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Abstract

The serious performance decline with decreasing resolu-
tion is the major bottleneck for current pedestrian detection
techniques [14, 23]. In this paper, we take pedestrian de-
tection in different resolutions as different but related prob-
lems, and propose a Multi-Task model to jointly consider
their commonness and differences. The model contains res-
olution aware transformations to map pedestrians in differ-
ent resolutions to a common space, where a shared detector
is constructed to distinguish pedestrians from background.
For model learning, we present a coordinate descent proce-
dure to learn the resolution aware transformations and de-
formable part model (DPM) based detector iteratively. In
traffic scenes, there are many false positives located around
vehicles, therefore, we further build a context model to sup-
press them according to the pedestrian-vehicle relationship.
The context model can be learned automatically even when
the vehicle annotations are not available. Our method re-
duces the mean miss rate to 60% for pedestrians taller than
30 pixels on the Caltech Pedestrian Benchmark, which no-
ticeably outperforms previous state-of-the-art (71%).

1. Introduction

Pedestrian detection has been a hot research topic in
computer vision for decades, for its importance in real ap-
plications, such as driving assistance and video surveil-
lance. In recent years, especially due to the popularity of
gradient features, pedestrian detection field has achieved
impressive progresses in both effectiveness [6, 31, 43, 41,
19, 33] and efficiency [25, 11, 18, 4, 10]. The leading de-
tectors can achieve satisfactory performance on high resolu-
tion benchmarks (e.g. INRIA [6]), however, they encounter
difficulties for the low resolution pedestrians (e.g. 30-80
pixels tall, Fig. 1) [14, 23]. Unfortunately, the low resolu-
tion pedestrians are often very important in real application-
s. For example, the driver assistance systems need detect
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Figure 1. Examples of multiple resolution pedestrian detection re-
sult of our method in the Caltech Pedestrian Benchmark [14].

the low resolution pedestrians to provide enough time for
reaction.

Traditional pedestrian detectors usually follow the scale
invariant assumption: a scale invariant feature based detec-
tor trained at a fixed resolution could be generalized to all
resolutions, by resizing the detector [40, 4], image [6, 19] or
both of them [11]. However, the finite sampling frequency
of the sensor results in much information loss for low reso-
lution pedestrians. The scale invariant assumption does not
hold in the case of low resolution, which leads to the dis-
astrous drop of the detection performance with the decrease
of resolution. For example, the best detector achieves 21%
mean miss rate for pedestrians taller than 80 pixels in Cal-
tech Pedestrian Benchmark [14], while increases to 73% for
pedestrians 30-80 pixels high.

Our philosophy is that the relationship among different
resolutions should be explored for robust multi-resolution
pedestrian detection. For example, the low resolution sam-
ples contain a lot of noise that may mislead the detector in
the training phase, and the information contained in high
resolution samples can help to regularize it. We argue that
for pedestrians in different resolutions, the differences exist
in the features of local patch (e.g. the gradient histogram
feature of a cell in HOG), while the global spatial struc-
ture keeps the same (e.g. part configuration). To this end,
we propose to conduct resolution aware transformations to
map the local features from different resolutions to a com-
mon subspace, where the differences of local features are
reduced, and the detector is learned on the mapped fea-
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tures of samples from different resolutions, thus the struc-
tural commonness is preserved. Particularly, we extend the
popular deformable part model (DPM) [19] to multi-task
DPM (MT-DPM), which aims to find an optimal combina-
tion of DPM detector and resolution aware transformations.
We prove that when the resolution aware transformations
are fixed, the multi-task problems can be transformed to be
a Latent-SVM optimization problem, and when the DPM
detector in the mapped space is fixed, the problem equals
to a standard SVM problem. We divide the complex non-
convex problem into the two sub-problems, and optimize
them alternatively.

In addition, we propose a new context model to improve
the detection performance in traffic scenes. There is a phe-
nomenon that quite a large number of detections (33.19%
for MT-DPM in our experiments) are around vehicles. The
vehicle localization is much easier than pedestrian, which
motivates us to employ pedestrian-vehicle relationship as
an additional cue to judge whether the detection is a false or
true positive. We build an energy model to jointly encode
the pedestrian-vehicle and geometry contexts, and infer the
labels of detections by maximizing the energy function on
the whole image. Since the vehicle annotations are often
not available in pedestrian benchmark, we further present a
method to learn the context model from ground truth pedes-
trian annotations and noisy vehicle detections.

