2014 IEEE Conference on Computer Vision and Pattern Recognition

Fast Supervised Hashing with Decision Trees for High-Dimensional Data

Guosheng Lin, Chunhua Shen; Qinfeng Shi, Anton van den Hengel, David Suter
The University of Adelaide, SA 5005, Australia

Abstract

Supervised hashing aims to map the original features to
compact binary codes that are able to preserve label based
similarity in the Hamming space. Non-linear hash functions
have demonstrated their advantage over linear ones due to
their powerful generalization capability. In the literature,
kernel functions are typically used to achieve non-linearity
in hashing, which achieve encouraging retrieval perfor-
mance at the price of slow evaluation and training time.
Here we propose to use boosted decision trees for achieving
non-linearity in hashing, which are fast to train and evalu-
ate, hence more suitable for hashing with high dimensional
data. In our approach, we first propose sub-modular for-
mulations for the hashing binary code inference problem
and an efficient GraphCut based block search method for
solving large-scale inference. Then we learn hash func-
tions by training boosted decision trees to fit the binary
codes. Experiments demonstrate that our proposed method
significantly outperforms most state-of-the-art methods in
retrieval precision and training time. Especially for high-
dimensional data, our method is orders of magnitude faster
than many methods in terms of training time.

1. Introduction

Hashing methods construct a set of hash functions that
map the original features into compact binary codes. Hash-
ing enables fast search by using look-up tables or hamming
distance based ranking. Moreover, compact binary codes
are extremely efficient for large-scale data storage. Ap-
plications include image retrieval, large-scale object detec-
tion [5] and so on.

Hashing methods aim to preserve some notion of sim-
ilarity (or distance) in the Hamming space. These meth-
ods can be roughly categorized as supervised and unsu-
pervised. Unsupervised hashing methods try to preserve
the similarity in the original feature space. For exam-
ple, Locality-Sensitive Hashing (LSH) [7] randomly gen-
erates linear hash functions to approximate cosine similar-
ity; Spectral Hashing [26] learns eigenfunctions that pre-

*Corresponding should be addressed to C. Shen. Code is available at:
https://bitbucket.org/chhshen/fasthash/.

1063-6919/14 $31.00 © 2014 IEEE
DOI 10.1109/CVPR.2014.253

IEEE
1971 computer
psoue

serve Gaussian affinity; Iterative Quantization (ITQ) [8] ap-
proximates the Euclidean distance in the Hamming space;
and Hashing on manifolds [22] takes the intrinsic manifold
structure into consideration.

Supervised hashing is designed to preserve some label-
based similarity [13—16]. This might take place, for exam-
ple, in the case where images from the same category are
defined as being semantically similar to each other. Super-
vised hashing has received increasingly attention recently
such as Supervised Hashing with Kernels (KSH) [16], Two-
Step Hashing (TSH) [15], Binary Reconstructive embed-
dings (BRE) [13]. Although supervised hashing is more
flexible and appealing for real-world applications, the learn-
ing is usually much slower than that of unsupervised hash-
ing. Despite the fact that hashing is only of practical in-
terest in the case where it may be applied to large numbers
of high-dimensional features, most supervised hashing ap-
proaches are demonstrated only on relatively small numbers
of low dimensional features. For example, codebook based
features have achieved remarkable success on image clas-
sification [4, 12], of which the number of feature dimen-
sion usually comes to tens of thousands. To exploit this
recent advance of feature learning, it is very desirable for
supervised hashing to be able to deal with large-scale data
efficiently on sophisticated high-dimensional features. To
bridge this gap, we propose a supervised hashing method
which is able to leverage large training sets and efficiently
incorporate with high-dimensional features.

Non-linear hash functions, e.g., the kernel hash function
employed in KSH and TSH, have shown much improved
performance over the linear hash function. However, kernel
functions could be extremely expensive for both training
and testing on high-dimensional features. Thus a scalable
supervised hashing method with non-linear hash functions
is desirable too.

