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Abstract

We investigate the problem of reconstructing normals,

albedo and lights of Lambertian surfaces in uncalibrated

photometric stereo under the perspective projection model.

Our analysis is based on establishing the integrability con-

straint. In the orthographic projection case, it is well-known

that when such constraint is imposed, a solution can be

identified only up to 3 parameters, the so-called general-

ized bas-relief (GBR) ambiguity. We show that in the per-

spective projection case the solution is unique. We also pro-

pose a closed-form solution which is simple, efficient and

robust. We test our algorithm on synthetic data and pub-

licly available real data. Our quantitative tests show that

our method outperforms all prior work of uncalibrated pho-

tometric stereo under orthographic projection.

1. Introduction

This paper is concerned with the task of recovering a sur-

face from a collection of images captured from the same po-

sition but under different illuminations, a problem known in

computer vision as photometric stereo [30]. This problem

has been studied for over 3 decades and has brought some

remarkable understanding of the relations between the pho-

tometry and geometry of objects. Arguably, one of the most

remarkable results has been obtained for the more chal-

lenging problem of uncalibrated photometric stereo (UPS),

where lights are unknown. It has been shown that one can

solve UPS up to 3 parameters, the so-called Generalized

Bas-Relief (GBR) ambiguity [5]. The main reason why

that study had so much impact is because it did not exploit

any additional assumptions about the scene, but, rather, it

showed an intrinsic property of imaging surfaces. The key

idea is the use of integrability, i.e., the constraint that relates

a smooth function to its derivatives.

Since then most solutions to UPS have identified the

3 unknown parameters by employing different types of

heuristics, which require more or less stringent assumptions

on the objects to be reconstructed or how images are cap-

tured [33, 25, 3, 11, 9, 26, 13, 35]. None of these methods,

however, introduced a novel insight to the intrinsic prop-

erties of the imaging process as was done with the GBR

ambiguity study.

In this paper, we introduce a novel insight in uncali-

brated photometric stereo: There is no ambiguity under

the perspective projection model. In other words, one can

uniquely reconstruct the normals of the object and the lights

given only the input images and the camera calibration (fo-

cal length and image center). Also, under the perspective

projection, one can reconstruct the depth map from the nor-

mals up to a scale factor. The analysis is also paired with

a robust and simple algorithm that achieves state-of-the-art

performance in the reconstruction of the normal maps on

real data.

2. Prior Work

Photometric stereo (orthographic/perspective). When

the illumination directions and intensities are known, pho-

tometric stereo can be solved as a linear system. One of the

simplifying assumptions that are typically used (together

with the Lambertian image formation model, distant point

light sources and ignoring shadows/inter-reflections) is the

orthographic projection of the scene onto the image sensor.

Although most prior work assumes an orthographic projec-

tion, the perspective projection has been shown to be a more

realistic assumption: in [12], such model is considered in

the case of known illumination sources distributed near the

object, which makes the problem formulation different from

the classical one which assumes distant point light sources.

Another example is the work of Tankus and Kiryati [28],

which is based on the perspective image formation model

introduced in the shape from shading problem [29, 23, 7].

Here the partial derivatives of the natural logarithm of the

depth map (instead of the depth map itself) are recovered

via a closed-form solution based on image ratios. How-
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ever, such formulation is sensitive to image noise, which

may corrupt the estimated gradient map and eventually vi-

olate the integrability constraint. For this reason, in [17],

the same perspective photometric stereo framework is used

without the image ratios, but by imposing the integrability

constraint in a numerical optimization scheme, similarly to

[1]. Another related work is [31], which uses shape from

shading with the same image formation model of [28] with

an additional fall-off term. This work differs from classical

photometric stereo approaches as the final reconstruction is

the fusion of different shape from shading reconstructions,

each obtained independently from a single image. Other

approaches use the perspective projection in hybrid recon-

struction algorithms to fuse photometric cues with active

stereo [21, 34] or passive stereo [10, 19].

Uncalibrated photometric stereo (orthographic).

