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Abstract

We consider the problem of finding distinctive social interactions involving groups of agents embed-
ded in larger social gatherings. Given a pre-defined gallery of short exemplar interaction videos, and a
long input video of a large gathering (with approximately-tracked agents), we identify within the gather-
ing small sub-groups of agents exhibiting social interactions that resemble those in the exemplars. The
participants of each detected group interaction are localized in space; the extent of their interaction is
localized in time; and when the gallery of exemplars is annotated with group-interaction categories, each
detected interaction is classified into one of the pre-defined categories. Our approach represents group
behaviors by dichotomous collections of descriptors for (a) individual actions, and (b) pair-wise inter-
actions; and it includes efficient algorithms for optimally distinguishing participants from by-standers in
every temporal unit and for temporally localizing the extent of the group interaction. Most importantly,
the method is generic and can be applied whenever numerous interacting agents can be approximately
tracked over time. We evaluate the approach using three different video collections, two that involve
humans and one that involves mice.

1. Introduction
Social interactions are common, but they rarely take place in isolation. Conversations and other

group interactions occur on busy streets, in crowded cafes, in conference halls, and in other types of
social gatherings. In these situations, before a computer vision system can recognize distinctive group
interactions, it must first detect them by distinguishing between participants and by-standers and by
localizing them in time. This paper addresses this spatio-temporal detection problem for cases in which
the agents in a large gathering can be reasonably detected and tracked.

We consider group interactions broadly as distinctive space-time structural co-occurrence of individ-
ual actions. These occur in a variety of places and over a variety of times scales. We might want to
find in a cocktail party, for example, all three-person conversations dominated by one person for a sus-
tained period of time. On a busy street, we could search for all cases in which two passersby exchange a
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Figure 1. Detecting and localizing interactions in social clutter. Given an exemplar video of an N -person social
interaction, we seek to find similar interactions in a long input video with M > N approximately-tracked people.
For each temporal frame in the exemplar, the N best-matching participants are identified separately in each tem-
poral unit of the input, and the matches are assigned scores. Matching scores are accumulated over time through
voting that is insensitive to tracking errors and changes in action rates, and this produces a spatial localization of
the N participating people. Their interaction is then localized in time using an efficient branch-and-bound search.

“hello”. In a collection of hockey games, we might want all instances of a “three-on-one”, and in nature
we might be interested in localizing instances of distinctive group interactions among populations of an-
imals, insects, or bacteria. Each of these cases would likely require distinct algorithms for detecting and
tracking the agents, and each would benefit from action descriptors that are tuned for that setting. But
beyond this, all of these scenarios can be abstracted as collections of (possibly fragmented and noisy)
trajectories with accompanying time-varying action descriptors, and this is the abstraction on which we
operate.

As depicted in Fig. 1, our approach is based on matching. Given an exemplar video of a distinctive
group interaction involving a small handful of N agents, we detect and localize instances of similar
interactions within a long video of a larger gathering of M ≥ N agents. We represent a group inter-
action as an ensemble of two types of time-varying descriptors: per-agent descriptors that encode the
appearance and/or motion of each agent, and relative pairwise descriptors that encode the appearance
and/or motion of each agent relative to another. Matching an exemplar interaction amounts to searching
through space and time for ensembles that are similar in some sense. This approach avoids generating
explicit semantic descriptions of group interactions, and it is advantageous when one lacks the vocabu-
lary to precisely describe a class of interactions, or when they cannot easily be broken down according
to a pre-defined grammar. To use our matching approach for recognition, we simply match an input
video against a labeled gallery of exemplars and then extract a class label or ranked list of labels from
the resulting scored matches.

In designing our detection system we face two main challenges. First, tracks may be fragmented
and noisy, and we expect the presence of outlying fragments caused by false detections. We want an
approach that can succeed in spite of these. Second, we expect that the same type of interaction can
occur over different temporal extents and at variable rates within its temporal extent, so we want an
approach insensitive to these “within-class” variations. We address these challenges using a voting-
based approach, depicted in Fig. 1. First, the social descriptor-ensemble at each exemplar time unit is
compared separately to each time unit of the input video, and the best-matching N participants in each
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unit are identified along with their matching score (yellow and gray lines in Fig. 1). Second, weighted
votes are accumulated from these unit-wise matches to obtain a final estimate of the N participants.
Third and finally, the temporal extent of the interaction is determined through an efficient branch-and-
bound search. Our designs for these three processing stages are tightly connected to each other and to
our representation for interactions. Optimal unit-wise matching is made possible by our restriction to
second order (individual and pairwise) action descriptors, and a metric learning procedure serves the
dual role of improving voting (step two) and enabling efficient branch and bound search (step three).

Substantial progress has been made toward detecting activities of a single actor [13, 24, 22, 16, 7].
For analyzing interacting groups, previous approaches have considered cases in which: 1) there are no
bystanders [11, 10, 3, 19, 21]; the interaction of interest is a priori localized in time [17, 4]; or both of
these simultaneously [12, 20, 15]. A notable exception is [1], which like us, addresses the problem of
localizing interactions in long videos that contain bystanders, albeit with a less flexible representation
(more on this in Sec. 4).

