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Abstract

In this work, we consider images of a scene with a
moving object captured by a static camera. As the ob-
ject (human or otherwise) moves about the scene, it re-
veals pairwise depth-ordering or occlusion cues. The goal
of this work is to use these sparse occlusion cues along
with monocular depth occlusion cues to densely segment the
scene into depth layers. We cast the problem of depth-layer
segmentation as a discrete labeling problem on a spatio-
temporal Markov Random Field (MRF) that uses the motion
occlusion cues along with monocular cues and a smooth
motion prior for the moving object. We quantitatively show
that depth ordering produced by the proposed combination
of the depth cues from object motion and monocular occlu-
sion cues are superior to using either feature independently,
and using a naı̈ve combination of the features.

1. Introduction

We consider a time-series of images of a scene with mov-
ing objects captured from a static camera, and our goal is to
exploit occlusion cues revealed as the objects move through
the scene to segment the scene into depth layers. Recover-
ing the depth layers of a scene from a 2D image sequence
has a number of applications. Video surveillance often has
a fixed camera focused on a scene with one or more mov-
ing objects. As objects move through the scene over time,
we recover a layered representation of the scene. This aides
tasks such as object detection and recognition in the pres-
ence of occlusions since one can reason about partial obser-
vations of an occluded object with a better 3D understand-
ing of the scene [6, 15, 22]. In addition, a layered represen-
tation of the scene is useful in video editing applications,
such as composing novel objects into the scene with occlu-
sion reasoning [30] and changing the depth of focus [24].

An image sequence captured from a dynamic (moving)
camera allows one to leverage powerful stereo matching
cues to recover the depth and occlusion information of the
scene. However, these cues are absent in the case of a
static camera. For single images, monocular cues help re-
veal useful depth information [8, 10, 12, 13, 23, 28, 31, 32].

In this work, we consider a set of images with moving ob-
jects captured from a static camera. As the object moves it
is either occluded by or occludes a portion of the scene,
consequently revealing sparse pairwise ordering relation-
ships [3, 29] between the moving object and the scene, and
reveals long-range pairwise cues between the two regions
of the scene it simultaneously interacts with. These pair-
wise cues are powerful, but sparse, which makes our goal
of extracting dense pixel-level depth layers a hard problem.

In this work, we cast the problem of depth-layer segmen-
tation as a discrete labeling problem on a spatio-temporal
MRF over the video. We accumulate the pairwise ordering
cues revealed as the object moves through the scene and
include monocular cues to propagate the sparse occlusion
cues through the scene. We over-segment the background
scene (which has no moving objects) and construct a
region-level MRF with edges between adjacent regions.
In each frame, we identify the pixels corresponding to
the moving object and add a node corresponding to each
moving object for every frame of the video. We add
temporal edges between the corresponding moving object
nodes across frames, allowing us to encode a smooth
motion prior for the moving object. As the object moves
about the scene, we detect motion occlusion events and
add edges between the background scene node and the
corresponding moving object node, including long range
edges between two background scene nodes to encode the
pairwise depth-ordering or occlusion cues. An overview
of our proposed formulation for a single moving object is
shown in Figure 1, with the extension to handle multiple
objects in Section 3.4.

Contributions. Our paper, for the first time, proposes
a framework for recovering depth layers in static camera
scenes by combining depth-ordering cues from moving ob-
jects and cues from monocular occlusion reasoning. Our
approach works with any moving object (human or other-
wise) and extends to multiple objects moving in the scene.
We show that this depth layer reasoning out-performs the
current state-of-the-art in terms of depth-layer recovery.



(a) (b) (c) (d)
Figure 1: Overview. (a) Ground-truth top view, black triangle shows the camera looking up at a scene with the red moving object region
following the path shown in the red arrow; (b) Shows the background scene in the orange box and two frames from the input sequence
where the red object interacts with the background regions to reveal pairwise depth-ordering cues such as red occludes green, blue occludes
red; (c) A graph constructed over the background regions is shown in the orange box. Each colored node corresponds to the respective
colored region in (b). The red nodes correspond to the moving object with a node for every frame f in the input sequence ({1, 2, . . . , F}).
The black edges enforce the observed pairwise depth-ordering, for instance between the green-red nodes at f = 1, and blue-red nodes at f =
2. The red edges enforce a smooth motion model for the moving object; (d) Shows the inferred depth layers, white = near and black = far.