We conduct experiments on the challenging Caltech
Pedestrian Benchmark [14], and achieve significantly im-
provement over previous state-of-the-art methods on all the
9 sub-experiments advised in [14]. For the pedestrians taller
than 30 pixels, our MT-DPM reduces 8% and our contex-
t model further reduces 3% mean miss rate over previous
state-of-the-art performance.

The rest of the paper is organized as follows: Section 2
reviews the related work. The multi-task DPM detector and
pedestrian-vehicle context model are discussed in Section
3 and Section 4, respectively. Section 5 shows the experi-
ments and finally in Section 6 we conclude the paper.

2. Related work
There is a long history of research on pedestrian detec-

tion. Most of the modern detectors are based on statistical
learning and sliding-window scan, popularized by [32] and
[40]. Large improvements came from the robust features,
such as [6, 12, 25, 3]. There are some papers fused HOG
with other features [43, 7, 45, 41] to improve the perfor-
mance. Some papers focused on special problems in pedes-
trian detection, including occlusion handling [46, 43, 38, 2],
speed [25, 11, 18, 4, 10], and detector transfer in new scenes
[42, 27]. We refer the detailed surveys on pedestrian detec-
tion to [21, 14].

Resolution related problems have attracted attention in
recent evaluations. [16] found that the pedestrian detection

performance depends on the resolution of training samples.
[14] pointed that the pedestrian detection performance drop-
s with decreasing resolution. [23] observed similar phe-
nomenon in general object detection task. However, there
are very limited works proposed to tackle this problem. The
most related work is [33], which utilized root and part filter-
s for high resolution pedestrians, while only used the rigid
root filter for low resolution pedestrians. [4] proposed to use
a single model per detection scale, but the paper is focused
on speedup.

Our pedestrian detector is built on the popular DPM (de-
formable part model) [19], which combined rigid root filter
and deformable part filters for detection. The DPM only
performs well for high resolution objects, while our MT-
DPM generalizes it to low resolution case. The coordinate
descent procedure in learning is motivated by the steerable
part model [35, 34], which trained the shared part bases to
accelerate the detection. Note that [34] learned a shared fil-
ter bases, while our model learns a shared classifier, which
result in a quite different formulation. [26] also proposed
a multi-task model to handle dataset bias. The multi-task
idea in this paper is motivated by works on face recognition
across different domains, such as [28, 5].

Context has been used in pedestrian detection. [24, 33]
captured the geometry constraint under the assumption that
camera is aligned with ground plane. [9] took the appear-
ance of nearby regions as the context. [8, 36, 29] captured
the pair-wise spatial relationship in multi-class object de-
tection. To the best of our knowledge, this is the first work
to capture the pedestrian-vehicle relationship to improve
pedestrian detection in traffic scenes.

3. Multi-Task Deformable Part Model
There are two intuitive strategies to handle the multi-

resolution detection. One is to combine samples from d-
ifferent resolutions to train a single detector (Fig. 2(a)), and
another is to train independent detectors for different reso-
lutions (Fig. 2(b)). However, both of the two strategies are
not prefect. The first one considers the commonness be-
tween different resolutions, while their differences are ig-
nored. Samples from different domains would increase the
complexity of the detection boundary, which probably be-
yond the ability of a single linear detector. On the contrary,
multi-resolution model takes pedestrian detection in differ-
ent resolutions as independent problems, and the relation-
ship among them are missed. The unreliable features of low
resolution pedestrians can mislead the learned detector and
make it difficult to be generalized to novel test samples.

In this part, we present a multi-resolution detection
method by considering the relationship of samples from d-
ifferent resolutions, including the commonness and the dif-
ferences, which are captured by a multi-task strategy simul-
taneously. Considering the differences of different resolu-
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tions, we use the resolution aware transformations to map
features from different resolutions to a common subspace,
in which they have similar distribution. A shared detector
is trained in the resolution-invariant subspace by samples
from all resolutions, to capture the structural commonness.
It easy to see that the first two strategies are the special case
of the multi-task strategy.