We evaluate our approach using three different datasets: 1) the UT-Interaction Dataset [21]; 2) a
new database of videos from an “interactive classroom” in which students self-organize in small group
discussion (e.g. [5]); and 3) the Caltech Resident-Intruder Mouse dataset [2].

2. Matching and Localizing Interactions
We consider a video as a sequence of T temporal units that occur at a frequency equal to or less than

the frame-rate of the raw video data. The duration of these T units is typically between one and a few
raw video frames, and it is determined by the application-appropriate choice for temporal resolution
of atomic action descriptors (e.g., positions, velocities, accelerations, histograms of flow, space-time
SIFT). We assume the existence of an application-specific detection and tracking system that outputs
M space-time tracks, which can be time-varying points, bounding boxes, silhouettes, or something else.
Due to agent entry and exit, occlusions, and other tracking errors, not all M tracks will persist over all
T frames, and some of the M tracks may correspond to short-lived false detections. The value of M is
thus the total number of trajectory fragments that are identified with distinct agents.

With each track we associate ensembles of two types of descriptors. There are TM per-time-unit
dI-dimensional descriptors {fm,t} where fm,t encodes the mth agent’s activity at time unit t ∈ [1, T ];
and TM(M − 1) pairwise dP -dimensional descriptors {gm,m′,t} where gm,m′,t encodes at time t the
motion and/or appearance of agent m relative to agent m′,m′ 6= m. Loosely speaking, gm,m′,t captures
the “influence” that agent m′ has over agent m at time t. This influence is not symmetric in general,
so typically gm,m′,t 6= gm′,m,t. We use the notation Qt , {fm,t,gm,m′,t} for the ensembles of all M
tracks at time t, and Q , {Qt}1≤t≤T for the ensembles harvested from the entire input video. As
mentioned above, the dimensions and entries in the descriptor vectors f , g will be application dependent,
and we consider a variety of examples in our experiments. Each exemplar video is processed in the
very same way as the input video, so that an exemplar of N ≤ M participants over S time units is
represented at each time s ∈ [1, S] by the ensemble Ds , {fDn,s,gD

n,n′,s}. We use the analogous notation
D , {Ds}1≤s≤S for the ensembles collected from the entire exemplar.

Given a collection of exemplars and an input video, our matching strategy is as follows. For each
exemplar D, we search through the input Q for the optimal match, identifying the set of N participants
and localizing their interaction in time. The tracks corresponding to this best detection are then removed
from Q, and the procedure is repeated to find the second-best match, and so on. This provides multiple
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ranked detections for each exemplar. In the end, we have a pool of space-time localizations from the
input, with each of these “detected interactions” associated through similarity scores to one or several
exemplars. To classify a detected interaction, we simply apply the majority of the category labels to the
top-ranked exemplars associated with it. The remainder of this section describes in detail the process of
locating the single best match for one exemplar.

2.1. Matching between Temporal Units

The first step in our framework is to separately compute the correspondence between the N exemplar
agents at each time s ∈ [1, S] and the optimal subset of N ≤ M of input agents at each time t ∈ [1, T ].
We represent this N -to-M correspondence by the N ×M binary matrix W , where the nm-th entry wnm

is one only when the nth exemplar agent is matched to the mth input agent. Matches must be unique,
so these matrices must have one non-zero entry in each row and at most one non-zero entry in each
column: W1 = 1 and W T1 ≤ 1. We use the symbolW to represent the space of all such matrices, i.e.,
W , {W ∈ {0, 1}N×M |W1 = 1,W T1 ≤ 1}.

The quality of a correspondence is measured by the similarity between the individual and pairwise
descriptors of the N selected input agents and those of the N exemplar agents. We formalize this by
defining

D̂(Qt,Ds,W ) =
∑
nm

wnmdI(fm,t, f
D
n,s) +

∑
nmn′m′

wnmwn′m′dP (gm,m′,s,g
D
n,n′,t), (1)

to be the dissimilarity between two instantaneous ensembles under a particular matching matrix W . We
use Mahalonobis distances to compare descriptors in this expression, so that dI(f , f ′) = (f − f ′)TΣI(f −
f ′) and dP (g,g′) = (g − g′)TΣP (g − g′), with ΣI � 0 and ΣP � 0 positive semi-definite matrices
learned from exemplar videos as will be described in Sec. 3.

