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Abstract

Visual attributes are powerful features for many differ-
ent applications in computer vision such as object detection
and scene recognition. Visual attributes present another ap-
plication that has not been examined as rigorously: verbal
communication from a computer to a human. Since many
attributes are nameable, the computer is able to communi-
cate these concepts through language. However, this is not
a trivial task. Given a set of attributes, selecting a subset
to be communicated is task dependent. Moreover, because
attribute classifiers are noisy, it is important to find ways to
deal with this uncertainty. We address the issue of commu-
nication by examining the task of composing an automatic
description of a person in a group photo that distinguishes
him from the others. We introduce an efficient, principled
method for choosing which attributes are included in a short
description to maximize the likelihood that a third party will
correctly guess to which person the description refers. We
compare our algorithm to computer baselines and human
describers, and show the strength of our method in creating
effective descriptions.

1. Introduction
Imagine you are at a party with many people, and need

to point out one of them to a friend. Because it is impo-
lite to point (and it is difficult to follow the exact pointing
direction in a large group), you describe the target person
to your friend in words. Most people can naturally decide
what information to include in what is known in the Natu-
ral Language Processing field as a referring expression. For
example, in Figure 1, we might say: (a) “The man who is
not wearing eyeglasses” (b) “The man who is wearing eye-
glasses” or (c) “The woman”.

The task of generating these expressions requires a bal-
ance between the two properties of Grice’s Maxim of Quan-
tity [10]. The maxim states:

• Make your contribution as informative as is required.
• Do not make your contribution more informative than is

required.

Figure 1. In this paper we introduce an efficient method for choos-
ing a small set of noisy attributes needed to create a description
which will refer to only one person in the image. For example,
when the target person is person (b), our algorithm produces the
description: “Please pick a person whose forehead is fully visible
and has eyeglasses”

In our context, in which the computer attempts to refer to
a single person, we interpret these as follows. First, the de-
scription ideally refers to only a single target person in the
group such that the listener (guesser) can identify that per-
son. Second, the describer must try to make the description
as short as possible.

Although people find this describing task to be easy, it
is not trivial for a computer. First, computers must deal
with uncertainty. That is, the attribute classifiers the com-
puter uses are known to be noisy and this uncertainty must
be considered in an effective model. In addition, given that
each person in our image might have many attributes de-
scribing him, selecting the smallest set of attributes with
which to describe him uniquely is an NP-hard problem[4].
For example, a brute-force method is to first try all descrip-
tions with one attribute, then try all descriptions with two
attributes and so on. Although this will find the shortest
description, the computational complexity is exponential in
the number of available attributes.

This task represents an important part of a broader set
of problems which address generating general descriptions
for images. This is evident from the fact that referring ex-
pression generation is considered one of the basic build-
ing blocks for any natural language generation system [18].



When giving a general description one might be required
to refer to specific objects within the scene. For example
in Figure 1, we might say “The person wearing eyeglasses
is the company’s president,” instead of simply “The person
is the company’s president.” This type of referral is crucial
in generating informative image captions. Our algorithm
provides a method for selecting which attributes should be
mentioned in such a case.

This research has practical applications. In security,
surveillance cameras and action recognition algorithms can
identify suspicious people. A security guard could receive
concise verbal descriptions of the suspect to investigate.
Both properties of the description are extremely crucial.
First, the description needs to refer only to the suspect to
prevent investigating the wrong person. Second, it must not
be too long as to confuse the guard or waste his time.

Another application involves navigation systems. Using
a front-facing camera on a car and a GPS system, we can
develop a system which can provide more intuitive driving
directions. For example, instead of saying: “Turn right in
200 feet,” it might be more useful to say: “Turn right at
the yellow building with the red awning,” or even “Follow
the green car that just turned right.” Although we use our
algorithm for describing people, it is is not confined to this
specific domain. By employing object detection algorithms,
in addition to other attribute classifiers, a general system can
be realized.