Our main contributions are as follows. (i) We pro-
pose to use (ensembles of) decision trees as hash functions
for supervised hashing, which can easily deal with a very
large number of training data with high dimensionality (tens
of thousands), and has the desirable non-linear mapping.
To our knowledge, our method is the first general hashing
method that uses decision trees as hash functions. (ii) In or-
der to efficiently learn decision trees for supervised hashing,

ty

Algorithm 1: An example for constructing blocks

Input: Training data points: {1, ...@y, }; Affinity matrix: Y.
Output: blocks:{B1, Bo, ...}
Ve {x1,....,en}t =0;
repeat
t =t+ 1; B¢ + 0; x;: randomly selected from V;
initialize U as joint of V and similar examples of x; ;
for each x; in U do
L if & is not dissimilar with any examples in B, then
L add x; to B¢; remove x; from V ;

N AN AW N -

8 until V=10,

we apply a two-step learning strategy which decomposes
the learning into the binary code inference and the simple
binary classification training of decision trees. For binary
code inference, we propose sub-modular formulations and
an efficient GraphCut [3] based block search method for
solving large-scale inference. (iii) Our method significantly
outperforms many state-of-the-art methods in terms of re-
trieval precision. For high-dimensional data, our method is
usually orders of magnitude faster in terms of training time.

The two-step learning strategy employed in our method
is inspired by the recent work of TSH [15]. Other work
in [18,21,23] also learns hash functions by training classi-
fiers. The spectral method in TSH for binary code inference
does not scale well on large training data, and it may also
lead to inferior result due to the loose relaxation of spec-
tral methods. Moreover, TSH only demonstrates satisfac-
tory performance with kernel hash functions on small-scale
training data with low dimensionality, which is clearly not
practical for large-scale learning on high-dimensional fea-
tures. In contrast with TSH, we explore efficient decision
trees as hash functions and propose an efficient GraphCut
based method for binary code inference. Experiments show
that our method significantly outperforms TSH.

2. The proposed method

Let X = {zy,...,x,} C R? denote a set of training
points. Label based similarity information is described by
an affinity matrix: Y, which is the ground truth for super-
vised learning. The element in Y: y;; indicates the similar-
ity of two data point &; and x;; and y;; = y;;. Specifically,
ys; = 1 if two data points are similar, y;; = —1 if dissimilar
(irrelevant) and y;; = 0 if the pairwise relation is undefined.
We aim to learn a set of hash functions to preserve the label
based similarity in the Hamming space. m hash functions
are denoted as: ®(x) = [h1(x), ..., hyn(x)]. The output of
hash functions are m-bit binary codes: ®(x) € {—1,1}™.
Closely related to Hamming distance, the Hamming affin-
ity is calculated by the inner product of two binary codes
s s(mi,) = Y00 hi(zi)hi(x;). Similar to KSH [16],
we formulate hashing learning based on Hamming affinity,
which is to encourage positive affinity value of similar data
pairs and negative for dissimilar data pairs. The optimiza-

tion is written as:

n o n m 2
gl(ll)lz > il [myij - hk(wi)hk(%)} -
i=1 j=1 k=1

Note that KSH does not include the multiplication of |y;;|
in the objective. We use |y;;| to prevent undefined pairwise
relation from harming the hashing task. If the relation is
undefined, |y;;| = 0, otherwise, |y;;| = 1. In contrast to
KSH which uses kernel functions, here we employ decision
trees as hash functions. We define each hash function as a
linear combination of decision trees, that is,

h(w) = sign (S w,Ty(x)). @)
Here () is the number of decision trees. T'(-) € {—1,1}
denotes a tree function with binary output; The weighting
w = [wi,...,wg] and trees T = [11, ..., T] are parame-
ters we need to learn for one hash function. Comparing to
kernel method, decision trees enjoy faster testing on high-
dimensional data as well as the non-linear fitting ability.
Optimizing (1) directly for learning decision trees is dif-
ficult, and the technique used in KSH is no longer applica-
ble. Inspired by TSH [15], we introduce auxiliary variables
zki € {—1,1} as the output of the k-th hash function on
x;: zx; = hi(w;). Clearly, 2 ; is the binary code of i-th
data point in the k-th bit. With these auxiliary variables, the
problem (1) can be decomposed into two sub-problems:

n n m 2
min Z Z |Yij] (myij - sz,izk,]) ; (3a)
S Y j=1 k=1

min 3oy 3iny 0(zk = he(x:). (3b)
Here Z is the matrix of m-bit binary codes for all train-
ing data points. Note that (3a) is a binary code inference
problem, and (3b) is a simple binary classification problem.
This way, the complicated decision trees learning for su-
pervised hashing (1) now becomes two relatively simpler
tasks—solving (3a) (Step 1) and (3b) (Step 2).