Our immediate objective is to find the matching matrixW ∈ W that minimizes the score D̂(Qt,Ds,W ).
Letting w be the vector formed by stacking the columns of W , the optimization can be expressed as

min
w

cTw + wTHw, s.t. wnm ∈ {0, 1},W1 = 1,W T1 ≤ 1, (2)

where c is a MN × 1 vector of distances between individual descriptors, dI(fm,t, f
D
n,s), and H is a

MN ×MN matrix of distances between pairwise descriptors dP (gm,m′,t,g
D
n,n′,s)’s. This problem has

integer constraints and is generally not convex, so we instead solve

min
w

(c + ĉ)Tw + wT (H + Ĥ)w, s.t. wnm ∈ {0, 1},W1 = 1,W T1 ≤ 1, (3)

where ĉ = [σ1, σ2, · · · , σMN ]T , Ĥ = diag{−σ1,−σ2, · · · ,−σMN}, and each σi is a sufficiently large
number greater than

∑MN
j=1,j 6=i |Hij|+Hii.

Note that Ĥ imposes a negative strictly dominant diagonal to H and the quadratic term Ĥ + H
is strictly negative definite. Therefore, (3) is a concave programming in the convex unit hypercube
[0, 1]N×M and will achieve its minimum at one of the feasible vertices. The feasible vertices, meanwhile,
are exactly the feasible solutions of (2), and at these vertices, the values of the objective of (3) are equal
to those of (2) due to the cancellation brought by ĉ. Therefore, by solving the much more efficient
Problem (3) we obtain the exact solution for the original Problem (2). We solve (3) using the CVX
toolbox [9].

For notational convenience, we define D(Qt,Ds) , minW∈W D̂(Qt,Ds,W ) to be the similarity
between ensemblesQt and Ds, and W t,s , arg minW∈W D̂(Qt,Ds,W ) to be the optimal instantaneous
matching matrix that yields this similarity.
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Figure 2. The temporal neighborhood used in to compute (4). See Sec. 2.2 for details.

2.2. Voting for Participant Identification

The next step is to accumulate participant information from noisy instantaneous matches W t,s, with
the goal of identifying a single optimal matching matrix, denoted W ∗ ∈ W , that identifies a single
consistent set ofN < M participants over the duration of the interaction being matched. We achieve this
through voting, with the intuition being that the optimal matching W ∗ will occur relatively frequently
among the instantaneous matches {W t,s}. Each per-unit match casts a weighted vote, and to tally these
votes we maintain two arrays both sized of |W|. Each element of the first array counts the number of
votes for a particular matching matrix, and the corresponding element in the second array maintains a
cumulative sum of the weights for that matching matrix.

The weight of each vote is determined by two factors. The first is the dissimilarity between the
descriptor-ensemble of the exemplar and that of the matched input agents D(Qt,Ds). The second is a
measure of temporal consistency, with the intuition being that if the N -subset of agents is matched at
temporal pair (t, s) is correct, the same N -subset of agents should be matched for other pairs (t′, s′) in
small temporal neighborhoods of the exemplar and input video. We measure this using the `1 distance
between matching matrices: ||W t,s − W t′,s′||1. These two factors are combined to provide a vote’s
weight as

v(W t,s) =
∑

(t′,s′)∈N (t,s)

(‖W t,s −W t′,s′‖1 + 1)D(Qt′ ,Ds′), (4)

whereN (t, s) is a temporal neighborhood of (t, s) in which we enforce the consistency and it is depicted
in Fig. 2, where the pair (t, s) is shown in black square and the neighborhood is shown as shaded area.

As a result, the voting procedure is shown in Algorithm 1, where in the last two steps we find among
those matching matrices which receive a substantial number of supports from instantaneous matchings
the best matching W ∗ with the lowest average dissimilarity to the exemplar. This idea is also illustrated
in Fig. 1, where a thick matching line indicates a strong similarity (low weight v), and the agents
receiving the lowest average weight are selected as participants.

2.3. Branch-and-Bound Temporal Localization

Our third step is to determine the starting time Ts and ending time Te (1 ≤ Ts < Te ≤ T ) of the
interaction. For this purpose, after the participants are determined through the best matching W ∗, we
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1. Clear both accumulator arrays;

2. For each t ∈ [1, T ], s ∈ [1, S], increment the count for the matching matrix W t,s by 1, and increase the sum of
weights
in the companion array corresponding to W t,s by v(W t,s);

3. Identify a subarray of matrices receiving more than S
2 counts,

and normalize the sum of weights in the companion subarray
by corresponding counts;

4. Report the matching matrix W ∗ to be the one in the subarray receiving the minimum normalized sum of weights.

Algorithm 1: Voting procedure for identify the participants (i.e., the best overall matching W ∗).

recompute for all (t, s) pairs the dissimilarities under this best matching D̂(Qt,Ds,W
∗), between the

interaction of the individuals selected by W ∗ at time t and the exemplar at time s. We then compute
D∗(t) = mins D̂(Qt,Ds,W

∗), the minimal dissimilarity of the input interaction by the selected partici-
pants at time t to the entire exemplar, and s∗(t) = arg mins D̂(Qt,Ds,W

∗), the time in the exemplar at
which the input at time t exhibits this maximum similarity.