2. Related work

Research in cognitive science has shown that humans
rely on occlusion cues to obtain object boundaries and
depth discontinuities even in the absence of strong image
cues such as edges and lighting [17, 25]. Recovering oc-
clusion boundaries in a scene is a classic problem that has
been a topic of wide interest. We focus on prior work with
the similar setting of static camera scenarios. We broadly
classify these works into learning-based approaches and
approaches that purely rely on motion occlusion cues
revealed by the moving object.

Learning-based approaches. Prior work has explored
learning-based approaches for estimating the depth of the
scene [8,10,12,14,23,28,31,32] and estimating depth order-
ing [13, 16] from a single image for 3D scene understand-
ing. Recent work has shown objects (clutter) in the scene
to aid better depth estimation of the scene [9, 11] through
affordances.

Moving beyond single image scenarios to image se-
quences, Fouhey et al. [5] showed that the pose of people
interacting with a cluttered room can be used to obtain
functional regions and recover a coarse 3D geometry of
the room. Our work is complementary to this work, and
in particular is agnostic to priors about the type of moving
object and the type of scene (indoor or outdoor). In other
words, we do not require a human as the moving object. We
relate back to prior research in cognitive science that show
that occlusion cues we observe are agnostic to any prior
about the object. We use these sparse, yet strong occlusion
cues revealed by the moving object to aid the dense depth
layer segmentation of the scene.

Depth layers from motion occlusion. We work with a
single static camera image sequence that precludes us from
using algorithms for multiview occlusion reasoning using
a moving object [7]. We focus on segmenting a scene
captured by a single static camera into depth layers using
occlusion cues revealed by the moving objects. Our work

is inspired by the work of Brostow et al. [3] and Schodl
et al. [29] who use pairwise occlusion cues to “push” and
“pop” the regions of the scene affected by the moving
object to obtain depth layers at each frame. A limitation of
these works is that they reason only about the portion of the
scene the object interacts with, leaving behind huge por-
tions of the scene at an unknown depth. In addition, since
the interaction with each region is treated independently it
leads to excessive fragmentation of the scene as we show in
Section 4. This fragmentation can be partially avoided [29]
by making the (possibly over-restrictive) strong assumption
that the moving object stays at a constant depth. Our model
includes a more reasonable model of object motion.

In summary, we revisit depth layers from occlusions and
address limitations of prior work via a unified framework
that leverages sparse depth-ordering cues revealed by the
moving object and gracefully propagates them throughout
the whole scene.

3. Algorithm
We formulate the task of segmenting the scene into depth

layers as a discrete labeling problem. In this section, we
first describe our formulation as applied to a scene with a
single moving object and then extend the same framework
to handle multiple moving objects in the scene.

3.1. Spatio-temporal graph

Background scene segmentation. We refer to the scene
without any moving objects as the background scene.
We use a calibration stage to obtain a clean background
image without any moving objects. In the absence of the
calibration stage we take advantage of the static camera
scenario and obtain an estimate of the background image
as the median image over the video. Given the background
image we obtain an over-segmentation using mean shift
segmentation [4] to give us about 300 superpixels. We treat
this segmentation as a stencil of background superpixels
that applies to each frame of the video.



(a) Object in-front-of background scene region

(b) Object behind background scene region

Figure 2: Pairwise depth-ordering cues. Left image shows the
background scene segmentation and the right image shows an in-
termediate frame segmentation with the moving object segment.
(a) A region in the background is covered by the moving ob-
ject (white ellipse) indicating that the moving object occludes the
background region; (b) Observing that the boundary correspond-
ing to the background region (white pixels in black ellipse) does
not change when the moving object comes in contact with it re-
veals that the moving object is occluded by the background region.
It also reveals new relationships via transitivity; the chair occludes
the object and at the same instant the object occludes regions on
the wall; therefore the chair occludes the regions on the wall.