Our main contributions are: We present the first attempt
at generating referring expressions for objects in images.
This task has been researched in the NLG community, but
had yet to use visual data with actual uncertainties. In
addition, we present a novel and computationally efficient
method for evaluating the probability that a given descrip-
tion will result in a correct guess from the listener. Finally,
we develop a new algorithm for attribute selection which
takes into consideration the uncertainty of the classifiers.
That is, although we cannot guarantee that the description
we compose will describe only the target person, we are
able to select attribute combinations for a high probability
of this occurring.

1.1. Previous Work

There has been active computational research on refer-
ring expression generation in the NLG community for 20
years. Most consider a setup in which there exists a finite
object domain D each with attributes A. The goal is to find
a subset of attribute-value pairs which is true for the target
but false for all other objects in D. We build on this work
from a computer vision point-of-view, using actual attribute
predictions made from analyzing real images of people.

One of the earliest works include Dale’s Full Brevity al-
gorithm [3] which finds the shortest solution by exhaustive
search. Since this results in an exponential-time algorithm

two main extensions were introduced in [4]. The Greedy
Heuristic method chooses items iteratively by selecting the
attribute which removes the most distractors that have not
been ruled out previously until all distractors have been
ruled out. The Incremental Algorithm considers an addi-
tional ranking based on some internal preference of what a
human describer would prefer, in an effort to produce more
natural sounding sentences. Our goal is the same (to pro-
duce discriminative descriptions), but we consider the con-
fidence scores of real attribute classifiers, and introduce an
efficient algorithm for dealing with this uncertainty.

Other extensions to these three main algorithms have
been proposed. For example, Krahmer et al. propose a
graph base approach for referring expression generation
[14]. The reason for using this approach is that it allows for
relationships between objects to be expressed (for example
spatial relationships) in addition to the individual attributes
of each object. We use a similar graph in our work.

Horacek proposes an algorithm which deals with condi-
tions of uncertainty [12]. This method is similar to the one
we are proposing since it does not rely on the fact that the
describer and the listener agree on all attributes. However,
our algorithm differs in important ways. First, we provide a
method for efficient calculation under uncertain conditions
whereas in Horacek’s paper the calculation is computation-
ally expensive. In addition, Horacek’s definition of the un-
certainty causes is heuristic, but we use calculated uncer-
tainties of classifiers. And, in contrast to [12], we provide
experimental data to show our algorithm’s strength.

Although this is the first attempt at generating referring
expressions for objects in images, our work is an extension
of previous work researching attribute detection and de-
scription generation. For example, Farhadi et al. [5] detect
attributes of objects in scene, and use them as a description.
The initial description includes all attributes and results in a
lengthy description. With no task in mind, they are not able
to measure the usefulness of the description. In our work,
which is task specific, we are able to select attributes in a
smart way, and show the utility of our descriptions.

Attributes improve object classification [17, 20] and
search results [13]. For example, Kumar et al. describe
in-depth research on nameable attributes for human faces.
These attributes can be used for face verification and image
retrieval [16], and similarity search [22]. These works all
use human-generated attribute feedback to help a computer
at its task. In contrast, in our case the computer (not a hu-
man) is the one generating descriptive attribute statements,
so the emphasis is on selecting attributes, even when the
classifier scores are uncertain.

In recent years, attributes have been used to automati-
cally compose descriptions of entire scenes. Although this
is different from describing a specific object within a scene,
there are similarities. For example, Berg et al. [1] predict



Choose the person to 
the left of a person 

who is male and bald 

(a) (b) (c) (d) (e) (f) 

Figure 2. An overview of our algorithm. (a) Given an image of a group of people (b) detect all faces and select a random target. (c) For
each face run a set of attribute classifiers. (d) Select neighbors by detecting rows of people. (d) Find a small set of attributes which refers
to the target face with confidence c (e) Construct a sentence and present to a guesser.

what is important to mention in a description of an image by
looking at the statistics of previous image and description
pairs. They mention a few factors (e.g., size, object type
and unusual object-scene pairs) to help predict whether an
item will be mentioned in a description.