Step 1: Binary code inference. For (3a), we sequen-
tially optimize for one bit at a time, conditioning on previ-
ous bits. When solving for the k-th bit, the cost in (3a) is
written as:

7 k
Dt 2 [Yigl(kyis — 201 2pi%p,5)°
k—1
= i1 2 Wil (kyig — 20,200 2p,i%pg — 2k,i%k,5)°
k—1
= i1 21 —2yijl(kyij — 22521 2p,i%p,5) 21,2k,
+ const. “4)

Hence the optimization for the k-th bit can be equivalently
formulated as a binary quadratic problem:
. n n
Zk 61:{11_1{1;1}” Zi:l Zj:l aijZkink’jj (Sa)

k_ * *
where, A5 = _lyij|<kyij — Zp:} zp77;zp7j). (Sb)

Here z* denotes a binary code in previous bits. We use a
stage-wise scheme for solving each bit. Specifically, when

1972

Algorithm 2: Step 1: Block GraphCut for binary code inference

Algorithm 3: FastHash

Input: Affinity matrix: Y; bit length: k; max inference iteration;

blocks:{B1, B2, ...}; binary codes: {z1, ..., Zx—1}
Output: Binary codes of one bit: zj
1 repeat
2 Randomly permute all blocks;
3 for each B; do
4 L Solve the inference in (8a) on B; using GraphCut;

5 until max iteration is reached ;

solving for the k-th bit, the bit length is set to k instead of
m, which is shown in (5b). In this way, the optimization
of current bit depends on the loss caused by previous bits,
which usually leads to better inference results.
Alternatively, one can apply spectral relaxation method
to solve (5a), as in TSH. However solving eigenvalue prob-
lems does not scale up to large training sets, and the spectral
relaxation is rather loose (hence leading to inferior results).
Here we propose sub-modular formulations for the binary
code inference problem and an efficient GraphCut based
block search method for solving large-scale inference. We
first group data points into a number of blocks, then op-
timize the corresponding variables of one block at a time
while conditioning on the rest of the variables. Let B denote
a block of data points. The cost in (5a) can be rewritten as:

Dt 2oy ij PR, %k,
=2 ies 2jen WijPh,i%hg T Dien Dujgn GijZh,ih,j

+ Zié‘B ZjE’B Qij2k,i 2k, T Zing ngg QijRk,i%k,5-
When optimizing for one block, those variables which are
not involved in the target block are set to constants. Hence,
the optimization for one block can be written as:

doieB Dojen WijPh,izk,j

+2) ies 2jen Wij2kithg. (1)
Here Z;, denotes a binary code of the k-th bit which is not
involved in the target block. With the definition of a;; in
(5b), the optimization for one block can be written as:

min Z UiZk,; + Z Z Vi 2k,i2k,j (8a)

SCER G i€B jeB

k—1
=1yl (kyij — >pm1 25.i%0.5)5 (8b)

i == 2 By (g — b1 2,25 5)- (8¢)
Here u;, v;; are constants. The key to construct a block is
to ensure (8a) of such a block is sub-modular, so we can
apply efficient GraphCut. We refer to this as Block Graph-
Cut (Block-GC), shown in Algorithm 2. Specifically in our
hashing problem, by leveraging similarity information, we
can easily construct blocks which meet the sub-modular re-
quirement, as shown in the following proposition:

min
zp,5 €{—1,1}1%I

where, v;; =

Proposition 1. Vi,j € B, if y;; > 0, the optimization in
(8a) is a sub-modular problem. In other words, for any data

Input: Training data points: {1, ...@y }; Affinity matrix: Y; bit
length: m; blocks:{B1, B2, ...}.
Output: Hash functions: ® = [hq, ..., hm]
for k=1,...,mdo
Step-1: call Algorithm 2 to obtain binary codes of k-th bit;
Step-2: train trees in (9) to obtain hash function hy;
update the binary codes of k-th bit by the output of hg;

W N -

point in the block, if it is not dissimilar with any other data
points in the block, then (8a) is sub-modular.

Proof. Ify;; > 0, ky;; > Ep 1 %p.i%p; holds. Thus v;;
~yisl (kyss

— ZI; }Zp 1ZpJ) < 0. Let Gij(zk,i,zk’j)
Vij2k,i%k,5, we have 6;;(—1,1) = 60,;(1,—1) = —v;;
O;Gij(l,l) = 91‘]‘(—1,—1) = Uiy < 0. Hence VZ,]
B,6;;(1,1)+6;;(—1,—-1) <0<6;;(1,-1)+0,;(—1,1
which prove the sub-modularity of (8a) [19].