Moving object segmentation. Given the superpixel stencil
for the background scene, we update this superpixel map
for every frame by identifying the pixels corresponding
to the moving object via background subtraction. We
model the appearance of the background using a per-pixel
Gaussian distribution (Ap) centered at the mean color
(RGB space) of the pixel across the whole video. Given
Ap, for every frame we estimate the likelihood for each
pixel belonging to the background. We label pixels with
background likelihood above 90% as confident background
pixels and below 10% likelihood as confident moving
object pixels. Using these as confident initial seeds, we
learn an appearance model for the background (BG) and
the moving object (FG). The moving object segmentation
is obtained using iterative graph-cuts [1, 2, 20] updating
the BG/FG color models with each iteration similar to
GrabCut [27]. Figure 2 shows examples of the moving ob-
ject segmentation overlaid on the background segmentation.

After this stage, we have the background scene super-
pixel map and the moving object segmentation for each
frame. A region-level MRF is constructed over the back-
ground scene superpixels where each superpixel is a node
with an edge to adjacent superpixels. We add a node corre-
sponding to the moving object for every frame of the video
and add temporal edges connecting the moving object nodes
on adjacent frames. This graph is illustrated in Figure 1(c).

3.2. Pairwise depth-ordering cues

The object moving through the scene is either oc-
cluded by or occludes portions of the scene. We refer
to these as motion occlusion events. In our superpixel
representation of the scene, we accumulate the pairwise
cues using a matrix we call Occlusion Matrix (O) where,
Oi,j ∈ {−1, 0,+1} indicates the relationship between
superpixel i and superpixel j i.e., {i occluded by j, no cue,
and i occludes j}, respectively. O is a skew-symmetric
matrix i.e., Oi,j = −Oj,i. The matrix is updated at every
frame of the video using detected motion occlusion events
or using learnt monocular cues in absence of occlusion cues.

Motion occlusion cues. Low-level cues revealed by the
moving object in the scene serve as sparse, yet strong pair-
wise depth-ordering cues. We work with the abstract su-
perpixel representation of each frame and use cues similar
to prior work [3] to obtain pairwise relationship between
the moving object segment and the superpixel it interacts
with. The cues are intuitive, given a background region the
moving object is interacting with, we use the moving object
pixels and the boundary pixels of the background region to
infer whether the object moved in-front-of this region or be-
hind this region, respectively, as illustrated in Figure 2.

We update the corresponding entry of the occlusion
matrix with Oi,j as +1 to indicate that superpixel i oc-
cludes superpixel j and set Oj,i to −1. In addition to the
pairwise depth-ordering cues between the moving object
and the superpixel it is interacting with, we also enforce
transitivity while updating the matrix. If the object is
occluded by a region of the background scene and is si-
multaneously occluding several regions of the background
scene, via transitivity it establishes a pairwise relationship
between the occluding background region and each of
the other background regions as shown in Figure 2(b).
More formally, if m refers to the moving object segment
simultaneously involved in motion occlusion events with
superpixels k and l then, Ok,m = +1 and Ol,m = −1,
implies Ok,l = +1. This provides a strong depth-ordering
cue between k and l. In addition, since k and l are not
constrained to be adjacent superpixels, long-range edges
between non-adjacent superpixels are also a result.

Monocular cues. We use monocular cues to provide evi-
dence about occlusions for the other regions of the scene.
Given the superpixel map for each frame, we use the work
of Hoiem et al. [13] that uses learnt priors to determine
which of two adjacent superpixels occludes the other. For
each frame, we first update the occlusion matrix using the
motion occlusion cues where available and update the ma-
trix for all the other spatially adjacent superpixels using the
monocular cues. We do not enforce transitivity here since
the monocular cues are not as reliable as motion occlusion



Figure 3: Spatial pairwise term ESij . If i occludes j, the pairwise
term will encourage that i takes a depth label closer (lower label)
than j via a large penalty for the red terms and zero penalty for the
blue terms. See Section 3.3 and Eqn 2 for details.

cues. The occlusion matrix serves as the observations for
modulating the terms of the energy function.

3.3. Energy minimization problem

The goal given the sparse pairwise depth-ordering con-
straints is to obtain dense depth-layers. One approach is
a greedy algorithm where the whole scene starts at layer-0
and with every pairwise depth-ordering constraint regions
of the scene are “pushed” and “popped” [3] to obtain the
final labeling. Hoiem et al. [13] use a graph with bound-
aries between superpixels are nodes connected to adjacent
boundaries to encourage continuity and closure. Jia et al.
[16] use image junctions as nodes to obtain a globally con-
sistent depth ordering using a minimum spanning tree. In
this work, we use superpixels as nodes in the graph. This
allows us to directly obtain the depth-layer labeling, and
also incorporate long range edges between nodes.

