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Abstract

We consider discrete pairwise energy minimization prob-
lem (weighted constraint satisfaction, max-sum labeling)
and methods that identify a globally optimal partial assign-
ment of variables. When finding a complete optimal assign-
ment is intractable, determining optimal values for a part of
variables is an interesting possibility. Existing methods are
based on different sufficient conditions. We propose a new
sufficient condition for partial optimality which is: (1) ver-
ifiable in polynomial time (2) invariant to reparametriza-
tion of the problem and permutation of labels and (3) in-
cludes many existing sufficient conditions as special cases.
We pose the problem of finding the maximum optimal par-
tial assignment identifiable by the new sufficient condition.
A polynomial method is proposed which is guaranteed to
assign same or larger part of variables than several ex-
isting approaches. The core of the method is a specially
constructed linear program that identifies persistent assign-
ments in an arbitrary multi-label setting.
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1. Introduction
Energy Minimization Given a graph pV, Eq and func-
tions fs : Ls Ñ R for all s P V and fst : Ls ˆ Lt Ñ R
for all st P E , where Ls are finite sets of labels, the prob-
lem is to minimize the energy

Ef pxq “ f0 `
ÿ

sPV
fspxsq `

ÿ

stPE
fstpxs, xtq, (1)

over all assignments x P L “
ś

s Ls (Cartesian product).
Notation st denotes the ordered pair ps, tq for s, t P V . The
general energy minimization problem is APX-hard.

Partial Optimality Let A Ă V . By xA we denote the
restriction of x to A. An assignment y with domain A is a
partial assignment denoted pA, yq. The pair pA, yq is called
strong optimal partial assignment if there holds x˚A “ y for
any minimizer x˚ of Ef . And weak optimal partial assign-
ment if there exists a minimizer x˚ of Ef such that x˚A “ y.

Related Work Several fundamental results identifying
optimal partial assignments are obtained from the proper-
ties of linear relaxations of some discrete problems. An op-
timal solution to continuous relaxation of a mixed-integer
0-1 programming problem is defined by Adams et al. [2] to
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be persistent if the set of r0, 1s relaxed variables realizing
binary values retains the same binary values in at least one
integer optimum. A mixed-integer program is said to be
persistent (or possess the persistency property) if every so-
lution to its continuous relaxation is persistent. Nemhauser
& Trotter [22] proved that the vertex packing problem is
persistent. This result was later generalized to optimization
of quadratic pseudo-Boolean functions (equivalent to en-
ergy minimization with two labels) by Hammer et al. [10].
The relaxed problem in this case is known as the roof dual.
Strong persistency was also proven, stating that if a vari-
able takes the same binary value in all optimal solutions to
the relaxation, then all optimal solutions to the original 0-1
problem take this value. However, it is a rare case that a
relaxation of a particular problem is persistent.

Several works considered generalization of persistency
to higher-order pseudo-Boolean functions. Adams et al. [2]
considered a hierarchy of continuous relaxations of 0-1
polynomial programming problems. Given an optimal re-
laxed solution, they derive sufficient conditions on the dual
multipliers which ensure that the solution is persistent.
This result generalizes the roof duality approach, coincid-
ing with it in the case of quadratic polynomials in binary
variables. Kolmogorov [15, 16] studied submodular and
bisubmodular relaxations and showed that they provide a
natural generalization of the quadratic pseudo-Boolean case
to higher-order terms and possess the persistency property.
Kahl and Strandmar [12] proposed a polynomial time al-
gorithm to find the tightest submodular relaxation. Lu and
Williams [21], Ishikawa [11] and Fix et al. [6] obtained par-
tial optimalities via different reductions to quadratic prob-
lems and subsequent application of the roof dual.

Multi-label energies The following methods were pro-
posed for the pairwise model (1) with multi-label variables.
Kohli et al. [14] reduced multi-label energy to quadratic
pseoudo-Boolean and applied roof dual. The family of local
methods known as dead end elimination (DEE), originally
proposed by Desmet et al. [5], uses simple sufficient con-
ditions that consider a variable and its immediate neighbors
in the graph. Kovtun [18, 19] proposed to construct an aux-
iliary submodular problem whose solution provides a par-
tial optimal assignment for the original problem. For the
Potts model it was shown that K auxiliary problems can be
solved in time OplogpKqF q, where F is the time to solve
a single auxiliary problem [9]. Swoboda et al. [30] pro-
posed a method for Potts model solving a series of LP relax-
ations approximately and generalized it recently to general
and higher-order energies [31]. Unlike other approaches,
methods [5, 18] are not directly related to relaxation tech-
niques.

Contribution We observed that in many methods there
is an underlying mapping of labelings p : L Ñ L that
improves the energy of any given labeling: Ef pppxqq ď
Ef pxq. It follows that there exists a minimizer in the re-
duced search space ppLq. However, even in the case that
such mapping is given, the verification of the improving
property is NP-hard (see below). We propose instead to ver-
ify that a suitable linear extension of this mapping improves
the energy of all relaxed labelings. This constitutes a suf-
ficient condition which is polynomial to verify. It includes
sufficient conditions used in methods [5, 19, 10, 14, 30] as
special cases.

We pose the problem of finding the maximum
weak/strong optimal partial assignment identifiable by the
new sufficient conditions (denoted MAX-WI / MAX-SI, re-
spectively). We propose polynomial algorithms for several
classes of mappings p, which include many of previously
proposed constructions. The algorithms involve solving the
LP-relaxation and an additional linear program of a com-
parable size. We give a method that improves over one-
against-all method of Kovtun [19] (including possible free
choices in this method) and subsumes the method [30]. In
the case of two labels, our method reduces to known QPBO
results. Experimental verification of correctness and quan-
tification of achieved improvement is performed on difficult
random instances. Preliminary experiments with large-scale
vision problems are reported in §7.3.

In our previous work [27] a particular map x ÞÑ px _
yq ^ z was extended to relaxed labelings, where _ and ^
are component-wise maximum and minimum, respectively.
It allowed to relate Kovtun’s methods to the standard LP-
relaxation and the expansion move algorithm. In the previ-
ous work [26] a major part of the generalized approach was
presented but with algorithms for a much more narrow class
of mappings and without experiments.

2. Background
We will assume that st P E ñ ts R E . Let us denote

the set Ls ˆ Lt as Lst and the pair of labels pi, jq P Lst as
ij. The following set of indices is associated with the graph
pV, Eq and the set of labelings: I “ t0u Y tps, iq | s P
V, i P Lsu Y tpst, ijq | st P E , ij P Lstu. A vector
f P RI has components (coordinates) f0, fuplq, fstpi, jq
for all u P V, l P Lu, st P E , ij P Lst. We further de-
fine that ftspj, iq “ fstpi, jq. Let Ẽ “ E Y tts | st P Eu,
the symmetric closure of E . The neighbors of a pixel s are
pixels in the set N psq “ tt | st P Ẽu.

LP Relaxation Let δpxq P RI be the vector with compo-
nents δpxq0 “ 1, δpxqspiq “ rrxs“iss and δpxqstpi, jq “
rrpxs, xtq“ijss, where rrss is the Iverson bracket. Let x¨, ¨y
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Figure 1. Mapping δ embeds discrete labelings as points in the
space RI . Projection onto components µsp1q, µtp1q, µstp1, 1q is
shown, the other components are dependent.

denote the scalar product in RI . We can write the energy as

Ef pxq “ xf, δpxqy. (2)

The energy minimization can be expressed and relaxed as

min
xPL
xf, δpxqy “ min

µPδpLq
xf, µy “ min

µPM
xf, µy ě min

µPΛ
xf, µy,

(3)
where M “ conv δpLq and Λ is the local polytope that
makes an outer approximation of M. We consider the stan-
dard Schlesinger’s LP relaxation [29], where the polytope Λ
is given by the primal constraints in the following primal-
dual pair:

(LP-primal) (LP-dual)
minxf, µy “ maxψ
ř

j µstpi, jq ´ µspiq “ 0, ϕstpiq P R,
ř

i µstpi, jq ´ µtpjq “ 0, ϕtspjq P R,
ř

i µspiq ´ µ0 “ 0, ϕs P R,
µ0 “ 1, ψ P R,
µspiq ě 0, fspiq `

ř

tPN psq ϕstpiq ´ ϕs ě 0,

µstpi, jq ě 0, fstpi, jq ´ ϕstpiq ´ ϕtspjq ě 0,
µ0 ě 0; f0 `

ř

s ϕs ´ ψ ě 0.