Both Farhadi et al. [6] and Ordonez et al. [19] find a
description from a description database that best fits the im-
age. Gupta et al. [11] use a similar approach, but break
descriptions into phrases to realize more flexible results.
Kulkarni et al. [15] use a CRF infer objects, attributes and
spatial relationships that exist in a scene, and compose all
of them into a sentence. The main difference between this
line of work and ours is the fact that our description is goal-
oriented. That is, prior works focus solely on the informa-
tion and scores within the scene. In contrast, we consider
attribute scores for all objects to describe the target object
(person) in a way that discriminates him from others.

Finally, Sadovnik et al. [21] produces referring expres-
sions for entire scenes. However, our method improves on
[21] in major ways. First,[21] ranked various attributes, but
did not provide a calculation of how many attributes should
be used. In our method, we calculate the necessary descrip-
tion length. Second, we rigorously deal with the uncertainty
of the attribute detectors, instead of using a heuristic penalty
for low confidence as in [21]. Finally, creating referring ex-
pressions for objects in a scene as opposed to entire scenes
is more natural and has more practical applications (as de-
scribed in Sec. 1).

2. Attributes and Neighbors

2.1. Attribute detection

Although the description algorithm we present is gen-
eral, we choose to work with people attributes because of
the large set of available attributes. Kumar et al. [16] define
and provide 73 attribute classifiers via an online service. We
retain 35 of the 73 attributes by removing attributes whose
classification rate in [16] is less than 80%, and removing
attributes which are judged to be subjective (such as attrac-
tive woman) or useless for our task (color photo). In the
future other attributes can be easily incorporated into this
framework such as clothing or location in the image.

Each classifier produces an SVM classification score for
each attribute. Since our method requires knowledge about
the attribute’s likelihood, we normalize these scores. We
use the method described in [23] which fits an isotonic func-
tion to the validation data. We first collect a validation set
for our 35 attributes, and fit the isotonic function using the
method described in [2].

2.2. Neighbor Detection

A certain person might not have enough distinctive at-
tributes to separate him from others in the group. Therefore,
we wish to be able to refer to this person by referring to peo-
ple around him. However, deciding who is standing next to
whom is not a trivial task. We use the work of Gallagher et
al. [8], to identify specific rows of people in a group photo.

We use this information to define faces who have a com-
mon edge in a row as neighbors. This gives us the “to the
left of” and “to the right of” relationships. Since in [8] faces
can be labeled as in the same row even though they are far
apart, we add an additional constraint which normalizes the
distance between every two faces in a row by the size of
the face, and removes edges where the normalized size is
greater than some threshold t. This prevents distant people
from being considered neighbors.

3. Algorithm
As stated in Sec. 1 the goal of a referring expression gen-

erator is to find a short description that refers to a single ob-
ject in the scene. In our scenario of uncertain classifiers, our
goal is to produce a description that will allow a guesser a
high probability of successfully guessing the identity of the
target face. Calculating this probability relies on a guesser
model which we provide in Sec. 3.1. The guesser model
defines the strategy used by the listener to guess which face
in the image is the one being described.

We then describe how to calculate the probability that
the guesser will, in fact, guess the target face given any de-
scription within the space of our attributes by considering
the uncertainty of the attribute classifiers. First, we explain
this calculation when the description has a single attribute
(Sec. 3.2). Then, we explain the extension to the case when
the description contains multiple attributes (Sec. 3.3). In



Variable Name Variable Description
n Number of people
f ∈ {1, 2, . . . , n} Person to be described
A Set of binary attributes
a∗ = [a∗1, a∗2, . . . a∗q ]
a∗k ∈ A

The attributes chosen by the al-
gorithm for description

v∗ = [v∗1 , v∗2 , . . . , v∗q ]
v∗k ∈ {0, 1}

Values chosen by the algorithm
for the attributes in a∗

pk = [pk1, pk2, . . . , pkn]
k = 1 . . . q
pki ∈ [0, 1]