If the N selected agents in the input perform the same interaction during Ts ≤ t ≤ Te as those in the
exemplar during 1 ≤ s ≤ S, they will be visually similar and temporally aligned: The minimum-scores
D∗(t) will be small for Ts ≤ t ≤ Te, and each minimum-score time s∗(t) will be in the same relative
location in [1, S] as t is in [Ts, Te]. Our aim is to design an objective function that encodes preferences
for both to enable efficient temporal search for the optimal Ts and Te. As interactions occur at variable
rates within their temporal extent, we use a temporal pyramid to efficiently measure alignment in a way
that also respects these variations. The pyramid contains L levels indexed by l ∈ [0, 1, · · · , L − 1] and
equal-length cells at the lth level indexed by i ∈ [0, 1, · · · , 2l − 1]. The indicator 1(t ∈ C(Ts, Te, l, i)) is
one whenever t occurs in the ith cell of the lth level of the pyramid over [Ts, Te], and 1(s ∈ C(1, S, l, i))
is the analogous indicator for the exemplar. Then, when considering an input interval [Ts, Ts] we measure
alignment for each time-pair (t, s) using

k(t, Ts, Te, s, 1, S) ,
L−1∑
l=0

2l∑
i=1

1(t ∈ C(Ts, Te, l, i))1(s ∈ C(1, S, l, i)). (5)

Let (ts, te) be the true, unknown starting and ending times of the detected interaction in the input
video, and suppose that the input descriptor-ensemble over this interval exactly matches that of the
exemplar. To determine good estimates for the interval (ts, te) we define a cost that is a product of the
temporal alignment and visual similarity summed over the candidate interval:

f(Ts, Te) ,
Te∑

t=Ts

k(t, Ts, Te, s
∗(t), 1, S)(D∗(t)− 1). (6)

As will be described in the next section, we use metric learning to ensure that the dissimilarities D∗(t)
are driven toward 0 in the true interval [ts, te] and toward 2 otherwise. This means that the summand
in (6) considered as a function of t assumes a negative value in the desired interval ts ≤ t ≤ te and
a positive value otherwise, as denoted as q(t) and depicted in the bottom of Fig. 1. This ensures that
the function f achieves the global minimum if and only if the interval [Ts, Te] is exactly aligned to the
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desirable interval [ts, te]. As a result, f(Ts, Te) satisfies the “quality function” requirements described
in [14] that enables the use of an efficient branch-and-bound search for the globally optimal interval
(Ts, Te) without the need for an exhaustive sliding window.

Specifically, we first specify the spaces where Ts and Te may take a value. We denote the length of
the shortest exemplar activity as Tmin, then we assume 1 ≤ Ts ≤ T − Tmin + 1 and Tmin + 1 ≤ Te ≤ T .
Additional constraint may be imposed, such as Tmin ≤ Te − Ts. Given these information, the temporal
branch-and-bound algorithm, as a companion to the 2-D case studied in [14], can be derived as in
Algorithm 2. In this algorithm, f̂(Ts,low, Ts,upp, Te,low, Te,upp) is a lower bound of the values of the
quality function evaluated on all intervals enclosed in [Ts,low, Ts,upp] × [Te,low, Te,upp]. To calculate this
lower bound, we define

f̂(Ts,low, Ts,upp, Te,low, Te,upp) =
L−1∑
l=0

2l∑
i=1

f̂(T l,i
s,low, T

l,i
s,upp, T

l,i
e,low, T

l,i
e,upp) (7)

where T i,l
s , T

i,l
e are the boundaries of cell C(Ts, Te, l, i). In other words, we use the summation of the

lower bounds of all cells in the pyramid as the lower bound of the entire interval. The evaluation of
f̂(T l,i

s,low, T
l,i
s,upp, T

l,i
e,low, T

l,i
e,upp), however, is a O(1) operation with the help of integral dissimilarities I(t)

of those negative group dissimilarities D∗(t) over t. Specifically, let

I(t) =
t∑

t′=1

min(0, D∗(t)) (8)

which only needs to be computed once. Then the lower bound for the cell C(Ts, Te, l, i) can be obtained
as

f̂(T l,i
s,low, T

l,i
s,upp, T

l,i
e,low, T

l,i
e,upp) = I(T l,i

e,upp)− I(T l,i
s,low). (9)

We have described the approach to locate the single best match for one exemplar. Though it operates
on continuous tracks that are achievable in all experiments in Sec. 4, the process can also handle mod-
erately broken tracks by setting the descriptor values of missing temporal units to be sufficiently large
(or small) so as not to be matched with any exemplar agents. As long as the number of missing units
is small, correct matches still dominate during voting. Then, D∗(t) and s∗(t) can be interpolated from
adjacent units.

3. Descriptor Metric Learning
As mentioned in Sec. 2.1, we learn matrices ΣI , ΣP for the Mahalanobis distances dI(f , f ′) and

dP (g,g′), so that the learned metrics can: 1) enhance discrimination between exemplar categories by
ensuring that distances are smaller when descriptors are drawn from roughly the same temporal location
within a labeled exemplar of the same category, and larger otherwise; and 2) enhance the accuracy of
temporal localization by ensuring that distances between labeled ensembles and unlabeled “background”
ensembles are large. The combination of 1) and 2) leads to more accurate spatial localizations of partic-
ipants (i.e. better W ∗ as discussed in Sec. 2.2), and induces the “quality function” conditions required
for efficient temporal localization by branch-and-bound (Sec. 2.3). We achieve all of these benefits
simultaneously by using an adaptation of the Large Margin Nearest Neighbor (LMNN) framework [23].