When no prior knowledge about the illumination, geom-

etry, and reflectance is available, the problem is called

uncalibrated photometric stereo. In such case, all prior

work assumes an orthographic projection. Under this model

the normals and lights can be obtained up a 3× 3 invertible

matrix (9-parameters ambiguity) by computing a singular

value decomposition of the data matrix (and by imposing

that its rank be 3) [14] . If the integrability constraint is

imposed, the ambiguity reduces to 3-parameters (the so-

called GBR ambiguity) [5]. Several additional assumptions

(on the geometry, the albedo and/or the lights) need to be

imposed to the problem to fix the GBR ambiguity. For

instance, in [3], this is done by minimizing the entropy

of the albedo distribution. In [25], the GBR ambiguity is

solved by grouping normals and albedo based respectively

on image appearance and color. Other approaches consider

specularities and glossy surfaces [9, 26], reflectance

symmetries [27], inter-reflections [6], by considering the

Torrance and Sparrow model [13] or additional constraints

obtained by a ring-light configuration [35]. A recent work

[11], solves the ambiguity by introducing the Lambertian

Diffuse Reflectance (LDR) maxima and imposing normals

and lights to be parallel at those locations. Other ap-

proaches instead exploit shadows [22, 16], dimensionality

reduction [24], Helmoltz reciprocity principle [36], a

general lighting environment [4] or look-up tables [15].

Only in [18], the perspective projection is considered to

define notions of shadow equivalence and the Generalized

Perspective Bas Relief Ambiguity (KGBR). Here, it is

shown that we cannot obtain additional cues from shadows

(under both orthographic and perspective projection)

to solve the GBR ambiguity. However, the perspective

projection was not incorporated into the image formation

model and the corresponding analysis was not done.

Uncalibrated photometric stereo (perspective). In this

work we focus for the first time on uncalibrated photomet-

ric stereo under perspective projection. Our main contri-

bution is to show that under this model, the problem can

be solved unambiguously by imposing only the integrabil-

ity constraint and to devise a closed-form solution that is

simple, efficient and robust.

3. Image Formation Model

A large set of problems in computer vision, such as pho-

tometric stereo, is concerned with measuring geometric and

photometric properties of a scene from images. The first

step in the design of solutions to such problems is to devise

the image formation model, i.e., how light reflected off the

surfaces of objects is then measured on the camera sensor.

A reasonable approximation of this process is the perspec-

tive projection model, where 3D points are mapped onto

the 2D camera sensor by dividing the first two coordinates

by the third one. However, because of the nonlinearity of

this mapping, the perspective projection is often dropped

in lieu of the more linear, and simpler to analyze, ortho-

graphic projection. As it turns out, the added nonlinearity

of the perspective projection is also useful to disambiguate

the uncalibrated photometric stereo solution (see sec. 5).

3.1. The Lambertian model

When objects in the scene are Lambertian and the illumi-

nation is a distant point light, the measured image irradiance

due to a point in space X = [x y z]T ∈ R3 can be written

as

I = ρ〈N,
L

‖L‖
〉e, (1)

where ρ is the albedo of the surface at X , N ∈ S2 is the

normal at X , ‖ · ‖ denotes the length of a vector, L/‖L‖ is

the unit-normal distant light direction and e is the light in-

tensity. While the image irradiance I is measured at a pixel

of the camera sensor, the normals and the albedo are related

to objects in space. Thus, the next step is to define how a

point X in space is mapped to a pixel on the image plane.

One can define such mapping as a projection π : R3 �→ R2

where a pixel (u, v)
.
= π(X). We further assume that the

point X on the surface of the objects can be parametrized

via the first two coordinates, i.e., X = [x y ẑ(x, y)]T where

ẑ(x, y) is the so-called depth map of the scene. Then, we

can also parametrize the normal map at X as the mapping

N̂(x, y) ∝

[
∇ẑ(x, y)
−1

]
(2)

where ∇ denotes the gradient with respect to x and y, and

∝ means equality up to a scale factor.
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In photometric stereo, K images are captured from the

same viewing direction, but with different illumination di-

rections Lk
.
= [pk qk − 1]T ∈ R3 and illumination inten-

sities ek > 0 for k = 1, . . . ,K. Notice that in our notation

we use the convention that both lights and normals point

towards the camera (hence, the negative third coordinate).1

Then, the k-th measured image irradiance becomes

Ik(u, v) = ρ̂(x, y)〈N̂(x, y), Lk〉
ek
‖Lk‖

(3)

where

(u, v) = π

⎛
⎝
⎡
⎣ x

y
ẑ(x, y)

⎤
⎦
⎞
⎠ (4)

denotes the projection of X to the pixel coordinates (u, v)
on the image plane. Because of the one-to-one correspon-

dence between (u, v) and (x, y), we can also introduce,

similarly to work of Tankus and Kiryati [28], the following

equivalent reparametrizations

ρ(u, v)
.
= ρ̂(x, y), N(u, v)

.
= N̂(x, y), z(u, v)

.
= ẑ(x, y)

which allow us to write

N(u, v) ∝

[
∇z(u, v)
−1

]
=

⎡
⎣zx(u, v)zy(u, v)

−1

⎤
⎦ . (5)

Although cumbersome, this notation will make the analysis

of different projections models much clearer.