Probability of attribute k as cal-
culated by classifier for each per-
son

xk = [xk1, xk2, . . . , xkn]
k = 1 . . . q
xki ∈ {0, 1}

Values of attribute k of a∗ as
seen by the guesser

f̃ ∈ {1, 2, . . . , n} Guesser’s guess
Pf̃ = P (f̃ = f |a∗,v∗) The probability of the guesser

guessing correctly
t =

Pn
i=1 (xki == v∗k) Number of faces with correct at-

tribute value
Table 1. Variable definitions

both cases, we show that this calculation is polynomial in
both the number of faces in the image, and the number of
attributes in the description.

Finally, we introduce an algorithm for producing at-
tribute descriptions that meet our goals: having as few at-
tributes as possible, while selecting enough so that that
probability of a guesser selecting the the target person will
be higher than some threshold (3.4).

3.1. Guesser’s Model

We first define a model that the guesser follows to guess
the identity of the target person, given an attribute descrip-
tion. All variables are defined in Table 1. Given that he has
received a set of attribute-value pairs (a∗,v∗), he guesses
the target face f̃ according to the following rules:
• If only one person matches all attribute-value pairs guess

that person.
• If more than one person matches all attribute-value pairs

guess randomly among them.
• If no person matches any attribute-value pairs guess ran-

domly among all people.
• If no person matches all attribute-value pairs, choose ran-

domly among the people who have the most matches.

Given this model, the describer’s goal is to maximize
Pf̃ = P (f̃ = f |a∗,v∗), the probability that the guesser
correctly identifies the target, given the description. Fol-
lowing Grice’s Maxim of Quantity we also wish to create a
short description. Therefore, we choose to explore descrip-
tions that minimize the number of attributes |a∗| such that
Pf̃ > c, where c is some confidence level.

To show how Pf̃ is calculated we first present the single
attribute case, and then extend to multiple attributes.

3.2. Single Attribute

Consider the case where a “smile detector” is applied to
an image containing three faces, and we refer to face 1 as

Smiling 0.8 0.4 0.2 

xk Face 1 Face 2 Face 3 Prob. of happening Prob. of guessing 
correct 

Prob. of happening and 
of guessing correct	
  

[1,1,1] 0.8*0.4*0.2 0.333 0.021 

[1,0,0] 0.8*0.6*0.8 1 0.384 

[0,0,0] 0.2*0.6*0.8 0.333 0.032 

Classifier’s Probabilities 

0.021 + 0.384 + 0.032 + … + 0      =     0.613 Probability of guessing correct: 

Figure 3. An illustration calculating the probability of guessing
correctly using one attribute (“The person is smiling”) for an im-
age with three people. The true identity of the target person
(marked with a red rectangle) is known to the algorithm as well
as the attribute confidence for each face. Each face is actually
smiling or not (the true state is unknown to the algorithm), rep-
resented with the blind over each mouth. To find the probability
of the guesser’s success, each of the eight possible configurations
of smiling faces is considered. We introduce a polynomial-time
algorithm for computing this probability.

“the smiling face” (Figure 3). What is the probability that
a guesser will be correct? To compute this, we must con-
sider the fact that our smile detector is never certain, but
instead, reports confidences of observing a smile on each
face. The confidence associated with each score represents
the probability that each face actually has a smile or not.
The actual joint distribution of smiling faces in the image
has eight possibilities over the three faces (23). For each of
these eight possible arrangements, the probability that the
guessing strategy leads to a correct guess can be computed.
Naı̈vely, by applying total probability, the overall probabil-
ity of guesser success is the sum of the probability that each
of these eight smile cases occur, times the probability of
guesser success in each case.