For each application scenario, we use a training set of exemplar videos—possibly having varying
numbers of agentsN—that are annotated with start/end times, category labels,N -agent correspondences

7



1. Initialize: Let Ts,low = 1, Ts,upp = T − Tmin + 1, Te,low = Tmin + 1, and Te,upp = T ; Initialize priority queue Q
as empty;

2. Do

• If Ts,upp − Ts,low ≥ Te,upp − Te,low

T
(1)
s,low ← Ts,low, T (1)

s,upp ← Ts,low +
Ts,upp−Ts,low

2 , T (1)
e,low ← Te,low, T (1)

e,upp ← Te,upp,

T
(2)
s,low ← Ts,low +

Ts,upp−Ts,low

2 , T (2)
s,upp ← Ts,upp, T (2)

e,low ← Te,low, T (2)
e,upp ← Te,upp;

else
T

(1)
s,low ← Ts,low, T (1)

s,upp ← Ts,upp, T (1)
e,low ← Te,low, T (1)

e,upp ← Te,low +
Te,upp−Te,low

2 , T (2)
s,low ← Ts,low,

T
(2)
s,upp ← Ts,upp, T (2)

e,low ← Te,low +
Te,upp−Te,low

2 , T (2)
e,upp ← Te,upp;

• If Tmin ≤ T
(1)
e,upp − T

(1)
s,low, push (T

(1)
s,low, T

(1)
s,upp, T

(1)
e,low, T

(1)
e,upp, f̂(T

(1)
s,low, T

(1)
s,upp, T

(1)
e,low, T

(1)
e,upp)) into Q;

• If Tmin ≤ T
(2)
e,upp − T

(2)
s,low, push (T

(2)
s,low, T

(2)
s,upp, T

(2)
e,low, T

(2)
e,upp, f̂(T

(2)
s,low, T

(2)
s,upp, T

(2)
e,low, T

(2)
e,upp)) into Q;

• Let (Ts,low, Ts,upp, Te,low, Te,upp) be the tuple in Q achieving the minimal f̂ ;

Until Ts,low = Ts,upp, Te,low = Te,upp.

3. Output: Ts ← Ts,low, Te ← Te,low.

Algorithm 2: Branch-and-bound search for temporal localization.

Figure 3. Constraints used in discriminative metric learning. Each row is an annotated two-cell exemplar with
markers representing instantaneous descriptor-ensembles at each time unit. For discrimination between interaction
categories, distances between ensembles of the same class (red circles and red squares) should be small whenever
they occur in the same cell number; and distances for different classes (red vs. yellow) should be large. For effec-
tive and efficient temporal localization, distances between ensembles at labeled times and unlabeled “background”
times (black circles) should be large, and all distances should be offset by −1.

between exemplars of the same category. We use unlabeled time units in the videos as “background”
samples. Intuitively, the learned metrics should satisfy the six types of constraints shown in Fig. 3. This
figure depicts three different exemplar videos in which a subset of time units have been labeled as being
distinctive interactions of two different classes. In this example, each labeled exemplar is shown as
being divided into two cells; these correspond to the lowest level of the temporal pyramid described in
Sec. 2.3. The first three constraints in the list enhance discrimination between categories, while the last
three enhance the accuracy of temporal localization. Offsetting all of the distances by −1 ensures that
the summand in (6) assumes proper negative values as required for branch-and-bound search.
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Figure 4. For the classroom dataset, pairwise descriptors for groups comprised of (a) three or more participants,
and (b) two participants. See text for details.

We enforce these constraints through an LMNN framework by constructing two collections from our
database exemplars. The collectionP contains all pairs of instantaneous interaction ensembles that are of
the same category (red circles and red squares in Fig. 3) and occur roughly in the same temporal location
within the interaction instances (i.e., in the same cell of the lowest level of the temporal pyramids),
together with their “ground-truth” matchings. The collectionM is comprised of ordered triples (h, k, l)
in which ensemble h is the same category as ensemble k and ensemble l is either of a different category
or background. Having defined these two collections, each Mahalanobis metric is found by solving

min
ΣI ,ΣP

∑
(u,v)∈P

D̂(Du,Dv,Wu,v) + γ
∑

(h,k,l)∈M

ξh,k,l,

s.t.D̂(Dh,Dl,W )− D̂(Dh,Dk,Wh,k) ≥ 2− ξh,k,l,ΣI � 0,ΣP � 0, ξh,k,l ≥ 0,

(10)

where Wu,v is the “ground-truth” matching for pair (u, v) and W is an arbitrary matching1. The mini-
mization over either ΣI or ΣP is exactly a LMNN problem [23], and we apply LMNN multiple times to
learn a distinct pair (ΣI ,ΣP ) for each value of N that exists in the training set.