3.2. Orthographic projection

Under the orthographic projection, the pixel coordinates

satisfy (u, v) = (x, y). Let

p
.
= p(u, v)

.
= zu(u, v)

q
.
= q(u, v)

.
= zv(u, v). (6)

Since u ≡ x and v ≡ y, then taking derivatives in x is

equivalent to taking derivatives in u and similarly for y and

v; hence,

zu(u, v) = zx(u, v)

zv(u, v) = zy(u, v). (7)

Then, the irradiance equation (3) becomes

Ik(u, v) = ρ(u, v)
ppk + qqk + 1

‖Lk‖
√
p2 + q2 + 1

ek (8)

where

N(u, v) ∝

[
∇z(u, v)
−1

]
=

⎡
⎣p(u, v)q(u, v)
−1

⎤
⎦ . (9)

1This notation is slightly different from what has been used in prior

work, e.g., see [28].

f

z

c

x

u

z

c

x

u

f →∞

Figure 1. Left: The chosen perspective projection model. The ref-

erence frame is on the image plane where the coordinates (u, v) lie

rather than on the camera center c. Right: When the focal length

tends to∞ then only the camera center shifts to −∞ and the pro-

jection becomes orthographic.

3.3. Perspective projection

Under perspective projection we define the relationship

between real world coordinates (x, y) and image coordi-

nates (u, v) as

x(u, v) = u f+z(u,v)
f

, y(u, v) = v f+z(u,v)
f

(10)

or, vice versa, as

u(x, y) = x f
f+ẑ(x,y) , v(x, y) = y f

f+ẑ(x,y) (11)

where f is focal length of the camera. Notice that this model

is slightly different from the one defined in [28]. The differ-

ence is illustrated in Fig. 1. As one can see, when changing

the focal length we keep scene and image plane fixed and

move only the camera center. This model was chosen so

that when f → ∞ the perspective projection converges di-

rectly to the orthographic one. By using the reparametriza-

tions in eq. (5), the image irradiance equation (3) in the per-

spective case retains the same structure as with the ortho-

graphic projection. However, now zx(u, v) �= zu(u, v) and

zy(u, v) �= zv(u, v). The form of zx(u, v) and zy(u, v) is

obtained in the following proposition.

Proposition 3.1 The derivatives of z with respect to x and

y are

zx(u, v) =
fzu

f+z+uzu+vzv

zy(u, v) =
fzv

f+z+uzu+vzv
(12)

where zu, zv and z are all functions of (u, v).

Proof. See appendix.

Let p̂
.
= zu

f+z
and q̂

.
= zv

f+z
and

p
.
=

fp̂

1 + up̂+ vq̂
q
.
=

f q̂

1 + up̂+ vq̂
. (13)
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Then, the normal map N can be written again as

N(u, v) ∝

⎡
⎣p(u, v)q(u, v)
−1

⎤
⎦ (14)

yielding the same irradiance equation as in eq. (8).

Remark 1 Notice that the above analysis applied to the

perspective projection equation of Tankus and Kiryati [28]

yields the same formula that they obtain.

4. Uncalibrated Photometric Stereo

In the previous sections we have shown that both un-

der the orthographic projection and the perspective projec-

tion one can obtain the same imaging equation simply by

reparametrizing the normal map. Hence, one might won-

der whether there are any fundamental differences between

the two models. If we are given the light directions and

intensities, the reconstruction of the normal map via the

straightforward matrix pseudo-inverse (·)† is indeed iden-

tical in both cases

N(u, v) ∝
[
e1

L1

‖L1‖
. . . eK

LK

‖LK‖

]†
[I1(u, v) . . . IK(u, v)].