This relaxation is illustrated in Figure 1. We write it com-
pactly as

minxf, µy “ maxψ ,
Aµ “ 0
µ0 “ 1
µ ě 0

ϕ P Rm
ψ P R

f ´ATϕ´ e0ψ ě 0

(LP)

where A is m ˆ |I| and e0 P RI is the basis vector for
component 0. Vector fϕ :“ f ´ ATϕ is called an equiv-
alent transformation (reparametrization) of f . There holds
xfϕ, µy “ xf, µy´xϕ,Aµy “ xf, µy for all µ P Λ. Because
Λ Ą δpLq, it follows that Ef pxq “ Efϕpxq for all x P L. If
there exists ϕ such that g “ fϕ we write g ” f . In this case
vectors f and g are different but they define equal energy
functions Ef “ Eg . See, e.g., [32] for more detail.

Let pµ, pϕ,ψqq be a feasible primal-dual pair. Comple-
mentary slackness for (LP) states that µ is optimal to the
primal and pϕ,ψq to the dual iff

µspiq ą 0 ñ fϕs piq “ 0, (4a)
µstpi, jq ą 0 ñ fϕstpi, jq “ 0, (4b)

µ0 ą 0 ñ ψ “ f0 `
ÿ

s

ϕs. (4c)

Because a feasible dual solution satisfies p@i1q fϕs pi
1q ě 0,

condition on the RHS1 of (4a) imply that label i is minimal
for fϕ. Similarly, in case of (4b) we say that ij is a minimal
pair. Implication (4c) has its premise always satisfied.

3. Improving Mapping
Definition 1. A mapping p : L Ñ L is called (weakly)
improving for f if

p@x P Lq Ef pppxqq ď Ef pxq, (5)

and strictly improving if

pppxq ‰ xq ñ Ef pppxqq ă Ef pxq, (6)

We will consider pixel-wise mappings, of the form ppxqs “
pspxsq, where p@s P Vq ps : Ls Ñ Ls. Furthermore, we
restrict to idempotent mappings, i.e., satisfying p ˝ p “ p,
where ˝ denotes composition.
Statement 1. Let p be an improving pixel-wise idempotent
mapping. Then there exists an optimal solution x˚ such that

p@iq pspiq ‰ i ñ x˚s ‰ i. (7)

In case p is strictly improving any optimal solution x˚

satisfies (7).
Proof. Let x be optimal. Then x˚ “ ppxq is optimal as
well. By idempotency, x˚ satisfies ppx˚q “ x˚. Condi-
tion (7) is equivalent to p@iq x˚s “ i ñ pspiq “ i. If p is
strictly improving, for any optimal solution x˚ there must
hold ppx˚q “ x˚, otherwise Ef pppx˚qq ă Ef px

˚q.
It follows that knowing an improving mapping, we can

eliminate labels ps, iq for which pspiq ‰ i as non-optimal.
Given a mapping p, the verification of the improving prop-
erty is NP-hard: in case of binary variables it includes NP-
hard decision problem of whether a partial assignment is an
autarky [4]. We need a simpler sufficient condition. It will
be constructed by embedding the mapping into the linear
space and applying a relaxation there.

3.1. Relaxed Improving Mapping

Definition 2. A linear extension of p : L Ñ L is a linear
mapping P : RI Ñ RI that satisfies

p@x P Lq δpppxqq “ Pδpxq. (8)
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Figure 2. Discrete map p sends some labelings to other (the green
labeling to red and the blue one to black). There is a corresponding
linear map P : RI

Ñ RI (unique on affpMq) wit this action – the
oblique projection onto the red facet.

See Figure 2 for illustration. We will only use the fol-
lowing particular linear extension for a pixel-wise mapping
p : L Ñ L, which will be denoted rps. For each ps define
matrix Ps P RLsˆLs as Ps,ii1 “ rrpspi1q “ iss. The linear
extension P “ rps is given by

pPµq0 “ µ0,

pPµqspiq “ Psµs,

pPµqstpijq “ PsµstP
T
t .

(9)

Linear maps of the form (9) with general matrices Ps sat-
isfying Ps ě 0 and 1TPs “ 1 will be called pixel-wise.
To verify that (8) holds true we expand the components
as follows. pPδpxqqspiq “

ř

i1PLs
rrpspi

1q“issrrxs“i
1ss “

rrpspxsq“iss “ δpppxqqspiq. Similarly, for pairwise com-
ponents, pPδpxqqstpi, jq “ rrpspxsq“issrrptpxtq“jss “

δpppxqqstpi, jq.
Using the linear extension P of p we can write

Ef pppxqq “ xf, δpppxqqy “ xf, Pδpxqy. (10)

This allows to express condition (5) as

p@x P Lq xf, Pδpxqy ď xf, δpxqy. (11)

We introduce a sufficient condition by requiring that this
inequality is satisfied over a larger subset Λ.
Definition 3. A linear mapping P : RI Ñ RI is a (weak)
Λ-improving mapping for f if

p@µ P Λq xf, Pµy ď xf, µy; (12)

and is a strict Λ-improving mapping for f if

p@µ P Λ, Pµ ‰ µq xf, Pµy ă xf, µy. (13)

The set of mappings for which (12) (resp. (13)) is sat-
isfied will be denoted Wf (resp. Sf ). For convenience, we

1RHS = Right-hand side of an equation.

will use the term relaxed improving map, meaning it w.r.t.
polytope Λ. Note, this definition and some theorems are
given for arbitrary linear maps, at the same time for the pur-
pose of this paper it would be sufficient to assume pixel-
wise maps of the form (9). Clearly, (12) implies (11) be-
cause δpLq Ă Λ and for the linear extension rps it implies
that p is improving. Sets Wf and Sf are convex as they are
intersections of half-spaces (respectively, closed and open).
Verification of (12) for a given P can be performed via solv-
ing

min
µPΛ

xpI ´ PTqf, µy (14)

and checking that the result is non-negative, i.e. can be de-
cided in polynomial time.

4. Special Cases
In order to show that other methods in the literature are

special cases of condition (12) we first identify a pixel-wise
idempotent mapping p they construct. Then we apply the
following trivial sufficient condition for rps PWf .
Statement 2. Let p@u P Vq p@st P Eq

p@i P Luq fuppupiqq ď fupiq, (15a)
p@ij P Lstq fstppspiq, ptpjqq ď fstpi, jq. (15b)

Then rps P Wf . If additionally ppupiq‰iq ñ fuppupiqq ă
fupiq for all s P V , i P Ls, then rps P Sf .
Proof. Let µ P Λ. By multiplying (15a) by µupiq and sum-
ming over u and i and multiplying (15b) by µstpi, jq and
summing over st and ij we get

xrpsTf, µy ď xf, µy , (16)

which is equivalent to (12). Suppose rpsµ ‰ µ. Then Ds P
V, Di P Ls such that µspiq ą 0 and pspiq ‰ i. Therefore
there will be at least one strict inequality in the sum (with
positive coefficient) and (16) will hold strictly.
How this component-wise condition can be used to explain
global methods? The trick is use it in combination with
equivalent transformations. It turns out that this combina-
tion is very powerful and in fact characterizes Wf (see §5).
We will consider mainly weak variants of all methods. We
start with a simple local method.