We formulate depth layer segmentation as a discrete la-
beling problem where every superpixel is assigned a depth
label {1, 2, . . . , L} where L is some pre-defined yet large
set of discrete labels1. The labels are depth-ordered from
closer to the camera moving away i.e. {1 < 2 < · · · <
L}. We formulate this multi-label segmentation problem as
an energy minimization problem over the spatio-temporal
graph obtained in the previous stage. The graph is a col-
lection of n + F nodes, where n nodes correspond to the
background scene and F nodes correspond to the moving
object with one node for the moving object for each of the
F frames of the video. Our goal is to obtain a labeling
X = {X1, X2, . . . , Xn+F }. We define an energy function
over the graph as follows:

E(X ) =
∑

i∈1,...,n+F

Ei(Xi) +
∑

(i,j)∈NS

ESij(Xi, Xj)

+
∑

(i,j)∈NT

ETij(Xi, Xj) (1)

where Ei(Xi) is the unary term indicating the cost of
assigning a depth layer to a node, ES

ij(Xi, Xj) is the spatial
pairwise term updated by the motion occlusion cues and
the monocular cues between interacting regions (NS),

1In all our experiments we set L = 40. An over-estimate of L allows
for enough layers for the background scene. Increasing L beyond 40 did
not affect performance but added to the computational complexity.

Figure 4: Temporal pairwise term ETij . The penalty (β) increases
as we go away from the diagonal encouraging a smooth motion of
the object across depth layers. See Section 3.3.

and ET
ij(Xi, Xj) is the temporal pairwise term updated by

the object motion model between the temporal edges (NT ) .

Unary term (Ei). The unary term measures the cost of
assigning a particular depth label to a node. We use a
uniform likelihood across all labels since a node does not
prefer one label over another. However, we note that the
moving object can move between two background regions
that are in adjacent depth layers. To address this, we ensure
that the background regions only take odd or modulo-2
labels, which makes an intermediate layer between two
depth layers available for the moving object. We do so
using hard constraints where the background region pays
infinite penalty for choosing an even numbered depth label.

Spatial pairwise term (ES
ij). The spatial pairwise term

encodes the pairwise depth-ordering observations we accu-
mulate within the occlusion matrix. Consider two regions
(nodes) i and j, using the cues we discussed in Section
3.2 let us suppose we know that region i is occludes re-
gion j i.e. Oi,j = +1. Intuitively, the pairwise term for the
edge between i and j must encourage i to take a depth la-
bel that is smaller than (closer) j. To accomplish this, our
pairwise term has the form of an lower triangular matrix
where a large cost is incurred for region i taking a depth
label larger than region j. We make this term contrast sen-
sitive using the score from a coplanar classifier (1.0 − δfi,j)
that indicates how likely i and j are coplanar using the rel-
ative region-level features similar to [21] for each frame f .
More formally,

ES,fij (Xi, Xj) =


−log

(
cfij ×

1+O
f
i,j+ε

2

)
∀Xi < Xj

γ Xi = Xj

−log
(
cfij ×

1+O
f
j,i+ε

2

)
∀Xi > Xj

ESij(Xi, Xj) =
∑
f∈F

(
ES,fij (Xi, Xj)× exp (−δfi,j)

)
(2)

where, ES,f
ij is the pairwise term for frame f , Of

i,j is the
occlusion relationship between region i and j in frame f of
the image sequence. cfij is the confidence of the pairwise
occlusion relationship for frame f . We set this value to
1.0 for edges that involve the moving object and use the
occlusion strength [13] as the confidence score for all



other edges. The summation over pairwise terms over all
frames helps capture the evidence between two nodes over
the whole sequence. The factor γ is a bias that keeps the
solution away from the trivial solution of a single depth
layer for the whole scene2. ε is a small value to maintain
numerical precision. The form of the spatial pairwise term
is illustrated in Figure 3.