We now formalize our algorithm. Here, for simplicity of
notation, the description is comprised of positive attributes
(e.g., “the smiling face”), but we also consider negative at-
tributes (e.g., “the face that is not smiling”) by taking the
compliment of the attribute probability scores for each face.
The probability of each possible xk occurring is:

P (xk) =
n∏

i=1

(xkipki + (1− xki)(1− pki)) (1)

For each xk and attribute-value pair (a∗k, v∗k) we compute
the probability of the guesser guessing correctly using the
guesser model:

P (f̃ = f |xk, a∗k, v∗k) =


1
n if t = 0
0 if xkf = 0 & t > 0
1
t otherwise

(2)

Therefore, we calculate the total probability of a correct
guess given a single attribute by summing over all (2n) con-
figurations of the attribute over the faces in the image as:



Pf̃ =
∑
xk

P (f̃ = f |xk, a∗k, v∗k)P (xk) (3)

In Eq. 3, we sum over all possible xk which is exponen-
tial in the number of faces n and computationally expensive.
Since the images in our dataset contain many faces, it is in-
tractable. However, we notice that Pf̃ depends only on the
number of faces t that satisfy the attribute, given that the
target face does. We can rewrite Eq. 3 as:

Pf̃ =
1
n

P (t = 0) + 0 +
∑

xk|xkf =1

1
t
P (xk) (4)

Where each of the three terms in the sum refer to the
three terms in Eq. 2 respectively. Finally, we notice that
t is actually a Poisson-Binomial random variable whose
PMF (probability mass function) can be computed in time
polynomial with the number of faces. A Poisson-Binomial
distribution is the distribution of the sum of independent
Bernoulli trials where the parameter p can vary for each trial
(as opposed to the Binomial distribution). We can calculate
the PMF efficiently by convolving the Bernouli PMF’s [7].
In our case, the parameters of the random variable are pk .
We can therefore rewrite Eq. 4 as:

Pf̃ =
1
n

P (t = 0) + 0 + pkf

n∑
t=1

1
t
P (t|xkf = 1) (5)

Since inside the summation we only care about cases in
which xkf = 1 we set the Poisson-Binomial parameter for
face f to 1 and then compute the PMF of t. Eq. 5 provides
a way to calculate the value of Eq. 3 exactly while avoiding
the summation over all possible xk. We can now compute
Pf̃ , the probability that the guesser will succeed, in time
ploynomial with the number of faces.

Using Eq. 5 we can find, from a pool of available at-
tributes, the single best attribute to describe the target face
(the a∗k, v∗k that maximizes Pf̃ ). Extending this strategy to
multi-attribute descriptions is not trivial. One greedy algo-
rithm for producing a multi-attribute description is to or-
der all available attributes by Pf̃ , and choose the top m.
However, this could yield redundant attributes. For exam-
ple, imagine a group photo with two people who both have
glasses and are senior, one of whom is our target. The
attribute-value pairs has glasses and is senior may be the
top two with the greatest Pf̃ . However, mentioning both
attributes is useless, because they do not contain new infor-
mation. What is actually needed is a method of evaluating
the guesser success rate with a multi-attribute description.

3.3. Multiple Attributes

We introduce a new random variable yi, the number of
attributes of face i which correctly match the description
(a∗,v∗).

Face 1 Face 2 Face 3 Face 4 

Hat 0.90 0.20 0.80 0.10 

Beard 0.60 0.60 0.80 0.90 

White 0.30 0.40 0.90 0.50 

Face 1 Face 2 Face 3 Face 4 

0 Att. 0.03 0.19 0.00 0.05 

1 Att. 0.31 0.46 0.07 0.45 

2 Att. 0.50 0.30 0.35 0.45 

3 Att. 0.16 0.05 0.58 0.05 

Figure 4. An example of transforming the table of pki into the 4
PMF’s of yi (one per column). In Eq. 8, j iterates through the
different rows and normalizes accordingly.

yi =
q∑

j=1

xji == v∗j (6)

In this work we consider all attributes to be independent.
Therefore, yi is also a Poisson-Binomial random variable
whose parameters are pji

∣∣ j = {1, 2 . . . q} (as shown in
Figure 4). We expand the definition of t from our single
attribute example. Whereas previously it signified the num-
ber of faces with the correct value for a single attribute, tj
now signifies the number of faces with exactly j matching
attributes.