Particularly, we extend the the idea to popular DPM de-
tector [19] and propose a Multi-Task form of DPM. Here
we consider the partition of two resolutions (low resolution:
30-80 pixels tall, and high resolution: taller than 80 pixels,
as advised in [14]). Note that extending the strategy for oth-
er local feature based linear detectors and more resolution
partitions are straightforward.

3.1. Resolution Aware Detection Model

To simplify the notation, we introduce a matrix based
representation for DPM. Given the image I and the collec-
tion of m part locations L = (l0, l1, · · · , lm), the HOG fea-
ture φa(I, li) of the i-th part is a nh×nw×nf dimensional
tensor, where nh, nw are the height and width of HOG cells
for the part, and nf is the dimension of gradient histogram
feature vector for a cell. We reshape φa(I, li) to be a ma-
trix Φa(I, li), where every column represents features from
a cell. Φa(I, li) is further concatenated to be a large ma-
trix Φa(I, L) = [Φa(I, l0),Φa(I, l1), · · ·Φa(I, lm)]. The
column number of Φa(I, L) is denoted as nc, which is the
sum number of cells in parts and root. Demonstration of
the procedure is shown in Fig. 3. The appearance filters in
the detector are concatenated to be a nf × nc matrix Wa

in the same way. The spatial features of different parts are
concatenated to be a vector φs(I, L), and the spatial prior
parameter is denoted as ws. With these notations, the detec-
tion model of DPM [19] can be written as:

score(I, L) = Tr(WT
a Φa(I, L)) + wT

s φs(I, L), (1)

where Tr(·) is the trace operation defined as summation of
the elements on the main diagonal of a matrix. Given the
root location l0, all the part locations are latent variables,
and the final score is maxL∗ score(I, L∗), where L∗ is the
best possible part configurations when the root location is

fixed to be l0. The problem can be solved effectively by
the dynamic programming [19]. Mixture can be used to
increase the flexibility, but we ignore it for simplicity in no-
tation and adding mixture in the formulations is straightfor-
ward.

In DPM, pedestrian consists of parts, and every part con-
sists of HOG cells. When the pedestrian resolution changes,
the structure of parts and the HOG cell spatial relationship
keep the same. The only difference among different res-
olution lies in the feature vector of evert cell, so that the
resolution aware transformations PL and PH are defined on
it. The PL and PH are of the dimension nd × nf , and they
map the low and high resolution samples from the original
nf dimensional feature space to the nd dimensional sub-
space. The features from different resolutions are mapped
into the common subspace, so that can share the same de-
tector. We still denote the learned appearance parameters in
the mapped resolution invariant subspace as Wa, which is a
nd×nc matrix, and of the same size with PHΦa(I, L). The
score of a collection of part locations L in the MT-DPM is
defined as:{
Tr(WT

a PHΦa(I, L)) + wT
s φs(I, L), High Resolution

Tr(WT
a PLΦa(I, L)) + wT

s φs(I, L), Low Resolution.
(2)

The model defined above provides the flexibility to describe
pedestrians of different resolutions, but also brings chal-
lenges, since the Wa, ws, PH , PL are all unknown. In
the following part, we present the objective function of the
multi-task model for learning, and show the optimization
method.

3.2. Multi-Task Learning

The objective function is motivated by the original single
task DPM. Its matrix form can be written as:

arg min
Wa,ws

1

2
‖Wa‖2F +

1

2
wT

s ws (3)

+C
∑
N

max[0, 1− yn(Tr(WT
a Φa(In, L

∗
n)) + wT

s φs(L
∗
n))],

where ‖ · ‖F is the Frobenius Norm, and ‖Wa‖2F =
Tr(WaW

T
a ). yn is 1 if In(Ln) is pedestrian, and −1 for



background. The first two terms are used for regularize the
detector parameters, and the last term is the hinge loss in
DPM detection. The L∗n is the optimized part configuration
that maximizes the detection score of In. In the learning
phase, the part locations are taken as latent variables, and
the problem can be optimized by the Latent-SVM [19].