O—m IV I

Blocks can be constructed in many ways as long as they
satisfy the condition in Proposition 1. A simple greedy
method is shown in Algorithm 1. Note that the blocks can
overlap and the union of them needs to cover all n variables.
If one variable is one block, Block-GC becomes ICM [2,20]
which optimizes for one variable at a time.

Step 2: Learning boosted trees as hash functions. For
binary classification in (3b), usually the zero-one loss is re-
placed by some convex surrogate loss. Here we use the ex-
ponential loss which is common for boosting methods. The
classification problem for learning the k-th hash function is
written as:

Z;HZ _ weTy(x) |- 9)

We apply Adaboost to solve above problem. In each boost-
ing iteration, a decision tree as well as its weighting coeffi-
cient are learned. Every node of a binary decision tree is a
decision stump. Training a stump is to find a feature dimen-
sion and threshold that minimizes the weighted classifica-
tion error. From this point, we are doing feature selection
and hash function learning at the same time. We can eas-
ily make use of efficient decision tree learning techniques
available in the literature, which are able to significantly
speed up the training. Here we summarize some techniques
that are included in our implementation: (i) We have used
the highly efficient stump implementation proposed in the
recent work of [1], which is around 10 times faster than
conventional stump implementation. (ii) Feature quantiza-
tion can significantly speed up tree training without perfor-
mance loss in practice, and also largely reduce the memory
consuming. As in [1], we linearly quantize feature values
into 256 bins. (iii) We apply the weight-trimming technique
described in [1, 6]. In each boosting iteration, the smallest
10% weightings are trimmed (set to 0). (iv) We apply the
LazyBoost technique: only a random subset of feature di-

HllIl S exp

1973

Table 1: Comparison of KSH and our FastHash. KSH results with differ-
ent number of support vectors. Both of our FastHash and FastHash-Full
outperform KSH by a large margin in terms of training time, binary encod-
ing time (Test time) and retrieval precision.

Method \ #Train #Support Vector \ Train time Test time Precision
CIFARI0 (features:11200)

“KSH 5000 300 | 1082 2277 0480
KSH 5000 1000 3481 57 0.553
KSH 5000 3000 52747 145 0.590
FastH 5000 N/A 331 21 0.634
FastH-Full | 50000 N/A 1794 21 0.763

IAPRTCI2 (features:11200)

CKSH 5000 300 | e 7 0.199
KSH 5000 1000 3447 2 0.235
KSH 5000 3000 51927 5 0.273
FastH 5000 N/A 331 9 0.285
FastH-Full | 17665 N/A 620 9 0.371

ESPGAME (features:11200)

"KSH |5000 300] 120 § 0124
KSH 5000 1000 3358 22 0.139
KSH 5000 3000 52115 46 0.163
FastH 5000 N/A 309 9 0.188
FastH-Full | 18689 N/A 663 9 0.261

MIRFLICKR (features:11200)

"KSH 5000 300 | 1036 5770387
KSH 5000 1000 3337 13 0.407
KSH 5000 3000 52031 42 0.434
FastH 5000 N/A 278 7 0.555
FastH-Full | 12500 N/A 509 7 0.595

mensions are evaluated for tree node splitting.

Finally, we summarize our hashing method (FastHash) in
Algorithm 3. In contrast with TSH, we alternate Step-1 and
Step-2 iteratively. For each bit, the binary code is updated
by applying the learned hash function. Hence, the learned
hash function is able to make a feedback for binary code
inference of next bit, which may lead to better performance.

3. Experiments

We here describe the results of comprehensive experi-
ments carried out on several large image datasets in order
to evaluate the proposed method in terms of training time,
binary encoding time and retrieval performance. For de-
cision tree learning in our FastHash, if not specified, the
tree depth is set to 4, and the number of boosting itera-
tions is set to 200. We compare to a number of recent su-
pervised and unsupervised hashing methods. The retrieval
performance is measured in 3 ways: the precision of top-K
(K = 100) retrieved examples (denoted as Precision), mean
average precision (MAP) and the area under the Precision-
Recall curve (Prec-Recall). Results are reported on 5 im-
age datasets which cover a wide variety of images. The
dataset CIFAR10' contains 60,000 images. The datasets
TIAPRTC12 and ESPGAME [9] contain around 20, 000 im-
ages, and MIRFLICKR [11] is a collection of 25,000 im-
ages. SUN397 [27] is a large image dataset which contains
more than 100, 000 scene images form 397 categories.