tj =
n∑

i=1

yi == j (7)

Using these random variables we efficiently calculate the
guesser’s success given multiple attributes. The basic idea
is to look at the case when the target face has j correct at-
tributes and no other face has more than j attributes correct
(if any other face does the probability of guessing correctly
is zero), and then perform Eq. 5 using tj where our new p
values are the jth row of Figure 4 normalized by the sum
of rows 0 − j. Summing over all values of j gives us the
following equation:

Pf̃ =
q∑

j=1

n∑
tj=1

(
1
ti

p(tj |yf = j, yi ≤ j ∀i)

× p(yf = j|yi ≤ j ∀i)p(yi ≤ j ∀i)
) (8)

3.4. Guesser-Based Attribute Selection

We perform attribute selection in a similar fashion to the
Greedy Heuristic Method. The algorithm’s pseudo code is
shown in Algorithm 1. This is a greedy method in which
in each step we select the best attribute-value pair to add to
our current solution, which gives us the highest combined
probability of guessing correctly given our selection from
the previous step (evaluated with Eq. 8).

As mentioned in Sec. 2.2 we can use neighboring people
when the target person does not have enough distinguishing
attributes. We do this by setting an upper limit on the num-
ber of attributes used. If the algorithm fails to reach desired
confidence , we re-run the algorithm using the neighbor’s
attributes as well. It should be emphasized that when using
a neighbor we examine both sets of attributes jointly (that



is, our attribute set is doubled). This allows us to create de-
scriptions such as “The person with the glasses to left of the
person with the beard”.

Algorithm 1: Attribute selection algorithm
Data: c, A, f
Result: a∗, v∗

a∗ ← ∅;1
curr conf ← 0;2
while (curr conf < c) do3

for each Ai /∈ a∗ do4
tmp A← a∗ ∪Ai;5
for each tmp v do6

calculate p = P (f̃ = f |tmp A, tmp v);7
if p > curr conf then8

curr conf ← p;9
curr best← (tmp A, tmp v)10

end11
end12

end13
(a∗, v∗)← curr best14

end15

Once we have a set of attributes we construct a sentence.
Since the main focus of this paper is on the selection method
we create a simple template model to build the sentences.

4. Experiments and Results

We perform two main experiments using Amazon Me-
chanical Turk (AMT). First we perform an evaluation of our
algorithm by comparing it to a few baselines (Sec. 4.1). We
also compare our algorithm’s descriptions to ones we col-
lect on AMT from human describers (Sec. 4.2).

4.1. Computer Baselines

To evaluate our algorithm we run experiments on AMT.
Workers view an image with all detected faces marked with
a square and a textual description, and ask them to select
who is being referred to. The selection is done by clicking
on a face. Each worker performs a random set of ten image-
description pairs with one guess each. We encourage the
workers to guess correctly by offering a monetary bonus to
the top guessers.

We compare the guessing accuracy for descriptions cre-
ated using the following methods:

1. Confident: Compose the description from the n most
confident attributes. This baseline completely ignores
other faces in the image.

2. Top used: After running the algorithm on the dataset,
we select the n top used attributes throughout the
whole set. The top 5 attributes are: gender, teeth visi-
ble, eyeglasses, fully visible forehead and black hair.

3. Full greedy: We rank the attributes using the value of
Eq. 5, skipping the method introduced in Sec. 3.3, and
use the top n to compose the description.

4. GBM: Guesser Based Model. Our full algorithm with-
out neighbors.

5. GBM neighbors: Our algorithm with neighbors.

We create 2000 descriptions for 400 faces (1 for each
method). These faces were randomly selected from all de-
tections, and manually verified to be true detections. We
have 3 separate AMT workers guess each, for a total of
6000 guesses. We set our confidence level c to 0.9 and the
maximum number of attributes to 5. For faces which do not
reach confidence level c, we use the description with the
highest score with at most 5 attributes. For the rest of the
algorithms, n is the number of attributes selected by GBM.