4.1. DEE

There is a number of local sufficient conditions pro-
posed that are generally referred to as dead end elimination
(DEE) [5, 8, 20, 7, 24]. We will consider Goldstein’s simple
DEE [8]. This method for every pixel s and labels α, β P Ls
verifies the condition p@x P LN psqq

fspαq ´ fspβq `
ÿ

tPN psq

rfstpα, xtq ´ fstpβ, xtqs ě 0.

(17)
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If the condition is satisfied it means that a (weakly) improv-
ing switch from α to β exists for an arbitrary labelling x. In
that case, ps, αq can be eliminated, preserving at least one
optimal assignment.

Let pspαq “ β, pspiq “ i for i ‰ α; and ptpiq “ i for all
t ‰ s. Let P “ rps. We claim P PWf .
Proof. The condition (17) can be written as

min
xPL
rfpxq ´ fpppxqqs ě 0. (18)

This minimization problem efficiently has a star struc-
ture (non-zero unary terms only for s and pairwise terms
for neighbors of s). It is equivalent therefore to

min
µPΛ

xf, µ´ Pµy ě 0. (19)

Similarly, the strict inequality (17) implies P P Sf .

4.2. QPBO Weak Persistency

The weak persistency theorem [22, 10] states the follow-
ing. Let Ls “ t0, 1u “ B. Let µ P argminµPΛxf, µy. Let
Os “ ti P B |µspiq ą 0u. Then

pDx P argmin
x

Ef pxqq p@s P Vq xs P Os. (20)

In the case |Os| “ 1 vector µs is necessarily integer and the
theorem states that for such integer pixels, xs can be fixed
accordingly.

We define pspiq “ 0 if Os “ t0u, pspiq “ 1 if Os “ t1u
and pspiq “ i otherwise. We claim rps PWf .
Proof. Let ϕ be a solution to LP-dual. We will show that the
following component-wise inequalities hold:

fϕs piq ě fϕs ppspiqq, (21a)
fϕstpi, jq ě fϕstppspiq, ptpjqq. (21b)

Unary inequalities (21a) hold by construction of p and com-
plementary slackness (4a). Let us show pairwise inequali-
ties (21b). Let yst “ ppxqst. Consider the following cases:
‚ |Os| “ 1, |Ot| “ 1. Necessarily, µspysq “ 1 and
µtpytq “ 1. By feasibility, µstpystq “ 1. By comple-
mentary slackness, fϕstpystq ď fϕstpxstq.
‚ |Os| “ 1, |Ot| “ 2. Necessarily, µspysq “ 1. By
feasibility, µstpys, iq ą 0 for all i P B. By comple-
mentary slackness, fϕstpys, xtq ď fϕstpxs, xtq.
‚ |Os| “ 2, |Ot| “ 2. In this case yst “ xst and hence
fϕstpystq “ fϕstpxstq.

Therefore, for every st P E we have fϕstpystq ď fϕstpxstq.
By Statement 2, (21) implies p PWf .

4.3. QPBO Strong Persistency

Let pµ, ϕq be a feasible primal-dual pair for (LP). This
pair is called strictly complementary if

µspiq ą 0 ô fϕs piq “ 0, (22a)
µstpi, jq ą 0 ô fϕstpi, jq “ 0 (22b)

ψ “ f0 `
ÿ

s

ϕs. (22c)

Clearly, strictly complementary pair is complementary and
thus it is optimal. Such pair always exists and can be found
by interior point algorithms. It is known that µ is a relative
interior point of the primal optimal facet and ϕ is relative
interior point of the dual optimal facet.

The strong persistency theorem [22, 10] considers pix-
els s P V such that µ1s is integer in all solutions µ1 to the
LP-relaxation. It is seen that µ1spiq ą 0 in some optimal
solution µ1 iff µspiq ą 0 for the relative interior optimal so-
lution µ. Clearly, the solution µ has the minimum number
of integer components of all solutions. Let

Os “ ti P Ls |µspiq ą 0u. (23)

For a strictly complementary pair, (23) defines the same sets
as

Os “ argmin
i

fϕs piq. (24)

So we need either primal or dual relative interior optimal
point. The theorem can be formulated as follows. Let pµ, ϕq
be a strictly complementary primal-dual pair. Let Os be
defied by (24). Then

p@x P argmin
x

Ef pxqq p@s P Vq xs P Os. (25)

Let us consider the pixel-wise mapping p:

pspiq “

$

’

&

’

%

0, Os “ t0u,

1, Os “ t1u,

i, Os “ t0, 1u.

(26)

Statement 3. We claim that rps P Sf .
Proof. By construction of p and Os we have p@iq

fϕs piq ě fϕs ppspiqq. (27)

If pspiq ‰ i, then i R Os and inequality (27) is strict. We
also have the pairwise inequalities (21b) implied by non-
strict complementary slackness as in the weak persistency
case. By Statement 2, it follows that p P Sf .

We can verify that mapping p is the maximum because
any mapping that is larger violates necessary conditions of
Sf to be given in Lemma 1. Therefore it is the solution to
MAX-SI.
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4.4. MQPBO

MQPBO method [14] extends partial optimality proper-
ties of QPBO to multi-label problems via the reduction of
the problem to 0-1 variables. The reduction is for a pre-
defined ordering of labels. The method outputs two label-
ings xmin and xmax with the guarantee that there exists
optimal labeling x that satisfy xs P rx

min
s , xmax

s s. The
improving mapping the method constructs has the form
ppxq “ px _ xminq ^ xmax. Because the reduction is
component-wise and we showed component-wise inequal-
ities (21) for QPBO, it can be shown that component-wise
conditions hold for p and therefore rps PWf .

Let f be a multi-label problem and g the equivalent bi-
nary (having t0, 1u-valued decision variables) energy mini-
mization problem as defined in [14]. The mapping of multi-
valued to binary labelings is given by zs,ipxq “ rrxsąiss.
The corresponding mapping of multi-label relaxed labelings
µ to relaxed labelings ν of the binary problem is given [28]
as follows. For index i P Ls “ t0, 1, . . . ,K ´ 1u introduce
the following sets of labels:

Lspi, 0q “ t0, . . . , iu, (28a)
Lspi, 1q “ ti` 1, . . . ,K ´ 1u. (28b)

The vector ν “ Πµ is defined as

νps,iqpαq “
ÿ

i1PLspi,αq

µspi
1q, (29a)

νps,iqpt,jqpα, βq “
ÿ

i1PLspi,αq
j1PLtpj,βq

µstpi
1, j1q, (29b)

where i and j range in L̃s “ L̃t “ t0, 1, . . . ,K ´ 2u.
The mapping Π is consistent with the mapping zs,ipxq “
rrxsąiss in the sense that Πδpxq “ δpzpxqq for all x. Using
the mapping Π, the equivalence of multi-label and binary
problems @x P L Ef pxq “ Egpzpxqq is expressed as

p@µ P Λq xf, µy “ xg,Πµy . (30)

Let QPBO method for g construct labelings zmin
s , zmax

s such
that the mapping q : z Ñ pz_zminq^zmax is strictly (resp.
weakly) improving for g. Let

xmin
s “

ÿ

i1PL̃

zmin
s,i1 , xmax

s “
ÿ

i1PL̃

zmax
s,i1 . (31)

It was shown [14] that the mapping p : x Ñ px _ xminq ^

xmax is strictly (resp. weakly) improving for f .
Statement 4. We claim that the linear extension rps is in
Sf (resp. in Wf ).

Proof. Let g̃ be the problem equivalent to g for which
component-wise inequalities (15) hold (as proven to exist
for QPBO). By equivalence (30), we have

p@µ P Λq xf, µy “ xg,Πµy “ xg̃,Πµy. (32)

Let f̃ “ ΠTg̃. From (32) we conclude that f̃ ” f . We
expand now components of f̃ using (29) and component-
wise conditions for g̃:

f̃spxsq “
ÿ

i1

g̃ps,i1qpzs,i1q

ě
ÿ

i1

g̃ps,i1qppzs,i1 _ z
min
s,i1 q ^ z

max
s,i1 q

“ f̃sppxs _ x
minqs ^ x

max
s q .