4. Experiments
We evaluate our approach on three datasets, two that involve humans and one that involves mice. The

datasets are very different from one another, with distinct types of individual and pairwise descriptors
that are appropriate for that environment. In all experiments we use four-level temporal pyramids for the
interactions and we set the time unit to be half the duration of the cells in the lowest level. Neighborhood
sizes tw and sw are taken as a quarter of the length of a cell on the bottom of the pyramid2.

4.1. Classroom Interaction Database

We collected and annotated a new database of videos capturing students’ behaviors over five hour-
long sessions in an interactive classroom. As shown in the left-most images of Fig. 7, the students
are seated in a regular lecture hall and are observed by a camera array with non-overlapping fields of

1It is useful to add to the collection M additional triples in which l is derived from same-category same-cell pairs but
with permuted incorrect matching matrices. In this case D̂(Dh,Dl,W ) in (10) is replaced by D̂(Dh,Dl, W̄h,l), where W̄h,l

is the permuted incorrect matching.
2When the neighborhood extends out of video boundary, we only consider the cells within the boundary and normalize

the vote by the number of cells actually involved.
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Figure 5. (a)(b)(c) ROC curves for identifying the participants of an two-person, three-person, and four-person
interactions using the proposed approach and baselines. (d) Temporal localization accuracies using the proposed
approach with and without metric learning, using individual and/or pairwise descriptors.

view. The classroom is “interactive” because at various times throughout the lecture students are invited
to engage in ad-hoc group discussions about problems provided by the instructor (see, e.g., [5]). The
ad-hoc groups can form within and across seating rows, and detecting them is a challenge because the
number of by-standers is much larger than the number of participants (M is between 10 and 20 while
N is between 2 and 4), video quality is limited (low light, 15fps), and the visual cues for interaction are
quite subtle. The ability to automatically detect such interactions is important for education researchers,
however, since it can help in understanding how students self-organize into groups, and which geometric
configurations of groups lead to improved educational outcomes [5].

We applied an OpenCV face detector and generated long tracks of the bounding boxes using a com-
bination of OpenCV mean-shift tracking and optical flow. In consultation with education experts, we
manually identified the participants and start/end times of all two-person, three-person, and four-person
interactions, obtaining 254 two-person, 112 three-person, and 16 four-person interactions in total. We
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Figure 6. Average classification accuracies and false positives for two-person and three-person interactions (Indi-
vidual and/or pairwise descriptors, with or without metric learning (ML)).

defined interaction categories based on the geometric configurations of the participants: three categories
for 2-person interactions (same row; different rows with left agent in front; different rows with right
agent in front) and four categories for 3-person interactions. Samples of these exemplars can be found in
the columns (c1)-(c3) of Fig. 7. The annotated interactions range from a few seconds to tens-of-seconds
in length. Since the raw videos arise from five different hour-long session, we adopt a leave-one-session-
out evaluation scheme in partitioning training samples (exemplars) from test samples (inputs). Also, for
each split of the data we manually eliminate the false detections and tracks in the exemplars, while
leaving them present in the test samples.

We use a coarse representation of the head pose as the individual descriptor. Specifically, we compute
the Histogram of Oriented Gradient (HOG) feature within each temporal unit and each detection box,
and train nine one-versus-all SVMs on these HOG features to estimate the likelihood of nine head poses
(front, left, lower-left, lower-front, lower-right, right, back-right, and back-left) for a new face in the
input. The nine-dimensional likelihood vector serves as our individual descriptor. Meanwhile, we derive
the pairwise descriptor for three or more individuals based on the geometrical configurations of the
bounding boxes. As shown in the left panel of Fig. 4(a), for a pairwise descriptor of target m relative
to target m′ among five targets, we compute the distances ri between all others and m, and the relative
angles ai between the connecting vectors and

−−→
mm′, and combine all these geometric quantities into a

pairwise descriptor gm,m′,t. When computing gn,n′,s in the input (right panel of Fig. 4(a)), we align
−→
nn′ against

−−→
mm′ and predict the locations of the three individuals (shown in red), and compute the true

distances zi and relative angles bi by locating the nearest individuals to the predicted locations. This
pairwise representation achieves invariance under similarity transforms. For two-person interaction, we
simply use the distance and the relative angles against the right horizontal axis (Fig. 4(b)).

We begin by looking at accuracy of detection, where we ignore the inferred interaction categories
and simply measure the systems ability to detect when an interaction has occurred. Fig. 5 (a–c) show
detection ROC curves for different group sizes with various parts of the system turned off. This includes
using only one of the individual or pairwise descriptors, and using metric learning (optimized ΣI ,ΣP )
or not (ΣI and ΣP set to identity matrices). Using all parts of the system yields the best results, and we
note that performance improves as the number of participants N increases. The latter is due to the fact
that interaction patterns are more salient when more pairwise information is available.