For multi-task learning, the relationship between differ-
ent tasks should be considered. In analogy to the original
DPM, MT-DPM is formulated as:

arg min
Wa,ws,PH ,PL

1

2
wTs ws (4)

+fIH (Wa, ws, PH) + fIL(Wa, ws, PL),

where IH and IL denote the high and low resolution train-
ing sets, including both pedestrian and background. Since
spatial term ws is directly applied to the data from differen-
t resolutions, it can be regularized independently. fIH and
fIL are used to consider the detection loss and regularize the
parameters PH , PL and Wa. fIH and fIL are of the same
form, here we take fIH as an example. It can be written as:

fIH (Wa, ws, PH) =
1

2
‖PTHWa‖2F (5)

+C
∑
NH

max[0, 1− yn(Tr(WT
a PHΦa(IHn , L

∗
n)) + wTs φs(L

∗
n))],

where the regularization term PT
HWa is a nf × nc dimen-

sional matrix, and of the same dimension with the original
feature matrix. Since PH and Wa are applied to original
appearance feature integrally in calculating the appearance
score Tr((PT

HWa)T Φa(I, L), we take them as an ensem-
ble and regularize them together. The second term is the
detection loss for resolution aware detection, corresponding
to the detection model in Eq. 2. The parameters Wa and ws

are shared between fIH and fIL . Note that more partitions
of resolutions can be handle naturally in Eq. 4.

In Eq. 4, we need to find an optimal combination of Wa,
ws, PH , and PL. However, Eq. 4 is not convex when all
of them are free. Fortunately, we show that given the two
transformations, the problem can be transformed into a s-
tandard DPM problem, and given the DPM detector, it can
be transformed into a standard SVM problem. We conduc-
t a coordinate descent procedure to optimize the two sub-
problems iteratively.

3.2.1 Optimize Wa and ws

When PH and PL are fixed, we can map the features to
the common space on which DPM detector can be learned.
We denote PHP

T
H + PLP

T
L as A, A

1
2Wa as W̃a. For

high resolution samples we denote A−
1
2PHΦa(In, L

∗
n) as

Φ̃a(In, L
∗
n), and for low resolution samples we denote

A−
1
2PLΦa(In, L

∗
n) as Φ̃a(In, L

∗
n). Eq. 4 can be reformu-

lated as:

arg min
W̃a,ws

1

2
‖W̃a‖2F +

1

2
wTs ws (6)

+C
∑

NH+NL

max[0, 1− yn(Tr(W̃a

T
Φ̃a(In, L

∗
n)) + wTs φs(L

∗
n))],

which has the same form with the optimization problem
in Eq. 3, and the Latent-SVM solver can be used here.
Once the solution to Eq. 6 is achieved, Wa is computed by
(PHP

T
H + PLP

T
L )−

1
2 W̃a.

3.2.2 Optimize PH and PL

When the Wa and ws are fixed, PH and PL are inde-
pendent, thus the optimization problem can be divided
into two subproblems: arg minPH

fIH (Wa, ws, PH) and
arg minPL

fIL(Wa, ws, PL). Since they are of the same
form, here we only give the details for optimizing PH .

Given the Wa and ws, we first infer the part location of
every training samples L∗n by finding a part configurations
to maximize Eq. 2. Denoting WaW

T
a as A, A

1
2PH as P̃H ,

and A−
1
2WaΦa(IHn , L

∗
n)T as Φ̃a(IHn , L

∗
n), the problem

of Eq. 4 equals to:

arg min
P̃H

1

2
‖P̃H‖2F (7)

+C
∑
NH

max[0, 1− yn(Tr(P̃H
T

Φ̃a(IHn , L
∗
n)) + wTs φs(L

∗
n))].

The only difference between Eq. 7 and standard SVM is an
additional term wT

s φs(L
∗
n). Since wT

s φs(L
∗
n) is a constant

in the optimization, it can be taken as an additional dimen-
sion of V ec(Φ̃a(IHn , L

∗
n)). In this way, the Eq. 7 can be

solved by a standard SVM solver. After we get P̃H , the PH

can then be computed by (WaW
T
a )−

1
2 P̃H .

3.2.3 Training Details

To start the loop of the coordinate descent procedure, one
need to give initial values for either {Wa, ws} or {PH , PL}.
In our implementation, we calculate the PCA of HOG fea-
tures from randomly generated high and low resolution
patches, and use the first nd eigenvectors as the initial value
of PH and PL, respectively. We use the HOG features in
[19] and abandon the last truncation term, thus nf = 31 in
our experiment. The dimension nd determines how much
information is kept for sharing. We examine the effect of
nd in the experiments. The solver in optimizing the prob-
lem Eq. 6 and Eq. 7 are based on the [22]. The maximum
number of the coordinate descent loop is set to be 8. The
bin size in HOG is set to 8 for high resolution model, and 4



for low resolution. The root filter contains 8× 4 HOG cells
for both low and high resolution detection model.