Temporal pairwise term (ET
ij). The temporal pairwise

term penalizes label disagreement between the moving ob-
ject node across frames and encourages a smooth motion
for the moving object, illustrated in Figure 4. The pairwise
penalty is similar to the standard Pott’s model, except with
an increasing penalty (β) as we go away from the diago-
nal3. Given the depth label of the moving object in one
frame, smooth motion is encouraged by making the node
pay a lower cost to switch to nearby depth labels but larger
penalty for more drastic changes in the depth label. Phys-
ically, this motion model assumes that the object does not
abruptly change in depth as it moves through the scene.

3.4. Handling multiple moving objects

Here, we extend the formulation (single moving object)
to handle multiple moving objects. Consider the example in
Figure 5(a) with the region corresponding to the two mov-
ing objects in the scene shown in blue and red overlay. In
case of k moving objects, we add k nodes (a node for each
moving object) for each frame of the video. The result-
ing spatio-temporal graph for the example is shown in Fig-
ure 5(b). We have an edge between the moving objects as
shown in the frame, f = 2 when the objects cross path. We
obtain their pairwise depth-ordering using the cue that when
the two objects are in contact, the taller object, i.e., the ob-
ject with a larger bounding box height, occludes the smaller
one. This assumes that the moving objects are the same size
in real world; however, more sophisticated classifiers could
be used. We modify the unary term to reflect that there are
multiple moving objects. In the single object case we used
a modulo-2 representation of the depth labels that put hard
constraints on the background regions to take only alternate
depth labels allowing for the moving object to lie between
two background region layers. In case of k moving objects
in the scene we extend this to a modulo-(k+1) representa-
tion that allows the k objects to lie between two adjacent
background region layers. Given this graph, the definition
of the energy function is the same as Section 3.3.

3.5. Inference

In our energy function, each energy term by itself is
weak. For instance, the unary term does not provide an
affinity of a node towards a particular label but restricts the

2We set the bias γ = −log(0.5) for our experiments.
3β = −log(0.5) for our experiments.

(a)

(b)

Figure 5: Multiple moving objects. (a) The background scene is
shown in the orange bounding box. The two moving object seg-
ments for intermediate frames are overlaid in red and blue; (b) The
spatio-temporal graph constructed. The spatial graph correspond-
ing to the background scene is shown within the orange bounding
box and the two nodes for each frame corresponding to the moving
objects are shown using the red and blue nodes. See Section 3.4.

labels the background regions can take; the spatial pairwise
term bounds the possible labels the adjacent node can take
based on the label of the current node. However, the com-
bination of these terms is powerful. The intuition behind
the goal of inference is to find a depth labeling that satis-
fies as many pairwise interaction terms and motion model
terms as possible. We perform inference using sequen-
tial tree-reweighted max-product message passing (TRW-
S) [19]. The algorithm scales linearly with the number of
frames and quadratically in the worst case with the number
of superpixels (i.e., fully connected graph).

4. Experiments
In this section, we discuss the dataset, the evaluation

metric, followed by our quantitative and qualitative results.

4.1. Dataset

Our first dataset (SET-A) contains 24 videos with a sin-
gle moving object. 18 videos are from the publicly avail-
able multiview video dataset by Guan et al. [7] that include
a person moving through the scene captured from multiple
viewpoints. Each of these multiview videos serves as a test
video for our scenario. The dataset has 6 additional videos
with two clips from the movie ‘Sound of Music’.

Our second dataset (SET-B) contains 9 videos from the
publicly available video dataset by Guan et al. [7] with two
people walking in the scene. In the single object scenario,
the moving object segmentation and correspondence across
frames was achieved using background subtraction, how-
ever, this is not trivial for multiple objects. While we believe
that there is scope to leverage prior work on multiple object
tracking to achieve this task automatically, in this work we
provide correspondence and manually segment the moving
objects on 30 frames for each video using GrabCut [27]. An



example is shown in Figure 5(a).
We manually obtain a pixel-level ground-truth depth

layer segmentation for each of the background scenes us-
ing the depth-layer annotation tool by Hoiem et al. [13] and
then map it to the background scene superpixel map by la-
beling all the pixels within a superpixel with the dominant
label. An example is shown in Figure 6. We make all the
data publicly available on our website5.

It is worth pointing out that the ground surface has no
clear ‘ground-truth’. In particular, our instruction to the
ground-truth annotator was that any object that stands on
the ground surface occludes the ground surface as a basis
for evaluations. Preprocessing to perform ground segmen-
tation could be an alternate approach to add more seman-
tics to the framework. However, this does not change the
problem formulation or the improvement we obtain over the
state-of-art.