Next, we study classification performance for 2-person and 3-person interactions, where we measure
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the accuracy of inferred interaction categories. (Due to the small number of 4-person interactions in our
dataset, we did not define categories for them.) As before we do this with various parts of the system
turned off, and Fig. 6 shows the average true positive rates versus false positives when further classifying
detected interactions into the three or four categories. Again we see that performance improves when
more parts of the system turned on. We can also draw a contrast with the detection results of Fig. 5
where the pairwise features are substantially more important than the individual ones. This difference
diminishes in Fig. 6, likely because we are measuring performance on correctly-detected interactions,
where head pose provides stronger evidence than spatial configuration. An improved head-pose estima-
tor or a more sophisticated description of body pose can be expected to further improved classification
performance. Finally, we investigate the temporal localization performance, for which we compute the
ratio of the intersection to the union of the estimated interval and the annotated interval, and we show
the averages in Fig. 5 (d).

Fig. 7 shows some successes and failures of detection and matching. The second row shows a false
detection (blue dashed box), where two people are not interacting but exhibit head poses similar to those
of an interaction. In the fourth row, a three-person interaction is correctly identified even though the
third associated exemplar is from a different category (two looking right). In the other rows, two-person
and three-person interactions are correctly detected and matched with exemplars.

To evaluate the efficiency of the algorithm, we replace the optimal matching method with an exhaus-
tive enumeration of all possible matchings. We also apply temporal sliding windows at eight scales
ranging from half to twice of the exemplar length, stopping using the remaining scales whenever the
current window achieves the same quality function value as the branch-and-bound. We show the aver-
age computation time for one match between an exemplar and an input on a 8-core 2.8GHz Macintosh
in Table 1, where we see clear savings for the proposed approach.

Table 1. Computational cost comparison for the proposed matching approach and baselines (in seconds).
# of Participants 2 3 4

Exhaustive+Sliding Window 17.2 60.4 253.2
Exhaustive+Branch and Bound 12.6 27.6 59.7

Optimal Pairing+Sliding Window 12.4 23.2 40.8
Proposed 8.0 19.8 32.3

4.2. UT-Interaction Dataset.

For comparison to the state-of-art, we evaluate our approach on the UT-Interaction dataset [21]. We
follow the protocol defined in previous work [21, 1]: 20% of available interaction annotations are used
as exemplars for training, and the remaining (non-annotated) sequences are used for testing. For individ-
ual descriptors, we use 32-dimensional histogram of spatio-temporal features developed by [6] in each
unit and each bounding box, which is constructed by applying PCA to a k-means-clustered, 500-word
vocabulary. For pairwise descriptors, we use the difference between two 32-dimensional histograms
computed for each of the two humans. The optical flow is computed using OpenCV, and histograms
are comprised of 8 directions and 4 magnitudes. Training examples are manually examined to ensure
error-less per-human bounding boxes, and for testing, we use an off-the-shelf human detector [8], and
associate the detected boxes across frames to form continuous tracks.

Table 2 compares recognition accuracy and false-alarm rates to those of previous work [21, 1]. For our
system, we consider one database exemplar at a time, compute its maximal response over the input video,
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Figure 7. Examples of social interaction detection and matching on the classroom interaction database. Each row
is an example of detecting a salient interaction from an input. (a) the input; (b) detected social interaction; (c-1)
to (c-3) top three associated database exemplars that support the detection. (Blocked faces correspond to students
who did not consent to their images appearing in publications.)

Table 2. Classification accuracies and false positive (FP) rates for the proposed method and baselines on the UT-
Interaction dataset.

Accuracy ([21], [1], ours) FP Rate ([21], [1], ours)
Hug (0.875, 0.904, 1.00) (0.075, 0.055, 0.00)
Kick (0.750, 0.775, 0.875) (0.138, 0.108, 0.063)
Point (0.625, 0.663, 0.750) (0.025, 0.025, 0.088)
Punch (0.500, 0.632, 0.750) (0.201, 0.154, 0.138)
Push (0.750, 0.782 , 0.750) (0.125, 0.101, 0.138)

Shake Hands (0.750, 0.789, 1.00) (0.088, 0.060, 0.00)
Average (0.708, 0.758, 0.854) (0.108, 0.083, 0.071)

and claim a true positive only when both the class-label and the identified participants are simultaneously
correct. Otherwise a false positive is indicated for that exemplar class. By these measures, our approach

13



provides improved accuracy and competitive false positive rates. Next we study detection in terms
of both temporal localization and participant identification. For temporal localization, we follow the
protocol of [1] by indicating a true-positive when there is correct classification and more than a 50%
ratio between the intersection and union of the estimated temporal interval and the ground-truth. We
achieve a slightly smaller area under ROC curve than the two baselines, as shown in Table 3, but point
out that differences are hard to interpret because the temporal boundaries are somewhat ambiguous for
the consecutively-executed interactions in the dataset. To assess participant identification, we enforce
a stricter true-positive criterion that requires 100% correct identification instead of the 50% value used
in [1] and our system still outperforms the method of [1]. We attribute this to the fact that we explicitly
discriminate interactions and participants in the form of tracks of bounding boxes, while [1] does not do
so but simply explains an input using a non-discriminative generative model.