(33)

Similarly, for pairwise terms: f̃stpxstq “
ÿ

i1j1

g̃ps,i1qpt,j1qpzps,i1qpt,j1qq (34)

ě
ÿ

i1,j1

g̃ps,i1qpt,j1q

´

pzps,i1qpt,j1q _ z
min
ps,i1qpt,j1qq ^ z

max
ps,i1qpt,j1q

¯

“ f̃stppxst _ x
minqst ^ x

max
st q.

Therefore, component-wise inequalities hold for f̃ . By the
sufficient condition (15), we conclude that

p@µ P Λq xf̃ , rpsµy ď xf̃ , µy , (35)

therefore rps is in Wf . In the case that q is strictly im-
proving, from ppxq ‰ x follows qpzq ‰ z and one of the
inequalities (33) holds strictly. In this case rps P Sf .

4.5. Auxiliary Submodular Problems

There were several methods proposed [18, 19] that differ
in detail. All methods construct an auxiliary submodular
(in a given ordering of labels) energy Eg . A minimizer y
of Eg has the property that Egpx _ yq ď Egpxq, implied
by submodularity. It follows that mapping ppxq “ x_ y is
improving for g. The construction of the auxiliary function
(to be specified) ensures that improvement in f is at least
as big as improvement in g for the full family of mappings
x ÞÑ x _ y, assuming y is not known. It follows that p is
improving for f and thus provides partial optimality.

Let P “ rps. We claim P PWf .
Proof. First, we show that the auxiliary property of g im-
plies

p@µ P Λq xf, Pµ´ µy ď xg, Pµ´ µy. (36)

The auxiliary function Eg in [19] satisfies the following
component-wise inequalities:

p@s P Vq p@i P Lsq p@i1 P Ksq
pf ´ gqspi_ i

1q ď pf ´ gqspiq,
(37a)

p@st P Eq, p@ij P Lstq p@i1j1 P Ks ˆKtq
pf ´ gqstpi_ i

1, j _ j1q ď pf ´ gqstpi, jq,
(37b)

where Ks Ă Ls depend on a particular method. All meth-
ods ensure that ys P Ks. Let µ P Λ. By multiplying in-
equalities (37a) for i1 “ ys with µspiq, inequalities (37b)
for i1j1 “ yst with µstpijq and adding we obtain (36).
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Second, we show that P P Wg . Recall that Eg is
submodular and y is a minimizer. LP-relaxation for g is
tight, therefore there exists dual ϕ such that pδpyq, ϕq sat-
isfies complementary slackness (4). Let g̃ “ gϕ. By (4a),
g̃spxs _ ysq ď g̃spxsq. For the pairwise components we
inspect the four cases in order to prove g̃stpxst _ ystq ď
g̃stpxstq:
‚ xst ě yst: in this case xst _ yst “ xst.
‚ xst ă yst: in this case xst _ yst “ yst, which is

minimal.
‚ xs ă ys, xt ě yt: in this case xst _ yst “ pys, xtq.
The submodularity inequality g̃stpxstq ` g̃stpystq ě
g̃stpxs, ytq ` g̃stpys, xtq and minimality of yst imply
g̃stpxstq ě g̃stpys, xtq.
‚ xs ě ys, xt ă yt: similar to the above.

By Statement 2, p P Wg̃ “ Wg . From (36) follows p P
Wf .

The one-against-all-binary method [19] restricts ys to
t0, ȳsu for some fixed labeling ȳ (e.g. ȳs “ α for all s), let
us call it the test labeling. The labels are then reordered such
that ȳs becomes the highest label and sets Ks are chosen to
be t0,K´1u. Furthermore, g is additionally constrained to
be equivalent to a problem with two labels. In this case the
result of the method depends only on the choice of ȳ and
not on the actual ordering.

4.6. Iterative Pruning

Iterative Pruning method [30] was originally proposed
for the Potts model: fstpi, jq “ γstrri‰jss. It constructs a
subset A Ă V , a labeling y on A and an auxiliary energy
Eg:

p@s P Aq gs “ fs, (38)
p@st P E , s P A, t P Aq gst “ fst,

p@st P E , s P A, t R A, @ijq gstpi, jq “ γstrri “ ysss,

with remaining terms set to zero. It can be seen that energy
Eg depends on the assignment of y only on the boundary
BA “ ts P A | Dst P Ē , t R Au. Let us extend y to V in an
arbitrary way, e.g., by yVzA “ 0. The sufficient condition
of [30] imply that δpyq P argminµPΛxg, µy (the relaxation
is tight). We construct mapping p as

pspiq “

#

ys if s P A,
i if s R A,

(39)

i.e., p replaces part of labeling x on A with the labeling y.
Let P “ rps. We claim that P PWf .
Proof. We first show that g is auxiliary for f in the same
sense as for the method [19]. We trivially have fsppspiqq ´
fspiq “ gsppspiqq´gspiq. We also have equality of pairwise
terms fstpppxqstq ´ fstpxstq “ gstpppxqstq ´ gstpxstq for
st P E in all of the following cases: (a) s P A and t P A; (b)

s R A and t R A; (c) s P A and t R A, xs “ ys. It remains
to verify the inequality for boundary pairs s P A, t R A in
the case xs ‰ ys. We have

fstpxstq ´ fstpppxqstq

ě min
ijPLst

`

fstpi, jq ´ fstppspiq, ptpjqq
˘

“ ´γ

“ gstpxstq ´ gstpppxqstq.

(40)

It follows that (36) holds. The second step is to show that
P PWg . By assumption, we have δpyq P argminµPΛxg, µy.
Given a labeling x, mapping p replaces part over A to the
optimal labeling y. It follows that p@µ P Λq xg, Pµy “
xg, δpyqy ď xg, µy. Combined with (36), we obtain P P

Wf .

5. Characterization
We introduced component-wise sufficient condi-

tions (15) and observed while considering different
methods that it was often possible to find a reparametriza-
tion of the problem such that these conditions hold. This is
not a coincidence.
Theorem 1. Let P “ rps, p idempotent and P PWf . Then
exists ϕ such that

PTfϕ ď fϕ. (41)

Proof. The proof uses a representation of the verification
problem (14) introduced in Sectionsec:properties. Let g “
pI´PTqf . The steps of the proof are given by the following
chain:

min
Aµ“0
µě0

xf ´ PTf, µy
pbq
“ min

APµ“0
ApI´P qµ“0
µě0

xf ´ PTf, µy

pcq
“ min

ApI´P qµ“0
µě0

xf ´ PTf, µy
pdq
“ max

ϕ

pI´PT
qpf´ATϕqě0

0 .

(42)
On the LHS we have problem (54) which is bounded be-
cause P PWf . The value of the problem in this case equals
zero. Under conditions of the theorem, equalities (b), (c) es-
sentially claims boundedness of the other two minimization
problems in the chain. Equality (b) is verified as follows.
Inequality ď holds because Aµ´ APµ “ 0 and APµ “ 0
implies Aµ “ 0. On the other hand, P preserves all con-
straints of Λ and therefore Aµ “ 0ñ APµ “ 0.

Equality (c) is the key step. We removed one constraint,
therefore ě trivially holds. Let us prove ď. Let µ be feasi-
ble to RHS of equality (c). Let µ “ µ1 ` µ2, where

µ1 “ Pµ ; µ2 “ pI ´ P qµ . (43)

There holds

pI ´ P qµ1 “ pI ´ P qPµ “ pP ´ P
2qµ “ 0 ,

Pµ2 “ P pI ´ P qµ “ 0 ,
(44)
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i.e., µ1 P nullpI ´ P q and µ2 P nullpP q. Let us construct
µ11 as follows. Let γ “

max
 

max
st,ij

|Lst|pµ1qstpi, jq,max
s,i
|Ls|pµ1qspiq, pµ1q0

(

,

pµ11qst “ γ{|Lst| , (45)
pµ11qs “ γ{|Ls| ,
pµ11q0 “ γ .