(15)

However, when reconstructing the depth map from the nor-

mals the differences between the projection models become

evident. In the case of the orthographic projection we can

define N(u, v)
.
= [N1(u, v) N2(u, v) N3(u, v)]

T and then

use

−N1(u,v)
N3(u,v)

= zu(u, v) and − N2(u,v)
N3(u,v)

= zv(u, v) (16)

and then integrate the ratios to obtain z(u, v), which coin-

cides with ẑ(x, y). In the case of the perspective projection

we must instead use

N1(u,v)
N3(u,v)

= −fzu
f+z+uzu+vzv

and
N2(u,v)
N3(u,v)

= −fzv
f+z+uzu+vzv

.

(17)

The integration to obtain z(u, v) in this case leads to a dif-

ferent algorithm as previously observed [29, 28, 23] (also

see sec. 6).

These, however, are not all the differences between the

two models. To illustrate another fundamental difference,

and the main contribution of this paper, we consider the un-

calibrated photometric stereo problem, i.e., when lights are

not known. In general, all the ambiguities can be captured

by a 3× 3 (9 unknown parameters) invertible matrix Q [14]

so that ∀(u, v) and k = 1, . . . ,K

Ik(u, v) =B(u, v)TSk (18)

=ρ(u, v)N(u, v)TQ−1QLkek/‖Lk‖

where B(u, v) = Q−TN(u, v)ρ(u, v) are the so-called

pseudo-normals, and Sk = QLkek/‖Lk‖ are the pseudo-

lights. Let us define the ambiguity matrix as Q
.
=[

QT
1 Q

T
2 Q

T
3

]T
, where Qi, i = 1, 2, 3 are row vectors.

It has been shown that the introduction of the surface in-

tegrability constraint, which exploits the relationship be-

tween the normal map and the derivatives of the depth map,

in the orthographic projection case reduces the ambigui-

ties to the so-called Generalized Bas-Relief (GBR) ambi-

guity [5], where Q1 =
[
1 0 0

]
, Q2 =

[
0 1 0

]
and

Q3 =
[
μ ν λ

]
for any μ, ν, and λ �= 0. We show in the

next section that the integrability constraint in the perspec-

tive projection case leads to the following outcomes:

1. There is no ambiguity

2. A closed-form unique solution in Q can be obtained.

Furthermore, as expected, when f → +∞ the solution con-

verges to one of the GBR solutions.

5. Integrability Under Perspective Projection

The integrability constraint amounts to imposing that the

order with which one takes the derivatives does not mat-

ter (as long as the depth map is smooth), i.e., zuv(u, v) =
zvu(u, v). In the case of the orthographic projection this

constraint is equivalent to pv(u, v) = qu(u, v), so that

the constraints directly applies to the normal map via
∂
∂v

N1(u,v)
N3(u,v)

= ∂
∂u

N2(u,v)
N3(u,v)

. In the case of the perspective pro-

jection, similarly to [17], we have the following result:

Proposition 5.1 The integrability constraint zuv = zvu
holds if and only if the following constraint holds

p̂v = q̂u. (19)

Proof. Recall the definitions p̂
.
= zu

f+z
and q̂

.
= zv

f+z
; then,

we obtain

p̂v = zuv(f+z)−zuzv
(f+z)2 q̂u = zvu(f+z)−zvzu

(f+z)2 , (20)

and hence we have that p̂v−q̂u = zuv−zvu

f+z
which concludes

the proof.

Since we are interested in using the integrability constraint

to relate the entries of the normal map, we use eqs. (13) to

write p̂ and q̂ as functions of p and q, i.e.,

p̂ =
p

f − up− vq
q̂ =

q

f − up− vq
(21)

so that

p̂v = pv(f−up−vq)−p(−upv−q−vqv)
(f−up−vq)2

q̂u = qu(f−up−vq)−q(−p−upu−vqu)
(f−up−vq)2 . (22)

We are now ready to state the main result of this paper:
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Theorem 5.2 Given that the scene does not contain de-

generate surfaces,2 the integrability constraint in the case

of perspective projection is sufficient to uniquely identify

the normals N . Let B be the pseudo-normals defined as

in eq. (18), then we have that N ∝ QTB with Q =
[ψ1 ψ2 ψ3]

−T , where the ψ1, ψ2, ψ3 solve

P

⎡
⎣ψ1

ψ2

ψ3

⎤
⎦ = 0 (23)

and P is the N × 9 perspective integrability matrix

P
.
=

[
BT

u B̂ BT
v B̂ − u

f
BT

u B̂ −
v
f
BT

v B̂
]

(24)

where Bu and Bv are the u and v derivatives of B re-

spectively, and B̂ is the skew-symmetric matrix such that

B̂A = B ×A for any vector A.