For the multi-class datasets: CIFAR10 and SUN397, the
ground truth pairwise similarity is defined as multi-class
label agreement. For datasets: IAPRTC12, ESPGAME
and MIRFLICKR, of which the keyword (tags) annotation
are provided in [9], two images are treated as semanti-

lhttp://www.cs.toronto.edu/Nkriz/cifar.html

Table 2: Comparison of TSH and our FastHash for binary code inference
in Step 1. The proposed Block GraphCut (Block-GC) achieves much lower
objective value and also takes less inference time than the spectral method,
and thus performs much better.

Step-1 methods [#train Block Size [Time (s) Objective
SUN397
" Spectral (TSH) [100417~ N/A~ | 5281 ~ 0.7524
Block-GC-1 (FastH) | 100417 1 298 0.6341
Block-GC (FastH) 100417 253 2239 0.5608
CIFARI10
" Spectral (TSH) [50000~ N/A~ | 1363 04912
Block-GC-1 (FastH) | 50000 1 158 0.5338
Block-GC (FastH) 50000 5000 788 0.4158
IAPRTC12
" Spectral (TSH) [17665 ~ N/A | 426 07237
Block-GC-1 (FastH) | 17665 1 43 0.7316
Block-GC (FastH) 17665 316 70 0.7095
ESPGAME
" Spectral (TSH) [18689 ~ N/A~ [480 07373
Block-GC-1 (FastH) | 18689 1 45 0.7527
Block-GC (FastH) 18689 336 72 0.7231
MIRFLICKR
" Spectral (TSH) [12500~ N/A~ [125 05718
Block-GC-1 (FastH) | 12500 1 28 0.5851
Block-GC (FastH) 12500 295 40 0.5449

cally similar if they are annotated with at lease 2 identi-
cal keywords (or tags). Following a conventional setting
in [13, 16], a large portion of the dataset is allocated as
an image database for training and retrieval and the rest is
put aside for testing queries. Specifically, for CIFAR10,
IAPRTC12, ESPGAME and MIRFLICKER, the provided
splits are used; for SUN397, 8000 images are randomly se-
lected as test queries, while the remaining 100417 images
form the training set. If not specified, 64-bit binary codes
are generated using comparing methods for evaluation.

We extract codebook-based features following the con-
ventional pipeline from [4, 12]: we employ K-SVD for
codebook (dictionary) learning with a codebook size of 800,
soft-thresholding for patch encoding and spatial pooling of
3 levels, which results 11200-dimensional features. We also
tested increasing the codebook size to 1600 which results in
22400-dimensional features.

3.1. Comparison with KSH

KSH [16] has been shown to outperform many state-of-
the-art comparators. The fact that our method employs the
same loss function as KSH thus motivates further compar-
ison against this key method. KSH employs a simple ker-
nel technique by predefining a set of support vectors then
learning linear weightings for each hash function. In the
works of [15, 16], KSH is evaluated only on low dimen-
sional GIST features (512 dimensions) using a small num-
ber of support vectors (300). Here, in contrast, we evaluate
KSH on high-dimensional codebook features, and vary the
number of support vectors from 300 to 3000. KSH is trained
on a sampled set of 5000 examples. The results of these
tests are summarized in Table 1, which shows that increas-
ing the number of support vectors consistently improves the
retrieval performance of KSH. However, even on this small

1974

ESPGAME IAPRTC12 MIRFLICKR
0.2 8
L ~-TSH-Tree
048 -0 TSH-LSVM //r
: -8-FastHash-LSVM
~*-FastHash
0.16 g
% grf e A
IS -
0.12: ~|#-TSH-Tre " |--TSH-Tree
-0 TSH-LSVM O TSH-LSVM
0.1 -8-FastHash-LSVM 0.16h.2 -8-FastHash-LSVM
—*-FastHash 18 ~*-FastHash
0'081 6 32 48 64 16 32 48 64
Number of bits Number of bits Number of bits
ESPGAME IAPRTC12 MIRFLICKR
0.35 0.4 0.65
~-TSH-Tree
O TSH-LSVM X
__ 0.3-8-FastHash-LSVM| _ 035 __ 06 2
z z Z
z —#-FastHash = I S e z
S g 03 8 0.55]
F & - ER <
3 3 0.2 E R
3 R ~-TSH-Tree g we ~-TSH-Tree
& & O TSH-LSVM T o TSH-LSVM
0.2 -8-FastHash-LSVM| 0.45; -8-FastHash-LSVM|
—*-FastHash —4—FastHash
0.1 0.‘%
16 32 48 64 16 32 48 64 6 32 48 64
Number of bits Number of bits Number of bits