Table 3. Area under ROC curve for the proposed method and the baselines on UT-Interaction dataset.
[21] [1] ours

Temporal Localization 0.91 0.94 0.89
Participants Identification N/A 0.87 0.93

As before, we disable components of our system to explore the effectiveness of combining both in-
dividual and pairwise descriptors, and using metric learning. The performance comparison is show in
Table 4. It is interesting to see the pairwise descriptor plays a more crucial role for this dataset: A
significant performance drop arises when we only consider individual action descriptors.

Table 4. Classification accuracies and false positive (FP) rates comparison on UT-Interaction dataset for evaluating
the effectiveness of different components of the proposed approach: Individual and/or pairwise descriptors, with
or without metric learning (ML).

Individual only pairwise only Both
Accur. w. ML 0.688 0.813 0.854

Accur. w/o ML 0.647 0.750 0.771
FP Rate w. ML 0.125 0.096 0.071

FP Rate w/o ML 0.163 0.113 0.083

4.3. Caltech Resident-Intruder Mouse Dataset

We also tested the approach on Caltech Resident-Intruder Mouse Dataset [2], which contains long
video sequences recording pair-wise interactions between two mice. Behaviors are categorized into 12
different mutually exclusive action types, plus an ‘other’ category indicating no behavior of interest is
occurring. A video typically lasts around 10 minutes at 25fps with a resolution of 640x480 pixels. Every
video frame is labeled with one of the thirteen ground-truth categories, resulting in a segmentation of
the videos into action intervals. For more details please refer to [2]. Note that in all videos are pair-
wise interactions without ‘by-standers’ (i.e. M = N ), our experiment on this dataset is not meant to
distinguish the participants, but to demonstrate that our approach can be directly used for a traditional
task of temporal segmentation and classification without any changes.

We exactly follow the training/testing partitions provided by the dataset. We extract the spatio-
temporal interest points (STIP) based appearance features and compute trajectory-based features from
the tracks provided with the dataset as [2] does (See [2] for details). Differently from [2], we only
compute STIP based features inside the bounding boxes enclosing the mice. The trajectory-based fea-
tures (position, velocities, etc.) consists of those describing the motion of each individual mouse and
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those describing the relative motion between two mice. We denote the former as T ind and the latter as
T pair. For features arising only from trajectories, there can be two possible working modes: Using all
trajectory-based features as individual descriptors (denoted as Trajectory 1), or using T ind as individual
descriptors and using those describing pairs’ motions as pairwise descriptors (denoted as Trajectory 2).
To classify an temporal interval in a test video that is successfully matched to one or more exemplars,
we simply read the label of the top-scoring exemplar. Table 5 shows the results using the error metric
(frame-wise accuracy) defined in [2]. It is evident that splitting the motion into individual ones and pair-
wise ones and learning separate metrics for them is advantageous. Motion trajectory information is much
more important than local STIP-based features, which is not surprising given the limited articulation of
the agents.

Table 5. Accuracies for the proposed method and the baselines on Caltech Resident-Intruder Mouse Dataset. (%)
Trajectory 1 Trajectory 2 STIP Both

[2] w/o. context 52.3 52.3 29.3 53.1
[2] w. context 58.3 58.3 43.0 61.2
Ours w/o. ML 45.6 49.4 18.8 50.9
Ours w. ML 54.5 66.0 31.7 62.9

It is observed in [2] that accuracy varies with the length of the interaction and with the length of
window within which the local feature is computed. To investigate the performance of our approach
on different lengths of the interaction as compared to [2], we implemented the approach in [2] using
trajectory-based features and one-level auto-context classifier. As shown by the result in Fig. 8, our
approach is particularly better at localizing longer interactions though [2] demonstrates its advantage
under a shorter feature window on shorter interactions.

Figure 8. Accuracy comparison for varying length of interactions between [2] and our approach.

5. Conclusion.
We introduced a voting-based approach for detecting and localizing small-group interactions within

larger social gatherings. The approach is based on matching against exemplars, and it avoids the need
for any explicit semantic description of a group interaction. Since it operates on agent tracks, it is also
quite flexible and can be applied in many different multi-agent scenarios, provided that the environment-
specific individual descriptor and the environment-specific pairwise descriptor are properly defined. As
practical detection and tracking continue to improve, we expect the opportunities for this type of analysis
to expand.
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We represent group interactions as collections of individual and pairwise descriptors (1st and 2nd or-
der), and our results suggest that this is effective for groups of up to four agents. Higher-order interaction
descriptors may play a more important role for larger interacting groups, and this may be a useful future
research direction as new datasets become available. It may also be worth considering more flexible
schemes for breaking an interaction into parts. We use a simple combination of descriptor collection and
temporal pyramid, but one could imagine using a (learned) tree of space-time parts, analogous to how
spatial parts-based models are used for object detection.
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