Proof. See Appendix.

The solution in Q can be readily found by computing the

singular value decomposition of P = UΣV T , where U and

V are orthogonal matrices, Σ is a diagonal matrix with pos-

itive entries and in decreasing order starting from the top-

left corner, and by considering the last column vector in V ,

which corresponds to the smallest singular value in Σ.

Remark 2 Notice that as f → +∞ the last 3 columns of

the matrix P become 0 and hence we have 3 undetermined

parameters as in the classical GBR solution. Indeed, the

first six columns coincide with those obtained from the or-

thographic projection model as in the notation of [8].

6. Depth Reconstruction Under Perspective

Projection

Once the normal map N is reconstructed from the im-

ages, one can use eqs. (17) to recover the depth map z. Re-

call that such equations require

N1(u,v)
N3(u,v)

= −fzu
f+z+uzu+vzv

and
N2(u,v)
N3(u,v)

= −fzv
f+z+uzu+vzv

.

(25)

Let r1(u, v)
.
= N1(u,v)

N3(u,v)
and r2(u, v)

.
= N2(u,v)

N3(u,v)
. Then,

r1z + (r1u+ f) zu + r1vzv = −fr1

r2z + r2uzu + (r2v + f) zv = −fr2. (26)

In previous work [29, 28, 23] the above equations have been

solved by using the substitution g(u, v)
.
= log(f + z(u, v))

so that gu = zu
f+z

and gv = zv
f+z

. Then, one obtains

gu =
−r1

f + ur1 + vr2
gv =

−r2
f + ur1 + vr2

(27)

2Degenerate surfaces are those that yield a rank of P in eq. (24) less

than 8.

Figure 2. Synthetic depth maps. The 3 synthetic depth maps cho-

sen for our synthetic experiments.

which can be readily solved via a Poisson solver [2] to yield

g. Finally, the depth map is obtained by using z(u, v) =
eg(u,v) − f . Notice that because the function g can be re-

constructed only up to a constant value c0, in our trans-

formation this becomes a scale ambiguity, i.e., z(u, v) =
eg(u,v)+c0 − f = s0e

g(u,v) − f where s0 = ec0 .

7. Experiments

7.1. Synthetic

To validate our analysis we run quantitative experiments

(the Matlab code will be publicly available) on images syn-

thetically generated under the perspective model with 3
given surfaces: Random, Pot and Coin (see Fig. 2). We

consider 10 illumination conditions, a random albedo map,

the center of the coordinate system at the center of the im-

age and a focal length f equal to 100. We test the algorithm

under several levels of additive Gaussian noise 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1% with a range of pixel val-

ues [0,1]. For each level we run our algorithm 20 times

for different (random) configurations of lights and albedo.

In Fig. 3 we compare the error plots (mean and standard

deviation) of the mean angular error of the estimated nor-

mal maps obtained from calibrated photometric stereo and

our uncalibrated solution. Notice that even in presence of

no noise our implementation yields a non-negligible error.

We find that this is due to numerical errors in the finite-

difference approximations to the derivatives of the pseudo-

normals. These errors become even more relevant when

dealing with noise in the input images. Although we have

used the same type of approximation employed by [3], we

plan to address noise in photometric stereo in future work.

7.2. Real

We experimentally validate our method on publicly

available real-world datasets: Cat, Buddha, Rock, Horse,

Owl3 and Octopus, Redfish.4 We perform an image pre-

processing step based on [20] as was done in [32, 11]. Our

perspective model assumes the focal length and the camera

center to be known. However, because no camera calibra-

tion is available for these datasets we fix the focal length

3http://www.cs.washington.edu/education/courses/csep576/05wi

/projects/project3/project3.htm
4http://neilalldrin.com/research

147614761478
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Figure 3. Performance on synthetic data. We show the plots

for: Random, Pot and Coin mean angular errors. In the x-axis we

show the percentage of noise added to the input images. In the y-

axis we show the mean angular error of the reconstructed normal

map compared to the ground truth.
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Figure 4. Performance with different focal length and camera

center. We show the plots for: Pot and Coin mean angular errors.