By construction,

pµ11q ě µ1 and Aµ11 “ 0 . (46)

Let µ21 “ Pµ11. Because P ě 0, we have

µ21 “ Pµ11 ě Pµ1 “ µ1 . (47)

It also follows that APµ21 “ APPµ11 “ APµ11 “ 0 and
pI ´ P qµ21 “ pI ´ P qPµ11 “ 0. Let µ˚ “ µ21 ` µ2. It
preserves the objective,

xf ´ PTf, µ˚y “ xf, pI ´ P qpµ21 ` µ2qy (48)
“ xf, pI ´ P qµ2y “ xf, pI ´ P qµy .

We also have that

µ˚ “ µ21 ` µ2 ě µ1 ` µ2 “ µ ě 0 ,

ApI ´ P qµ˚ “ ApI ´ P qµ2 “ ApI ´ P qµ “ 0 ,

APµ˚ “ APµ21 “ 0 .

(49)

Therefore, µ˚ satisfies all constraints of the LHS of equality
(c).

Equality (d) is the duality relation that asserts that the
maximization problem on the RHS is feasible, which is the
case iff

pDg ” fq pI ´ PTqg ě 0 . (50)

6. Maximum Improving Mapping
Having a more powerful sufficient condition, which can

be verified in polynomial time, how do we find a map that
satisfies it? How do we find the map that delivers the largest
partial optimal assignment, or, equivalently, eliminates the
maximum number of labels as non-optimal? Recall that
the label ps, iq is eliminated by pixel-wise mapping p if
rrpspiq‰iss. We therefore formulate the following maximum
persistency problem:

max
p

ÿ

s,i

rrpspiq‰ iss s.t. rps PWf . (MAX-WI)

The strict variant, with constraint rps P Sf , will be denoted
MAX-SI. The problem may look difficult, however, we will
be able to solve it in polynomial time for some types of
maps covering nearly all types that appeared in the previous
section:

problem type MAX-SI MAX-WI

K “ 2 P (QPBO) P (QPBO)
K “ 3 ? NP-hard
K ą 3 NP-hard NP-hard
P1,y P (ε-L1) P (L1)
P2,y P (ε-L1) P (L1)
P1 P (nec. cond. + ε-L1) NP-hard
P2 NP-hard NP-hard

Table 1. Complexity of maximum persistency problem. Notation
K “ 2 means the class of problems with 2 labels and arbitrary
maps. In brackets we denote the respective polynomial method,
see §7.

‚ all-to-one maps. Set P1,y of maps of the form p : x ÞÑ
xrAÐ ys for all A Ă V and fixed y P L.

‚ subset-to-one maps. Let V “ tps, iq | s P V, i P Lsu.
Let ξ P t0, 1uV . Mapping pξ in every pixel either
preserves the label or switches it to ys:

pξpxqs “

#

ys if ξsxs
“ 1,

xs otherwise.
(51)

Vector pξsi | i P Lsq serves as the indicator of a subset
of labels in pixel s that are mapped to ys. The set P2,y

of all such maps is considered.
‚ all-to-one-unknown maps. Set P1 “

Ť

yPL P1,y .
Additionally, we define subset-to-one-unknown maps as the
set P2 “

Ť

yPL P2,y . This set is considered merely to
draw the boundary between solvable and unsolvable cases
of maximum persistency problem. All complexity results
are summarized in Table 1. We see that as soon as K ą 3
the problem with unconstrained maps becomes intractable.
We also see that the complexity jumps with the number of
possible destinations for each label increased. Note, in case
of all-to-one-unknown maps the difference between strict
and weak conditions results in a different complexity class!

7. Algorithms
Case K “ 2 For the case of two labels (K “ 2), problem
MAX-SI (resp. MAX-WI) can be solved by finding solution
to (LP) with the minimum (resp. maximum) number of inte-
ger components. This corresponds to finding specific cuts in
the network flow model [3], [17, §2.3]. Finding the relaxed
solution with the maximum number of integer components
was proven polynomial by Picard and Queyranne [23] in the
context of vertex packing problem. We extend this proof to
general quadratic pseudo-Boolean functions.
Statement 5. Let µ1, µ2 be two solutions to (LP). Let us
denote sets where these solutions are integral as U “ ts P
V |µ1

spiq P Bu and V “ ts P V |µ2
spiq P Bu. Let x1 and

x2 be corresponding partial labelings. Then there exists a
solution µ such that its integral part A “ ts P V |µspiq P Bu
is the union U Y V .
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Proof. We construct µ as follows

µs “

#

µ1
s, s P U,

µ2
s, s R U ;

µst “

$

’

’

’

&

’

’

’

%

µ1
st, s P U, t P U,

µ2
st, s R U, t R U,

µ1
spµ

2
t q

T, s P U, t R U,

µ2
spµ

1
t q

T, s R U, t P U.

(52)

First, we check that µ is feasible. We use feasibility of
µ1, µ2 and verify that 1Tµ1

spµ
2
sq

T “ pµ2qT.
Let us now show that µ is optimal. Let ϕ be relative

interior dual solution. By complementarity slackness with
µ1 and µ2 it must be that fϕs piq “ 0 whenever µ1

spiq ą 0
or µ2

spiq ą 0 and the same holds for pairwise terms. We
need to care only about the stitching, the pairwise terms in
the case s P U , t R U . Let O1

s “ ti |µ1
spiq ą 0u. Since

|O1
s | “ 1 and |O1

t | “ 2, by feasibility of µ we have that
µ1
stpx

1
s, 0q ą 0 and µ1

stpx
1
s, 1q ą 0. By complementarity,

fϕstpx
1
s, 0q “ fϕstpx

1
s, 1q “ 0. By construction, µstp1 ´

x1
s, ¨q “ 0 and we have that for any µ2

t the product µ1
spµ

2
t q

T

satisfies complementarity with fϕ. The remaining case s R
U , t P U is symmetric. Therefore µ is optimal.

It follows that the maximum can be found in polynomial
time by trying to fix a variable and check whether there is
a feasible solution with such fixation. This is trivial but in-
efficient. It can be done efficiently by analyzing connected
components in the network flow model [17, §2.3].

Case K ě 3 To show that for K ě 3 problem MAX-WI
is NP-hard we notice that (LP) is tight iff there exists y P L
such that mapping p : L ÞÑ y is relaxed-improving. Clearly,
this mapping is a (non-unique) solution to MAX-WI. Veri-
fying tightness of (LP) is a pairwise constraint satisfaction
problem which is NP-hard for K ě 3.

7.1. General Properties

We will now derive some properties of MAX-WI/SI prob-
lem that will enable our main result – reduction to a single
linear program for subset-to-one maps. The problem will be
gradually reformulated in terms of linear extension P “ rps
only. The constraint P P Wf is complicating because set
Wf is defined with quantifier p@x P Λq, see (12). How-
ever, since Λ is polyhedral, this set can be reformulated as a
projection of a higher-dimensional polytope:
Statement 6 (Dual W). Set Wf can be expressed as

tP : RI Ñ RI | pDϕ P Rmq fϕ ´ PTf ě 0u. (53)

Proof. Denote g “ pI ´ PTqf . Condition (14), equivalent
to (12), can be stated for the conic hull of Λ:

inf
µPconipΛq

xg, µy ě 0. (54)

This is because for any µ P Λ and any α ě 0 vec-
tor αµ will satisfy RHS of (12) as well. Observe that
conipΛq “ tµ |Aµ “ 0, µ ě 0u (in the specific repre-
sentation of the polytope we used we just have to drop the
constraint µ0 “ 1). We can write minimization problem
in (54) and its dual as

infxg, µy max 0 .
Aµ “ 0
µ ě 0

ϕ P Rm
g ´ATϕ ě 0

(55)

Inequality (54) holds iff the primal problem is bounded, and
it is bounded iff the dual is feasible, which is the case iff
pDϕ P Rmq pf ´ATϕq ´ PTf ě 0.