4. Pedestrian-Vehicle Context in Traffic Scenes
A lot of detections are located around vehicles in traf-

fic scenes (33.19% for our MT-DPM detector on Caltech
Benchmark), as shown in Fig. 4. It is possible to use the
pedestrian-vehicle relationship to infer whether the detec-
tion is true or false positive. For example, if we know the
location of vehicles in Fig. 4, the detections above a vehi-
cle, and detection at the wheel position of a vehicle can be
safely removed. Fortunately, the vehicles are more easier
to be localized than pedestrians, which has been proved in
previous work (e.g. Pascal VOC [17], KITTI [20]). Since it
is difficult to capture the complex relationship by handcraft
rules, we build a context model and learn it automatically
from data.

We split the spatial relationship between pedestrians and
vehicles into five types, including: “Above”, “Next-to”,
“Below”, “Overlap” and “Far”. We denote the feature of
pedestrian-vehicle context as g(p, v). If a pedestrian de-
tection p and a vehicle detection1 v have one of the first
four relationships, the context features at the correspond-
ing dimensions are defined as (σ(s),∆cx,∆cy,∆h, 1), and
other dimensions retain to be 0. If the pedestrian detection
and vehicle detection are too far or there’s no vehicle, all
the dimensions of its pedestrian-vehicle feature is 0. Here
∆cx = |cvx − cpx

|, ∆cy = cvy − cpy
, and ∆h = hv/hp,

where (cvx , cvy ), (cpx
, cpy

) are the center coordinates of ve-
hicle detection v and pedestrian detection p, respectively.
σ(s) = 1/(1 + exp(−2s)) is used to normalize the detec-
tion score to [0, 1]. For the left-right symmetry, the absolute
operation is conducted for ∆cx. Moreover, as pointed in
[33], there also has a relationship between the coordinate
and the scale of pedestrians under the assumption that the
cameras is aligned with ground plane. We further define
this geometry context feature for pedestrian detection p as
g(p) = (σ(s), cy, h, c

2
y, h

2), where s, cy , h are the detection
score, y-center and height of the detection respectively, and
cy and h are normalized by the height of the image.

To fully encode the context, we defined the model on
the whole image. The context score is the summation of
context scores of all pedestrian detections, and context s-
core of a pedestrian is further divided to its geometry and
pedestrian-vehicle scores. Suppose there are n pedestrian
detections P = {p1, p2, · · · , pn} and m vehicle detections
V = {v1, v2, · · · , vm} in an image, the context score of the
image is defined as:

S(P, V ) =

n∑
i=1

(wT
p g(pi) +

m∑
j=1

wT
v g(pi, vj)), (8)

1We use a DPM based vehicle detector trained on Pascal VOC 2012
[17] in our experiments.

Original Detection Context Result

Figure 4. Examples of original detection, and the detection opti-
mized by the context model.

where wp and wv are the parameters of geometry context
and pedestrian-vehicle context, which ensure the truth de-
tection (P, V ) has larger context score than any other de-
tection hypotheses.

Given the original pedestrians and vehicles detection P
and V , whether each detection is a false positive or true
positive is decided by maximizing the context score:

arg max
tpi ,tvj

n∑
i=1

(tpi
wT

p g(pi) + tpi

m∑
j=1

tvjw
T
v g(pi, vj)), (9)

where tpi
and tvj are the binary value, 0 means the false

positive and 1 means the true positive. Eq. 9 is a integer
programming problem, but becomes trivial when the label
of V is fixed, since it equals to maximizing every pedes-
trians independently. In typical traffic scenes, the number
of vehicles is limited. For example, in Caltech Pedestrian
Benchmark, there are no more than 8 vehicles in an image,
so that the problem can be solved by no more than 28 trivial
sub-problems, which can be very efficient in real applica-
tions.