In the top x-axis we show the focal length (in pixels) used for the

estimation of the normal map and in the bottom x-axis we show

the displacement in x-direction (in pixels) of the camera center

used for the estimation from the ground truth one. In the y-axis

we show the mean angular error of the reconstructed normal map

compared with the ground truth.

to 1. One can easily show that the reconstruction is ob-

tained up to an unknown scaling, which we then fix based

on the ground truth obtained from the photometric stereo

results. We also manually search for the center of the cam-

era (we choose the one that gives the best reconstruction).

We compare our estimated normal maps (via the mean an-

gular error with respect to the calibrated case) with the

Figure 5. Comparison of the normal maps (RGB). First column:

one of the input images. Second column: the normal map obtained

from calibrated photometric stereo. Third column: the normal

map obtained from our perspective uncalibrated method. Fourth

column: the normal map obtained from the LDR orthographic un-

calibrated method.

state-of-art in uncalibrated photometric stereo [3, 25, 11]

under orthographic projection (see table 1). Such compari-

son shows the difference between adopting the orthographic

or the perspective projection model (see sec. 3.3). Because

our method does not depend on any assumptions about ge-

ometry and/or albedo and/or illumination, the errors are in

the same range in all datasets. Also, notice that given the

performance in the synthetic datasets (see sec. 7.1), most

likely our errors are affected by the current numerical im-

plementation. Our average running time (including the pre-

processing step) for all the datasets is 7.40 seconds against

62 seconds [3], 10 minutes [25] and 13.5 seconds [11]. In

Fig. 5 we show the depth maps obtained from the integra-

tion of the normals with a Poisson solver [2].

8. Conclusion

In this paper we provided analysis and experiments to

demonstrate that uncalibrated photometric stereo under per-

spective projection can be solved unambiguously and ro-

bustly. Rather than exploiting heuristics about the scene,

we used the lone integrability constraint and showed that it

is sufficient to uniquely identify the light and normals given

images satisfying the Lambertian model. We also demon-

strated that our closed-form solution yields state-of-the-art

performance on real data.
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Table 1. Comparison with the Entropy Minimization (EM) method [3] , the Self Calibrating Photometric Stereo (SCPS) method [25] and

the Local Diffuse Reflectance (LDR) Maxima method [11]. We show the mean and the standard deviation of the angular error of the

estimated normal maps.

Dataset (Nr. Images) A/E Redfish (5) Octopus (5) Rock (12) Horse (12) Buddha (12) Cat (12) Owl (12)

EM Method μ 8.63 9.03 22.16 20.65 15.05 15.39 18.48

σ 1.14 0.76 1.88 3.85 2.19 3.78 5.58

SCPS Method μ 7.60 13.23 24.88 21.01 13.58 6.15 10.47

σ 4.32 9.85 7.42 9.57 4.93 2.83 4.75

LDR Method μ 5.60 6.64 11.61 4.80 4.98 5.37 6.63

σ 0 0 0 0 0 0 0

Our method μ 1.84 2.38 2.50 2.30 2.79 2.28 3.44

σ 0 0 0 0 0 0 0

9. Appendix

9.1. Proof to Proposition 3.1

Proof. By using the perspective projection equations (11) we find the

following system of equations

zx(u, v)
.
=

∂z(u(x,y),v(x,y))
∂x

= zu
f

f+z
− zuzx

fx

(f+z)2
− zvzx

fy

(f+z)2

zy(u, v)
.
=

∂z[u(x,y),v(x,y)]
∂y

(28)

= −zuzy
fx

(f+z)2
+ zv

f
f+z

− zvzy
fy

(f+z)2
.

By grouping all terms in zx on the left hand side of the first equation and

similarly for the second equation, we obtain

zx(u, v)
(
1 + zu

fx

(f+z)2
+ zv

fy

(f+z)2

)
= zu

f
f+z

zy(u, v)
(
1 + zu

fx

(f+z)2
+ zv

fy

(f+z)2

)
= zv

f
f+z

(29)

or, equivalently,

zx(u, v)
(
1 + zu

u
f+z

+ zv
v

f+z

)
= zu

f
f+z

zy(u, v)
(
1 + zu

u
f+z

+ zv
v

f+z

)
= zv

f
f+z

(30)

from which we can immediately conclude the proof.