We use images from the Images Of Groups Dataset [9]
that contain at least 8 people. The face detector detects 87%
of the correct faces with 89% accuracy for an average of
11.4 faces per image (random guessing would achieve an
average of 0.099). Results are presented in Figure 5. We
also show description examples in Figure 6.

Examining the results, it is interesting that using the most
confident attributes actually performs the worst, even worse
than simply describing a constant set of attributes as in
Top used (P=0.0022). This shows that an attribute classifier
score, by itself, is not enough information to construct an
effective description for our task. Figure 5c hints at the rea-
son for this. The attributes the classifier tends to be certain
about are ones which are not useful for our task since they
tend to be true for many people. For example, the eyes open
attribute (8 in Figure 5c) is used in around 80% of the confi-
dent descriptions. However, this is usually not useful since
most people have their eyes open. This fact is strengthened
by the low usage of this attribute by the other methods.

The need to select attributes in a manner that takes into
account the other faces in the image is clear from the im-
proved performance when using our selection algorithms.
Our Full greedy approach reaches an accuracy of 56%.
The additional 4% achieved when using GBM (P=0.0131)
shows the improvement gained using the methods described
in Sec. 3.3, which prevent mentioning redundant attributes
(See Figure 7a for an example).

The fact that using neighbors lowered the accuracy sur-
prised us since we were expecting an increase in accuracy.
However, when examining the results carefully we observed
some common errors which we believe led to this. First,
since we only verified that the target face is not a false pos-
itive, there are no guarantees for the neighbors. Therefore,
when a person is next to a false detection he may be referred
to as standing to the left of that person which will obviously
confuse the guesser. In addition, some people were con-
fused by the reference and ended up choosing the neighbor
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Method Type Confidence Threshold Attribute Type 

(a) (b) (c) 

Figure 5. Our results from the computer baseline experiment (Sec. 4.1). (a) Guessing accuracies for the five methods introduced in Sec.
4.1. 1. confident 2. top used 3. Full greedy 4. GBM 5. GBM neighbors. (b) Accuracy results of GBM as we increase the minimum
threshold, by looking at descriptions whose confidence level as calculated in Eq. 8 are higher than it. (c) The percentage of descriptions
(methods 1-4) an attribute was used in for a select set of attributes. The attributes are: (1) Gender (2) White (3) Black hair (4) Eyeglasses
(5) Smiling (6) Chubby (7) Fully visible forehead (8) Eyes open (9) Teeth not visible (10) Beard

Pick a person who is a male and 
has black hair and has a receding 
hairline and is wearing a neck tie 

and is white 

calculated 
accuracy: 0.52  

Actual accuracy: 
1/3 

Pick a person who has black hair 
and does not have eye glasses and 
whose mouth is closed and whose 

teeth are not visible 

calculated 
accuracy: 0.90 

Actual accuracy: 
3/3 

Pick a person who is wearing a 
hat 

calculated 
accuracy: 0.93 

Actual accuracy: 
1/5 

Pick a person who has a beard 

calculated 
accuracy: 0.97  

Actual accuracy: 
3/6 

✔ ✔ ✗ ✗ 
misclassified target attribute  misclassified distractor attribute  

Figure 6. Examples of our GBM algorithm along with the calculated confidence and the actual accuracy received from AMT. The left
two are examples where our algorithm correctly estimates the confidence (approximately). The right two examples are failure cases: A
misclassified target attribute (no hat on target) and a misclassified distractor attribute (additional bearded person in the image).

used as reference instead of the target person. Finally, it ap-
pears that some people confused left and right. That said,
we do observe clear cases in which using neighbors led to
better results (See Figure 7b for an example).

It is also interesting to investigate how guesser accu-
racy changes as we change the confidence threshold (Fig-
ure 5b). Since many of the faces in our algorithm did not
reach the necessary confidence, the average confidence of
the descriptions is 0.6484 which gives us 60% correct hu-
man guesses. However, Figure 5b shows that as we in-
crease the minimum confidence, and look only at the de-
scriptions which are above it we can achieve much higher
human guessing accuracy. This validates the meaningful-
ness of our confidence score. In addition, this shows another
strength of using GBM since the Full greedy approach does
not present a simple way of calculating this confidence.