4.2. Evaluation
We evaluate the performance of the algorithm as the

accuracy of pairwise ordering between the regions of the
background scene. Using the background superpixel map
we translate the ground-truth depth layers into the ground-
truth occlusion matrix (Ogt), which gives the pairwise
depth-ordering between any pair of superpixels. Let the fi-
nal occlusion matrix from the algorithm be O′. Given the
two matrices, we evaluate the performance of the pairwise
ordering between the superpixels by accumulating concor-
dant pairs, discordant pairs, and compute the accuracy as4,

Concordant pair (i, j) : Ogti,j = O′
i,j

Discordant pair (i, j) : Ogti,j 6= O′
i,j (3)

Accuracy =
#Concordant pairs

#Concordant pairs +#Discordant pairs

The accuracy measure evaluates the performance of the
algorithm over all pairs of regions in the scene. This gives
an average score of 25.2% across our dataset even when the
whole scene is given a single depth layer. We obtain a met-
ric focused only on the occlusion boundaries by comput-
ing the precision and recall of the algorithm evaluating the
fraction of recovered occlusion boundaries that are the true
occlusion boundaries and the fraction of the true occlusion
boundaries recovered by the algorithm, respectively.

Our problem is similar to that of inferring a rank ordered
list of entries. We use two standard metrics to evaluate the
performance of pairwise ordering, Kendall tau correlation
coefficient (τ ) and Kendall tau distance (τd) [18, 26]. In
particular, we use the variant of Kendall’s tau (Tau-b) that
accounts for ties within the list, because pairs of superpixels
can take the same depth label. τ measures the similarity be-
tween orderings and has range [−1,+1], the higher the co-
efficient the better. τd is a measure of the distance between
the orderings and has range [0, 1], the lower the better.

4 #x = number of x

(a) Background scene (b) Ground-truth (c) Estimated

Figure 6: (a) Background scene, (b) manually labeled ground-
truth depth layers for the quantitative analysis and (c) estimated
depth layers using our algorithm. White = near, black = far.

4.3. Quantitative results

We quantitatively evaluate the performance of our algo-
rithm, comparing with several baselines. First, we compare
with prior works that use only motion occlusion cues [3]
or only monocular cues [13]. We then evaluate the perfor-
mance of a naı̈ve combination of the motion occlusion and
monocular cues using a greedy algorithm similar to [3]. We
first use all the motion occlusion cues to obtain the pairwise
depth-ordering and then use the monocular cues to update
the pairwise orderings only for adjacent superpixels that do
not yet have a pairwise ordering constraint to obtain the fi-
nal depth labeling. This baseline does not enforce a global
consistency in combining the cues. In our full algorithm,
we use a spatio-temporal graph to combine the two cues
and enforce global consistency. In addition to evaluating
the performance of the proposed algorithm (full), we eval-
uate a variant of the proposed algorithm where we drop the
temporal links that enforce a smooth object motion.

Tables 1 and 2 summarize the results. We see that us-
ing motion occlusion cues alone (ROW-1) performs the
worst, for two main reasons - fragmentation of the scene
due to the greedy algorithm [3] and sparsity of the cues
i.e., it only reasons about regions the object interacts with.
Monocular cues (ROW-2) do better because it reasons about
the whole scene and encourages global consistency with a
graph model [13]. While the naı̈ve combination of the cues
(ROW-3) performs better than only motion occlusion cues,
it performs poorly in comparison to using only monocular
cues, due to fragmentation and lack of global consistency.

Even without temporal links (ROW-4), we outperform
the baselines in each metric. This clearly indicates that our
improvements are not based on tracking per se, and shows
our algorithm is applicable to scenarios like time-lapse se-
quences. Finally, in both test sets, our full proposed ap-
proach (ROW-5), gives an additional boost in performance
and significantly outperforms all the other algorithms in
each metric. Across the datasets, the proposed algorithm
achieved the best performance in 19 out of 24 videos in
SET-A and 8 out of 9 videos in SET-B.