9.2. Proof to Theorem 5.2

Proof. Firstly, by using eqs. (22), the integrability constraint p̂v = q̂u
yields the following equation in p, q and their derivatives at each pixel

(u, v)

fpv − vqpv + vpqv − fqu + upqu − uqpu = 0. (31)

The above expression can be written more compactly as

⎡
⎣
pv
qv
0

⎤
⎦

T ⎡
⎣

0
−f

v

⎤
⎦×

⎡
⎣

p

q

−1

⎤
⎦+

⎡
⎣
pu
qu
0

⎤
⎦

T ⎡
⎣
−f

0
u

⎤
⎦×

⎡
⎣

p

q

−1

⎤
⎦ = 0 (32)

where × denotes the cross-product. Let us define w1 = [0 − f v]T and

w2 = [−f 0 u]T . Also, we substitute⎡
⎣ p

q

−1

⎤
⎦ = −

QTB

Q3B
(33)

where we notice that Q3 is the last row vector of Q, and the integrability

constraint becomes(
−

QTBvQ3B−QTBQ3Bv

(Q3B)2

)T

w1 × (−QTB
Q3B

) (34)

+
(
−

QTBuQ3B−QTBQ3Bu

(Q3B)2

)T

w2 × (−QTB
Q3B

) = 0.

Since the terms (Q3B)2 andQ3B at the denominators are scalar numbers

at each pixel (u, v), we can multiply the whole equation for (Q3B)3 and

obtain

(
QTBvQ3B −Q

TBQ3Bv

)T
w1 ×Q

TB (35)

+
(
QTBuQ3B −Q

TBQ3Bu

)T
w2 ×Q

TB = 0.

The cross-product between the vectorsw1 andQTB, and betweenw2 and

QTB, will be a vector orthogonal to QTB, which will therefore project

to zero both QTBQ3Bv ∝ QTB and QTBQ3Bu ∝ QTB; hence,

(
QTBvQ3B

)T
w1 ×Q

TB (36)

+
(
QTBuQ3B

)T
w2 ×Q

TB = 0.

Again, we can divide both sides by the scalar Q3B without affecting the

equation, and arrive at

BT
v Qw1 ×Q

TB +BT
uQw2 ×Q

TB = 0. (37)

Now notice that the term Qw1 ×Q
T can be written as

⎡
⎣ 0 −wT

1 Q
T
1 ×Q

T
2 wT

1 Q
T
3 ×Q

T
1

wT
1 Q

T
1 ×Q

T
2 0 −wT

1 Q
T
2 ×Q

T
3

−wT
1 Q

T
3 ×Q

T
1 wT

1 Q
T
2 ×Q

T
3 0

⎤
⎦ . (38)

Define the column vectors φ1 = QT
2 × QT

3 , φ2 = QT
3 × QT

1 , φ3 =
QT

1 ×Q
T
2 . Then, we have

Qw1 ×Q
T =

⎡
⎣ 0 −wT

1 φ3 wT
1 φ2

wT
1 φ3 0 −wT

1 φ1
−wT

1 φ2 wT
1 φ1 0

⎤
⎦ = ̂κQ−Tw1 (39)

where â is the skew-symmetric matrix5 such that âb = a × b, and we

notice that Q−1 = κ−1[φ1 φ2 φ3], with κ = Q1Q
T
2 × QT

3 ; a similar

derivation can be carried out for w2. Finally, we can rewrite the integra-

bility constraint as

BT
v (Q−Tw1)×B +BT

u (Q−Tw2)×B = 0 (40)

where κ has been removed from both terms. Since a × b = −b × a we

can write

BT
v B̂Q

−Tw1 +BT
u B̂Q

−Tw2 = 0. (41)

Let the perspective integrability matrix

P
.
=

[
BT

u B̂ BT
v B̂ −

u
f
BT

u B̂ −
v
f
BT

v B̂
]

(42)

5The skew symmetric matrix of a vector a = [a1 a2 a3] is defined as

the matrix

⎡
⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤
⎦ .
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be a tallN×9 matrix, whereN is the number of pixels in the input images.

Then, by writing Q−T =
[
ψ1 ψ2 ψ3

]
eq. (41) can be written as

P

⎡
⎣ψ1

ψ2

ψ3

⎤
⎦ = 0. (43)

If there are no degenerate surfaces in the scene then the rank of P will be

8 and hence the solution will be unique (up to a scaling factor).
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