4.2. Human Describers

We also compare our results using computer descriptions
with that of a human describer. In an additional AMT job,
workers select attribute-value pairs that best refer to the tar-
get person. We reduce the number of attributes to 20 (to
simplify the task), and present three radio buttons for each
attribute: not needed, yes, no. This is exactly analogous to

the computer algorithm and therefore the results are easily
comparable. Workers select the fewest attributes that sep-
arate the target person from the rest of the group (just as
our algorithm does). To encourage workers, we promise a
bonus to those whose descriptions give the best guessing
probability. We collected 1000 descriptions from 100 sepa-
rate workers.

Once we have collected all the descriptions given by the
workers we create a new guessing task as described in Sec.
4.1. We compare the descriptions created by humans to de-
scriptions created by GBM using the same 20 attributes as
given to the user. For this comparison we only use descrip-
tions whose confidence is above 0.7. The descriptions cre-
ated from the human selection are presented to the guesser
in the exact the same format as the computer’s. The guesser
is never informed of the source of the descriptions (human
or computer).

Accuracies from the human and computer descriptions
are 76% and 77% respectively. This result validates our
model, matching human performance when it attains high
confidence of guesser success.

Other interesting observations include that humans tend
to use gender much more often than any other attribute
(about 70% of the descriptions included gender), while this



(3) 
Pick a person who is a senior and has gray 
hair and has bangs and whose forehead is not 
fully visible and whose teeth are visible 

(4) 
Pick a person who is a male and is in their 
youth and does not have blond hair and is 
not bald and does not have a mustache 

(4) 
Pick a person who is not a child and is a 
senior and has bangs and does not have eye 
glasses and whose teeth are visible 

(5) Pick a person. The person is on the right 
(your right) of a person who has eye glasses 

Method 

Method 

Method 

Method 

(a) (b) 

Figure 7. Examples of our algorithms output using the methods described in Sec. 4.1. (a) Since algorithm (3) calculates the probability one
attribute at a time, all of the attributes it describes could be true for both seniors. However, once narrowed down to the seniors it is enough
to say: “does not have glasses” as done by algorithm (4). (b) In this photo finding attributes which refer strictly to the target person without
using neighbors (4) is hard. But by using the person with the glasses as a landmark, we can quickly refer to the correct person.

is not true for the computer algorithm. Even in situations
where gender is not necessarily needed, humans still tend
to mention it. In addition, humans tend to choose more pos-
itive attributes rather than negative ones. In fact, of the 19
attributes (excluding gender since there is no negative for
this attribute) 18 were mentioned more often positive than
negative. In contrast, for 6 of the 19 attributes, our algo-
rithm mentions the negative attributes more often.

5. Conclusion

We have introduced a new approach for solving the novel
task of producing a referring expression for a person in an
image. We compute a confidence score for each descrip-
tion, based on a novel, efficient method for calculating the
score. Finally, we demonstrate the effectiveness of our at-
tribute selection algorithm, comparable even to constrained
human-made descriptions.

We believe there are many exciting future directions for
this work. First, more can be learned from our human de-
scribers and guessers. Our guesser model still does not
completely mimic a human because it does not consider fac-
tors such as saliency or relative attributes. By examining
the human descriptions and guesses, we may learn a better
model for the human guesser and redesign our algorithm for
referring expression generation.

In addition, this work can be extended to consider back-
and-forth conversations between humans and computers.
That is, if the referring expression isn’t clear, what ques-
tions can the guesser ask to clarify her understanding? This
might involve answering a user’s clarifying question, or pro-
viding feedback to a user who guessed incorrectly.

Finally, we believe our framework is an important com-
ponent for any image description algorithm, though chal-
lenges remain dealing with integrate more general image
descriptions (e.g., not just referring expressions).
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