4.4. Qualitative results

We show qualitative results obtained using only motion
occlusion cues, only monocular cues and the proposed algo-
rithm in Figure 7. Figure 7(b) shows the ground-truth depth



Single moving object Accuracy (%) Precision (%) Recall (%) F-measure Kendall tau coefficient Kendall tau distance
(SET-A) [0.0, 1.0] [-1.0, 1.0] [0.0, 1.0]

Only motion cues [3] 38.2 40.0 38.3 0.39 +0.01 0.40
Only monocular cues [13] 49.0 55.1 50.0 0.52 +0.15 0.33

Naı̈ve [3] + [13] 42.1 46.3 38.8 0.42 +0.03 0.36
Proposed (No temporal) 54.9 60.8 55.4 0.58 +0.33 0.26

Proposed (Full) 56.5 62.6 57.5 0.61 +0.36 0.24

Table 1: Quantitative results and comparisons for the single moving object scenario (SET-A). Each measure is averaged across the videos
in the dataset. ROW-1 shows the performance when we use only the motion occlusion cues [3]; ROW-2 shows the performance when we
use only the learnt monocular cues [13]; ROW-3 shows the performance of a naı̈ve combination of the motion occlusion and monocular
cues; ROW-4 shows the performance of the proposed approach but without the temporal links enforcing the object motion model; Finally
ROW-5 shows the performance of the full proposed approach that combines the motion occlusion and monocular cues into one framework.
In summary, the proposed algorithm (in green) outperforms the other algorithms in each metric.

Multiple moving objects Accuracy (%) Precision (%) Recall (%) F-measure Kendall tau coefficient Kendall tau distance
(SET-B) [0.0, 1.0] [-1.0, 1.0] [0.0, 1.0]

Only motion cues [3] 40.5 43.4 40.7 0.42 +0.02 0.37
Only monocular cues [13] 50.9 55.6 50.7 0.53 +0.20 0.35

Naı̈ve [3] + [13] 45.1 54.2 43.0 0.48 +0.06 0.36
Proposed (No temporal) 56.3 60.3 55.5 0.58 +0.30 0.26

Proposed (Full) 58.2 62.4 59.1 0.60 +0.33 0.24

Table 2: Quantitative results and comparisons for the multiple moving objects scenario (SET-B). The rows are the same algorithms as
Table 1. The proposed approach (in green) outperforms the other algorithms in each metric.

layers for each scene. We first observe the drawback of us-
ing only motion occlusion cues in Figure 7(c), such as the
fragmentation in the labeling due to the greedy algorithm
and the unknown layer for pixels untouched by the mov-
ing object (in blue). Using the monocular cues results in a
better dense labeling but errors due to the image-based fea-
tures exist, Figure 7(d). In contrast, the proposed algorithm
achieves a better labeling of the scene as seen in Figure 7(e).
In particular, we see that occlusion cues captured in the mo-
tion occlusion cues but missing in the monocular cues such
as the tree occluding the background in ROW-1, the chair
and box occluding the background in ROW-2, 4, the pillars
in ROW-5 are all carried forward to improve the result using
the proposed algorithm. Errors due to pairwise cues unseen
by the moving object but present in the monocular cues are
carried forward to the final result (ROW-3, 6). In ROW-6 the
proposed algorithm favors smoothness instead of the exces-
sive fragmentation found from the motion occlusion cues.
The sensitive stage of the algorithm is foreground segmen-
tation (background subtraction) especially in case of scene
irregularities such as specular surfaces and thin structures
(computer monitor in ROW-2 Figure 7), which can lead to
errors in the sparse occlusion cues. In our work, we han-
dle this using the MRF over all the regions and incorporate
temporal dependency via smooth motion of the moving ob-
ject. We make a joint solution given all the (soft) occlusion
cues, reducing the errors in comparison with prior work that
make hard decisions using occlusion cues.

5. Conclusions
We have presented an algorithm to combine the sparse,

yet strong motion occlusion cues revealed by moving
objects in a static scene along with monocular cues for
occlusion reasoning in a unified framework. The proposed
framework uses pairwise ordering cues that even extends
to other algorithms to obtain monocular occlusion cues.
The results show that the proposed approach improves the
performance of prior approaches, and handles multiple ob-
jects moving in the scene. We make these manually labeled
depth layers and the manual multiple object segmentation
across frames publicly available, which are also useful in
evaluating tasks such as multiple object co-segmentation5 .
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