For the linear property, Eq. 9 is equal to:

arg max
tpi ,tvj

[wp, wv][

n∑
i=1

tpi
g(pi),

n∑
i=1

tpi

m∑
j=1

tvjg(pi, vj)]
T ,

(10)
Eq. 10 provides a natural way for max-margin learning. We
use wc to denote [wp, wv]. Given the ground truth hypothe-
ses of vehicles and pedestrians, a standard structural SVM
[39] can be used here to discriminatively learn wc by solv-
ing the following problem:

minwc,ξk

1

2
‖wc‖22 + λ

K∑
k

ξk (11)

s.t.∀P ′, ∀V ′, S(Pk, Vk)− S(P ′k, V
′
k) ≥ L(Pk, P

′
k)− ξk,

where P ′k and V ′k are arbitrary pedestrian and vehicle hy-
potheses in the kth image, and Pk and Vk are the ground
truth. L(Pk, P

′
k) is the Hamming loss of pedestrian detec-

tion hypothesis P ′k and ground truth Pk. The difficulty in
pedestrian based applications is that only pedestrian ground



truth Pk is available in public pedestrian databases, and ve-
hicle annotation Vk is unknown. To address the problem,
we use the noisy vehicle detection result as the initial es-
timation of Vk, and jointly learn context model and infer
whether the vehicle detection is true or false positive, by
optimizing the following problem:

minwc,ξk

1

2
‖wc‖22 + λ

K∑
k

ξk (12)

s.t.∀P ′, ∀V ′ : max
V̂k⊆Vk

S(Pk, V̂k)− S(P ′k, V
′
k) ≥ L(Pk, P

′
k)− ξk,

where V̂k is a subset of Vk, which reflects the current in-
ference of the vehicle detections by maximizing the overall
context score. Eq. 12 can be solved by optimizing the mod-
el parameters wc and the label of vehicles V̂k iteratively. In
the learning phase, the initial P ′k is the pedestrian detection
result of MT-DPM.

5. Experiments
Experiments are conducted on the Caltech Pedestrian

Benchmark [14]2. Following the experimental protocol, the
set00-set05 are used for training and set06-set10 are used
for test. We use the ROC or the mean miss rate3 to com-
pare methods as advised in [14]. For more details of the
benchmark, please refer to [14]. There are various sub-
experiments on the benchmark to compare detectors in d-
ifferent conditions. Due to the space limitation, we on-
ly report the most relevant and leave results of other sub-
experiments in the supplemental material. We emphasize
that our method outperforms all the 17 methods evaluated
in [14] on the 9 sub-experiments significantly.

In the following experiments, we examine the influence
of the subspace dimension in MT-DPM, then compare it
with other strategies for low resolution detection. The con-
tribution of context model is also validated at different F-
PPI. Finally we compare the performance with other state-
of-the-art detectors.

5.1. The Subspace Dimension in MT-DPM

The dimension of the mapped common subspace in MT-
DPM reflects the tradeoff between commonness and differ-
ences among different resolutions. The high dimensional
subspace can capture more differences, but may loss the
generalities. We examine the parameter between 8 and 18
with a interval 2, and measure the performance on pedes-
trians taller than 30 pixels. We report the mean miss rate,
as shown in Fig. 5. The MT-DPM achieves the lowest miss

2http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
3We used the mean miss rate defined in P. Dollár’s toolbox, which is the

mean miss rate at 0.0100,0.0178, 0.0316, 0.0562, 0.1000, 0.1778, 0.3162,
0.5623 and 1.0000 false-positive-per-image.
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Figure 5. Influence of the subspace dimension in MT-DPM.

Figure 6. Results of different methods in multi-resolution pedes-
trian detection.
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Original Detecti 0.7718 0.6305 0.4926
Context Model 0.7551 0.6087 0.4603
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Figure 7. Contributions of the context cues in multi-resolution
pedestrian detection.

rate when the dimension is set to be 16, and tend to be stable
between 14 and 18. In the following experiments, we fix it
to be 16.

5.2. Comparisons with Other Detection Strategies

We compare the proposed MT-DPM with other strategies
for multi-resolution pedestrian detection. All the detectors
are based on DPM and applied on original images except
for specially mentioned. The compared methods including:
(1) DPM trained on the high resolution pedestrians; (2) DP-
M trained on the high resolution pedestrians and tested by
resizing images 1.5, 2.0, 2.5 times, respectively; (3) DPM
trained on low resolution pedestrians; (4) DPM trained on
both high and low resolution pedestrians data (Fig. 2(a));
(5) Multi-resolution DPMs trained on high resolution and
low resolution independently, and their detection results are
fused (Fig. 2(b)).