With this reformulation we can write MAX-WI as

max
p,ϕ

ÿ

s,i

rrpspiq‰ iss s.t.: pI ´ rpsTqf ´ATϕ ě 0. (56)

Notice, quantifier pDϕq turned into an extra minimization
variable. To handle the strict case, we would need a simi-
lar dual reformulation for the set Sf . This set has a more
complicated quantifier p@µ P Λ, Pµ ‰ µq. Fortunately, the
following reformulation holds for pixel-wise maps:
Statement 7 (Dual S). Let p : L Ñ L be pixel-wise. Then
rps P Sf iff pDε ą 0q pDϕ P Rmq

p@s, @iq fϕs piq ´ fsppspiqq ě εrrpspiq‰iss, (57a)
p@st, @ijq fϕstpi, jq ´ fstppspiq, ptpjqq ě 0. (57b)

Proof. Let h P RI with components hspiq “ rrpspiq‰iss,
hstpi, jq “ 0. For µ P Λ there holds xh, µy “ 0 iff rpsµ “
µ. Conditions (13) are equivalent to

p@µ P Λq xpI ´ rpsTqf, µy ě εxh, µy (58)

for some ε ą 0. We apply now the same inference as
in Statement 6 for vector g “ f ´ PTf ´ εh. It follows
that (58) is equivalent to pDϕ P Rmq pf ´ ATϕq ´ PTf ´
εh ě 0.

Additionally, the following lemma provides necessary
conditions for sets Wf , Sf . It will help to narrow down
the set of maps over which the optimization is carried out.
Lemma 1 (Necessary Conditions). Let P : RI Ñ RI ,
P pΛq Ă Λ and O “ argminµPΛxf, µy. Then

(a) P PWf ñ P pOq Ă O.
(b) P P Sf ñ p@µ P Oq P pµq “ µ.

Proof. (a) Assume pDµ P Oq Pµ P ΛzO. Then xf, Pµy ą
xf, µy, therefore P R Wf . (b) Assume pDµ P Oq Pµ ‰ µ.
Then xf, Pµy ě xf, µy and therefore P R Sf .

7.2. Maximum Persistency by LP

Let us consider the class of maps P2,y , in which
mapping pξ is defined by the indicator variable ξ P t0, 1uV .
We will first consider problem (MAX-WI). The constraint
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rpξs PWf in the dual form is still complicated by that rpξs
defined by (9) involves products ξsiξtj . We are going to
linearize these terms by introducing additional variables
ξstij . Let Σ be set the of vectors ξ with components ξsi,
ξstij such that

0 ďξsi ď 1,

maxp0, ξsi ` ξtj ´ 1q ďξstij ď minpξsi, ξtjq.
(Σ)

If ξ P Σ and all ξsi are integral, there holds ξstij “ ξsiξtj .
Set Σ is convex, polyhedral. For ξ P Σ we introduce the
following corresponding mapping Pξ by replacing products
ξsiξtj with ξstij in (9):

pPξµqspiq “
ÿ

i1

Ps,ii1µspi
1q, (59a)

pPξµqstpi, jq “
ÿ

i1,j1

Pst,ii1,jj1µstpi
1, j1q, (59b)

Ps,ii1 “rrpspi
1q“iss “ (60a)

rrys“issξsi1 ` rri
1“issp1´ ξsi1q,

Pst,ii1,jj1 “rrys“issrryt“jssξsti1j1 (60b)
`rri1“issrryt“jsspξtj1 ´ ξsti1j1q

`rrys“issrrj
1“jsspξsi1 ´ ξsti1j1q

`rri1“issrrj1“jssp1´ ξsi1 ´ ξtj1 ` ξsti1j1q.

Mapping Pξ is linear in ξ and for integer ξ it coincides
with rpξs. We can now formulate (MAX-WI) as the follow-
ing mixed integer linear program:

max
ξ,ϕ

ÿ

s,i

ξsi (IL1)

pI ´ PT
ξ qf ´A

Tϕ ě 0

ξ P Σ; ξsi P t0, 1u; ξsys “ 0.

By relaxing the integrality constraints we obtain the lin-
ear program

max
ξ,ϕ

ÿ

s,i

ξsi (L1)

pI ´ PT
ξ qf ´A

Tϕ ě 0

ξ P Σ; ξsi P r0, 1s; ξsys “ 0.

We will prove in Theorem 2 that this relaxation is tight and
then the program will be simplified by expanding the con-
straints and optimizing out variables ξstij . We first need the
following lemma.
Lemma 2. Polytope Λ is closed under mapping Pξ, ξ P Σ.
Proof. We verify that p@µ P Λq Pξµ P Λ. Denote µ1 “
Pξµ. By constraints of Σ, all numbers (60a), (60b) are non-
negative, therefore µ1 ě 0. Constraints 1Tµ1s “ 1 hold
due to 1TPs “ 1. Constraints 1Tµ1st “ pµ

1
tq

T hold due to
ř

ii1 Pst,ii1,jj1 “ Pt,jj1 .

Theorem 2. In a solution pξ, ϕq to (L1) vector ξ is integer.
Proof. We will show that rounding ξ up results in a feasible
solution with equal or better objective. Because ξ is feasi-
ble to (L1), the mapping Pξ is Λ-improving for f . Note,
at this point, unless ξ is integer it is not guaranteed that
PξpMq Ă M and we cannot draw any partial optimali-
ties from it, neither Pξ is guaranteed to be idempotent. By
Lemma 2, PξpΛq Ă Λ. Therefore

p@µ P Λq xf, PξPξµy ď xf, Pξµy ď xf, µy. (63)

It follows that P 2
ξ “ PξPξ is Λ-improving. Since PξpΛq Ă

Λ, it is also P 2
ξ pΛq Ă PξpΛq Ă Λ. Moreover, P 2

ξ “ Pξ1

with the following coefficients ξ1:

ξ1si “ 1´ p1´ ξsiq
2,

ξ1stij “ p1´ ξsi ´ ξtj ` ξstijq
2 ´ 1` ξ1si ` ξ

1
tj .

(64)

It can be verified that ξ1 P Σ. Let Pξ˚ “ limnÑ8pPξq
2n

.
Then

ξ˚si “ lim
nÑ8

1´ p1´ ξsiq
2n

“ rrξsią 0ss. (65)

Since Pξ˚ is Λ-improving, it is feasible to (L1). Assume for
contradiction that there exist ps1, i1q such that 0 ă ξs1i1 ă 1.
From (65) we have ξ˚si ě ξsi for all si and ξ˚s1i1 ą ξs1i1 .
It follows that ξ˚ achieves a better objective value, which
contradicts the optimality of ξ. Therefore ξ is integer.

Since the optimal solution to (L1) is integer and unique
(as seen from the objective), it is the solution to (MAX-WI).

Problem (MAX-SI) can be approached similarly, using
the dual definition of S. The inequalities for pairwise
terms (57b) are linearized exactly the same way as for the
weak case, we can write them shortly as

ppI ´ PT
ξ qf ´A

Tϕqstpi, jq ě 0. (66)

The inequalities for univariate terms (57a), by substituting
pξ can be expressed as

pfspiq ´ fspysqqξsi ´ pA
Tϕqspiq ě εξsirri ‰ ysss. (67)

Since we assume ξsys “ 0, expression (67) is equivalent to

pfspiq ´ fspysq ´ εqξsi ´ pA
Tϕqspiq ě 0, (68)

i.e., we obtained the same form of constraints as for the
weak case, but with slightly modified vector f . Namely,
components fspysq are increased by ε for all s. Let us de-
note the problem (L1) with ε-modified vector f as (ε-L1).
Since the solution ξ to (ε-L1) is integer it solves MAX-SI.

These solutions can be applied for one or more test la-
belings y. A polynomial algorithm, for example, can iterate
over labelings pyα | @s ys “ αq for α “ 0, . . . ,K ´ 1.
This algorithm subsumes simple Goldstein’s DEE [8] and
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the series of Kovtun’s weak one-against-all subproblems for
candidate labelings yα. Most efficient in practice seems to
set ys to one of the immovable labels by the necessary con-
ditions by Lemma 1. This approach in fact allows to solve
optimally MAX-SI problem for the next class of mappings.

