP descriptor is lower.
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Figure 4: Average precision-recall curves for each descriptor
across all 3,828 texture queries. For each query there are 11 rele-
vant and 3,816 irrelevant samples.

6. Discussion

An explicit semantic modelling step provides numerous
benefits when describing textures. As well as allowing for
more user-friendly interaction due to the bridging of the se-
mantic gap, we demonstrated an improvement in retrieval
rate for all but one of the descriptors tested. Furthermore,
the use of attributes introduces a natural efficiency and ro-
bustness in the design of feature vectors, owing to the evolu-
tion of human language and the invariant qualities of human
visual perception.

The introduction of the dataset enables new semantic
performance metrics to be used when assessing texture de-
scriptors. It is important that the deficiencies encountered
in our appraisal of visual descriptors are addressed so as to
properly bridge the semantic gap for texture and to pave the



way for closer correspondence to human perception and ex-
pectations in user-centred visual applications.

In future work we aim to build on the work of [1] and
[23] – whose methodology was only performed on the lim-
ited Brodatz dataset and without modern facilities such as
crowdsourcing – so that a more principled and refined tex-
ture lexicon is available to vision researchers. We also aim
to further explore the visual space of texture and to describe
novel texture features that align particularly closely with hu-
man perception.
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