ROCs of pedestrians taller than 30 pixels are reported
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Figure 8. Quantitative result of MT-DPM, MT-DPM+ Context and other methods on the Caltech Pedestrian Benchmark.

in Fig. 6. High resolution model can not detect the low
resolution pedestrians directly, but some of the low resolu-
tion pedestrians can be detected by resizing images. How-
ever, the number of false positives also increases, which
may hurt the performance (see HighResModel-Image1.5X,
HighResModel-Image2.0X, HighResModel-Image2.5X in
Fig. 6). The low resolution DPM outperforms high resolu-
tion DPM, since the low resolution pedestrians is more than
high resolution pedestrians. Combining low and high reso-
lution would always help, but the improvement depends on
the strategy. Fusing low and high resolution data to train a s-
ingle detector is better than training two independent detec-
tors. By exploring the relationship of samples from differ-
ent resolutions, our MT-DPM outperforms all other meth-
ods.

5.3. Improvements of Context Model

We apply the context model on the detections of MT-
DPM, and optimize every image independently. The miss
rate at 0.01, 0.1 and 1 FPPI for pedestrians taller than 30
pixels are shown in Fig. 7. The context model reduces the
miss rate from 63.05% to 60.87% at 0.1 FPPI. The improve-
ment of context is more remarkable when more false posi-
tives are allowed, for example, there is a 3.2% reduction of
miss rate at 1 FPPI.

5.4. Comparisons with State-of-the-art Methods

In this part, we compare the proposed method with oth-
er state-of-the-art methods evaluated in [14], including:
Viola-Jones [40], Shapelet [44], LatSVM-V1, LatSVM-V2
[19], PoseInv [30], HOGLbp [43], HikSVM [31], HOG[6],
FtrMine [13], MultFtr [44], MultiFtr+CSS [44], Pls [37],
MultiFtr+Motion [44], FPDW [11], FeatSynth [1], Chn-
Ftrs [12], MultiResC [33]. The results of the proposed
methods are denoted as MT-DPM, and MT-DPM+ Contex-
t. For the space limitation here, we only show results of
multi-resolution pedestrians (Fig. 8(a), taller than 30 pixel-
s), low resolution (Fig. 8(b), 30-80 pixels high), reasonable

(Fig. 8(c), taller than 50 pixels)4. Our MT-DPM signifi-
cantly outperforms previous state-of-the-art, at least a 6%
margin mean miss rate on all the three experiments. The
proposed Context model further improves the performance
with about 3%. Because the ROC of [9] is not available, its
performance is not shown here. But as reported in [9], it
got 48% mean miss rate on the reasonable condition, while
our method reduces it to 41%. The most related method is
MultiResC [33], where multi-resolution model is also used.
Our method outperforms it with a 11% margin for multi-
resolution detection, which can prove the advantage of the
proposed method.

5.5. Implementation Details

The learned MT-DPM detector can benefit from a lot of
speed up methods for DPM. Specially for our implementa-
tion, we modified the code of the FFT based implementation
[15] for the fast convolution computation. The time for pro-
cessing one frame is less than 1s on a standard PC, including
high resolution and low resolution pedestrian detection, ve-
hicle detection and context model. More speed-up can be
achieved by parallel computing or pruning the search space
by the temporal information.

6. Conclusion
In this paper, we propose a Multi-Task DPM detector

to jointly encode the commonness and differences between
pedestrians from different resolutions, and achieve robust
performance for multi-resolution pedestrian detection. The
pedestrian-vehicle relationship is modeled to infer the true
or false positives in traffic scenes, and we show how to
learn it automatically from the data. Experiments on chal-
lenging Caltech Pedestrian Benchmark show the significant
improvement over state-of-the-art performance. Our future
work is to explore the spatial-temporal information and ex-
tend the proposed models to general object detection task.

4Results of other sub-experiments are in the supplemental material.



Figure 9. Qualitative results of the proposed method on Caltech Pedestrian Benchmark (the threshold corresponds to 0.1 FPPI).
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