Reduced Linear Program We now detail the pro-
gram (L1) in components and simplify it for the practical
implementation. We will assume without loss of generality
that 0 “ fspysq “ fstpys, ytq “ fstpi, ytq “ fstpys, jq. If
the problem f̂ does not satisfy these constraints, we chose
the equivalent problem f by letting

fstpi, jq “ f̂stpi, jq ´ f̂stpi, ytq ´ f̂stpys, jq ` f̂stpys, ytq ,

fspiq “ f̂spiq ´ f̂spysq `
ÿ

tPN psq

rf̂stpi, ytq ´ f̂stpys, ytqs ,

f0 “ f̂0 `
ÿ

stPE
f̂stpys, ytq `

ÿ

sPV
f̂spysq . (69)

It can be verified by substitution that Ef “ Ef̂ and that

p@µ P Λq xf̂ , µy “ xf, µy. By construction, the optimal ξ
for problem (MAX-WI) does not depend on this transforma-
tion. We have

pf ´ PTfqspiq “ fspiqξsi,

pf ´ PTfqstpi, jq “ fstpi, jq
`

ξsi ` ξtj ´ ξstij
˘

.
(70)

With these expansions made, the problem (L1) expresses as

max
ξ,ϕ

ÿ

s,i

ξsi

p@s, iq fspiqξsi `
ÿ

tPN psq

ϕstpiq ´ ϕs ě 0, (71a)

p@st, @ijq

fstpi, jqpξsi ` ξtj ´ ξstijq ´ ϕstpiq ´ ϕtspjq ě 0, (71b)
ÿ

s

ϕs ě 0, (71c)

ξ P Σ; ξsi P r0, 1s; ξsys “ 0. (71d)

We next optimize out variables ξstij . For each ij vari-
able ξstij is present only in the constraint (71b) and the
constraint of the feasible set Σ, maxp0, ξsi ` ξtj ´ 1q ď
ξstij ď minpξsi, ξtjq. Depending on whether fstpi, jq is
positive or negative the optimal value for ξstij , which al-
lows the maximum freedom for (71b) is either its lower or
upper bound, respectively. Let L`st “ tij | fstpi, jq ą 0u
and L´st “ tij | fstpi, jq ď 0u. Substituting the respective
bounds into (71b) and using identities

ξsi ` ξtj ´maxp0, ξsi ` ξtj ´ 1q “ minpξsi ` ξtj , 1q,

ξsi ` ξtj ´minpξsi, ξtjq “ maxpξsi, ξtjq (72)

we can rewrite constraints (71b) as

p@st, @ij P L´stq
fstpi, jqmaxpξsi, ξtjq ´ ϕstpiq ´ ϕtspjq ě 0, (73)

p@st, @ij P L`stq
fstpi, jqminpξsi ` ξtj , 1q ´ ϕstpiq ´ ϕtspjq ě 0. (74)

Finally, by expressing min and max as two linear con-
straints each, we obtain the following representation of the
problem (L1):

max
ξ,ϕ

ÿ

s,i

ξsi

p@s, iq fspiqξsi `
ÿ

tPN psq

ϕstpiq ´ ϕs ě 0, (75a)

p@st, @ij P L´stq
fstpi, jqξsi ´ ϕstpiq ´ ϕtspjq ě 0, (75b)
fstpi, jqξtj ´ ϕstpiq ´ ϕtspjq ě 0; (75c)

p@st, @ij P L`stq
fstpi, jq ´ ϕstpiq ´ ϕtspjq ě 0, (75d)
fstpi, jqpξsi ` ξtjq ´ ϕstpiq ´ ϕtspjq ě 0; (75e)
ÿ

s

ϕs ě 0,

ξsi P r0, 1s; ξsys “ 0.

In this form, only variables ξsi remained. On the other hand,
the number of constraints has doubled.

All-to-One-Unknown Let us consider the class P1, in
which map pξ is defined by ξ P t0, 1uV and labeling y P L.
Problem (MAX-WI) is NP-hard by our argument above for
K ě 3, valid for this class as well. However, we can solve
the MAX-SI problem combining necessary conditions by
Lemma 1 and (ε-L1) problem as proposed in Algorithm 1.
Necessary conditions in this case either provide the unique

Algorithm 1: Max Strong all-to-one-unknown

1 µ P argminµPΛxf, µy; /* solve (LP) */

2 For all s if exists i P Ls such that µspiq “ 1 then set
ys “ i, otherwise set ys arbitrarily;

3 Solve the problem (ε-L1) with y;

labeling ys or prove that ps must be identity. The optimality
of the method follows. This algorithm subsumes strict vari-
ant of Kovtun’s one-against-all auxiliary problem, under an
arbitrary choice of a test labeling ȳ and the iterative pruning
method [30].
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7.3. Windowing

In this section we would like to address large-scale prob-
lems, where solving (L1) for the full problem may be nu-
merically intractable. We restrict consideration to a local
window W Ă V , fix pspiq “ i for all s R W and solve
for the part of p inside the window. This leads to a reduced
problem (L1) with variables ξsi and ϕstpiq only inside the
window. But how do we pick a good labeling y for (L1),
without solving the full (LP)? We propose the following
“local” necessary conditions.
Theorem 3. Let P,Q : RI Ñ RI , QP “ Q and P pΛq Ă
Λ. Let

O “ arg min
µPΛ

xf, pI ´Qqµy (76)

Then
(a) P PWf ñ P pOq Ď O.
(b) P P Sf ñ p@µ P OqPµ “ µ.

Proof. (a) Assume P pOq Ę O. Then there exists µ P O
such that Pµ P ΛzO. Then xf, pI ´ Qqµy ă xf, pI ´
QqPµy. Equivalently, 0 ą xf, ppI ´Qq ´ pI ´QqP qµy “
xf, pI ´ P qµy. Hence P RWf .

(b) Assume for contradiction that Pµ ‰ µ. Then
xf, Pµy ă xf, µy. Equivalently, xf, ppI ´ Qq ´ pI ´
QqP qµy ą 0, which implies xf, pI ´ Qqµy ą xf, pI ´
QqPµy, which contradicts µ P O.

As a corollary, we have the following result. Let Os “
ti P Ls| pDµ P Oq µspiq ą 0u. A pixel-wise map p : LÑ L
is weakly Λ-improving only if pspOsq “ Os and strongly-
Λ-improving only if pspiq “ i for all i P Os.

Instead of solving full (LP) we solve test problem (76)
with Q “ rqs, qspiq “ i for s R W and qspiq “ 0 for
s PW . Since for any p in the window there holds q ˝p “ q,
the solution to (76) identifies the subset of “immovable” la-
bels and makes algorithms developed in the previous sec-
tion applicable.

In order to better understand necessary conditions by
Theorem 3 we give the next additional property. For a pro-
jection P : RI Ñ RI , its null space corresponds to the di-
mensions (variables) that become fixed. The larger the null
space the more powerful the projection is, because the op-
timization domain reduces from M to P pMq. The next
lemma clarifies why property QP “ Q was essential in
Theorem 3.
Lemma 3. Let P be idempotent. Then QP “ Q iff
nullpP q Ď nullpQq.
Proof. Let QP “ Q. Assume Px “ 0, then Qx “ QPx “
Q0 “ 0 and therefore x P nullpQq. In the other direction,
let nullpP q Ď nullpQq. Let x be arbitrary. Since P 2 “ P ,
we can represent x with the orthogonal sum x “ x1 ` x2

with x1 P nullpP q and x2 P nullpI ´ P q. We have Px “
Px1 ` Px2 “ Px2 “ x2. It follows that QPx “ Qx2.
Since nullpP q Ă nullpQq we have Qx1 “ 0 and therefore
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Figure 3. Other instances of color-seg-n4. For each instance
shown: image, reminder of the problem (number of remaining la-
bels), algorithm progress.

Qx “ Qx1 `Qx2 “ Qx2. It follows that QPx “ Qx2 “

Qx and therefore QP “ Q.

8. Experiments
8.1. Random Instances

We report results on random problems with Potts in-
teractions and full interactions. Both types have unary
weights fspiq „ U r0, 100s (uniformly distributed). Full
random energies have pairwise terms fstpi, jq „ U r0, 100s
and Potts energies have fstpi, jq “ ´γstpiqrri“jss, where
γstpiq „ U r0, 50s. All costs are integer to allow for ex-
act verification of correctness. Only instances with non-
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Figure 4. Solution completeness by different methods on random instances of size 10x10 pixels, 4-connected. Bars of different shades
indicate the portion of the sample under the given solution completeness value (statistics over 100 instances). Left: Potts model, right: full
model.

DEE1 Goldstein’s Simple DEE [8]: If fspαq ´ fspβq `
ř

tPN psqminxt rfstpα, xtq ´ fstpβ, xtqs ě 0 eliminate α. Iterate until no
elimination possible.

DEE2 Similar to DEE1, but including also the pairwise condition: fspαsq ´ fspβsq ` ftpαtq ´ ftpβtq ` fstpαstq ´ fstpβstq `
ř

t1PN psqzttu
minxt1

rfst1pαs, xt1q ´ fst1pβs, xt1qs `
ř

t1PN ptqztsu
minxt1

rftt1pαt, xt1q ´ ftt1pβt, xt1qs ě 0.

MQPBO(-P) The method of Kohli et al. [14]. The problem reduced to t0, 1u variables is solved by QPBO(-P) [25], where “-P” is the
variant with probing [4]. In the options for probing we chose: use weak persistencies, allow all possible directed constraints
and dilation=1.

Kovtun One-against-all Kovtun’s method [19]. We run a single pass over α “ 1, . . .K (test labelings are pys “ α | s P Vq). Labels
eliminated in earlier steps are taken correctly into account in the subsequent steps.

Swoboda Iterative Pruning method of Swoboda et al. [30] using CPLEX [1] for each iteration. This version is applicable only to Potts
model.

L1 The proposed method solving (L1) with CPLEX. The test labeling y is selected from the necessary conditions.
DEE2+L1 Sequential application of DEE2 and L1. Note, DEE2 uses condition on pairs which is not covered by the proposed sufficient

condition under standard relaxation polytope Λ.

Table 2. List of tested methods.

zero integrality gap w.r.t. standard LP-relaxation are con-
sidered. For each of the methods in Table 2, we measure
solution completeness as nelim

|V|pK´1q100%, where nelim is the
total number of pairs ps P V, i P Lsq eliminated by the
method as non-optimal. The results are shown in Figure 4.

Results of all methods that are covered by the proposed
sufficient conditions were verified by solving the verifica-
tion LP (14). For random problems, we also found a global
minimum x˚ with CPLEX mixed-integer solver (feasible
for the size of the problems we used). Methods not verifi-
able with (14) we checked to satisfy Ef pppx˚qq “ Ef px

˚q.
In the case of Potts model, we see that performance of

Swoboda et al. [30] drops quickly with the increase of the
number of labels and ours decreases moderately. While the
problem difficulty increases, the performance of DEE meth-
ods appears to benefit from more labels, which can be ex-

plained by the random nature of the problems. Increasing
connectivity makes the problem more difficult for all meth-
ods, see Figure 5.

8.2. Large-Scale Segmentation

We propose experiments with multiclass image segmen-
tation. We used color-seg-n4 instances from [13], which
have 4-12 labels and Potts pairwise interactions. Solv-
ing LP-relaxation for the whole problem is numerically in-
tractable. We apply the technique described in §7.3. We
maintain a global pixel-wise mapping pL Ñ L, which de-
fines the current problem reduction. At each step we se-
lect a window W Ă V such that the problem (L1) over the
window has no more that 104 variables or constraints (un-
der the current reduction of label sets, pspLsq). We find
an improving mapping p1 from the window subproblem and
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(a) (b) (c) (d) (e)
Figure 6. Windowing method in progress. (a) image corresponding to the instance strawberry-glass-2-small; (b) Partial labeling
for the current reduction: only pixels with a single remaining label are assigned. Black boxes depict the current set of windows selected
for application of L1 ( processed in parallel). (c) The number of labels remaining in every pixel on the same iteration as (b). White color
indicates fully resolved pixels. (d) The number of remained labels upon termination. Selected windows are larger, but cannot improve the
reduction. (e) Algorithm progress during DEE1 iterations (green) and window-L1 iterations (blue).

calculate the composition p ˝ p1. We can process several
overlapping windows in parallel, taking a composition of
the mappings in the end. The result might depend on the
order of composition, but any order corresponds to a cor-
rect weak partial optimality. An example of windows se-
lected for processing instance crops-small are shown in
Figure 6; Before each scan with local windows we perform
simple DEE step, this step makes a big initial reduction for
some of these problems, and our method works on the more
difficult reminder. On some other problems DEE step is of
almost of no help, (fourcolors, fourth in Figure 7). By
this technique we demonstrate how a nearly complete solu-
tion can be found for large instances, by considering always
only a part of problem at a time. We see that the reminder
of the problem (the final reduced problem) often decouples
in several small independent components, that are feasible
to ,e.g., ILP methods. These experiments are a proof-of-
concept, we definitely need to develop methods further for

a practical implementation. Results are shown in Figure 6-
3. Note, for some of these instances method of Swoboda
et al. [30] identifies a more complete solution, despite we
claimed to generalize it. They are using a suboptimal LP
solver, but applying it globally to the whole problem. It is
likely that our results can be improved by picking the win-
dows more accurately.

One interesting consequence of the windowing method
is that it can be applied also with methods of Kovtun [19],
Swoboda et al. [30], MQPBO [14] and, in fact, any other
method that constructs a pixel-wise improving mapping.
Because MQPBO constructs a flow network on the graph
with K ˚ |V| nodes and K2|E | edges, it was reported as
intractable for several vision problems [13]. The proposed
windowing technique can remove this limitation.
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Figure 7. Other instances of color-seg-n4.

Conclusion
We have identified a common mechanism of improving

mappings that works in different methods for partial opti-
mality and proposed how to obtain more general optimal-
ity guarantees from a given linear relaxation. It leads to a
coherent and short description of several methods and anal-
ysis of their common properties. From necessary condi-
tions by Lemma 1 it follows that all the methods reviewed
in §4 (as well as the proposed method) cannot be used to
tighten the LP-relaxation, they can only simplify it in some
cases. While our algorithms work for a restricted class of
mappings, many previous methods are based on more nar-
row classes and use less powerful sufficient conditions. We
therefore have a theoretical guarantee to improve over these
methods and we have verified on difficult random problems
that the improvement is significant.

The difference between week and strict conditions may
seem unimportant in practice and was often neglected in the
previous work. However, the class of mappings for which
the maximum persistency problem is polynomially solvable
is larger for strict conditions. Therefore, the difference is
important for developing algorithms and for the theoretical
comparison of different methods. We believe it is also es-
sential for clarity and completeness to keep track of both.
Moreover, it may be useful in practice to have a threshold
ε, below which (e.g., due to limited numerical or data ac-
curacy) the optimal assignment is not reliable, cf . our strict
conditions.

We also proposed how our method can be applied to
large-scale problems on sparse graphs, where solving full-
size (L1) is numerically intractable. We can solve con-
strained variants of MAX-WI/MAX-SI, where the mapping
is chosen only inside a window W Ă V . This leads to lin-
ear programs of a smaller size and allows to test the method
on vision problems. The windowing technique allows to
apply previous methods by parts as well.

Our approach is readily generalizable to higher order en-
ergies. It would be sufficient to augment the embedding δ
with more components in order to obtain a tighter relaxation
and a tighter partial optimality condition (the local polytope
Λ would be defined as affpMq X RI

`).
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