Figure 1: Comparison of various combinations of hash functions and binary inference methods. Note that the proposed FastHash uses decision tree as
hash functions. The proposed decision tree hash function performs much better than the linear SVM hash function. Moreover, our FastHash performs much

better than TSH when using the same hash function in Step 2.
CIFAR10

o IAPRTC12 MIRFLICKR
0.8y 0.65
~ STHs ¥ STHs
SPLH 04 SPLH
—-BREs 0.553E g, —-BREs
i eh-1
-0 KSH B.g. o KSH
'§ 5 S -B-FastHash 8 05 e - |E FastHash
3 v STHs X 2 ~+FastHash-Full | 2 0.4¢] *~w |- FastHash-Full
g SPLH 3 8 Na
—4-BREs o T o4
-0 KSH 0.35
-8-FastHash X
—*- FastHash—Full 0.
0.05 ozjmwvv-lvlvde_v-v-v_V_V'Jvl_V
01 02 03 04 05 06 07 08 : 01 02 03 04 05 06 07 08 ’ 01 02 03 04 05 06 07 08
Recall (64 bits) Recali (64 bits) Recall (64 bits)
. CIFAR10 IAPRTC12 MIRFLICKR
08 U SR A S 05 065
07 045 - STHs o
: - SPLH - oo e U
Q@gﬂa—a-B—-E—-ﬂfa—--ﬂ--—a-—-ﬂ-—--{ 0.4, ~-BREs 0_554'9551,“_5_&_9“:‘**\&_‘,
o OO@OO’@—-OMO,_O Dark o KSH 05 It LT
S 05 COsa-g S '\k\-a- FastHash -
E ~ STHs 2 o. —*-FastHash-Full| { -8 0.458 v STHs
® SPLH [T ® SPLH
* ~-BRE &oz5) “op T a g o 04M0e8Q R g ~-BREs
s 0. R —9-6--6-o |
o KSH 03 sy T---p 0.35 o KSH (=4
-8-FastHash 4 04 Rrn@- g O — o -8-FastHash
- 15| ¢9-9= .3
—k-FastHash—Full YV —6-——0— 4 - - —*-FastHash-Full v
o1 500] 1500 2000 O 500 1000 1500 2000 0% 50 0 1500 2000
Number of retrieved samples (64 bits) Number of retrieved samples (64 bits) Number of retrieved samples (64 bits)

Figure 2: Results on high-dimensional codebook features. The precision and recall curves are given in the first row. The precision curves of the top 2000
retrieved examples are given on the second row. Both our FastHash and FastHash-Full outperform their comparators by a large margin.

training set, including more support vectors will dramati-
cally increase the training time and binary encoding time of
KSH. We have run our FastHash both on the same sampled
training set and the whole training set (labeled as FastHash-
Full). Our FastHash and FastHash-Full outperform KSH
by a large margin both in terms of training speed and and
retrieval precision. The results also show that the decision
tree hash functions in FastHash are much more efficient for
testing (binary encoding) than the kernel function in KSH.
Our FastHash is orders of magnitude faster than KSH on
training, and thus much better suited to large training sets
and high-dimensional data. For the low-dimensional GIST

feature, our FastHash also performs much better than KSH
in retrieval, see Table 3 for details. The retrieval perfor-
mance is also plotted in Fig. 2. If not specified, the number
of support vectors for KSH is set to 3000.

3.2. Comparison with TSH

The proposed FastHash employs a similar two-step ap-
proach to that of TSH [15]. We first compare binary code
inference in Step 1: the proposed Block GraphCut (Block-
GC) and the spectral method in TSH. The iteration number
of Block-GC is set to 2. The results of testing are sum-
marized in Table 2. We construct blocks using Algorithm

1975

Table 3: Results using two types of features: low-dimensional GIST features and the high-dimensional codebook features. Our FastHash and FastHash-
Full outperform the comparators by a large margin on both feature types. In terms of training time, our FastHash is also much faster than others on the

high-dimensional codebook features.

I GIST feature (320 / 512 dimensions)

‘ Codebook feature (11200 dimensions)

Method #Train H Train time Testtime Precision MAP Prec-Recall ‘ Train time (s) Testtime (s) Precision MAP Prec-Recall
CIFARI0

"7 KSH 5000 | 52173 8 0453~ 0350 0.164 | 52747 s 0590 0464 0261
BREs 5000 481 1 0.262 0.198 0.082 18343 8 0.292 0.216 0.089
SPLH 5000 102 1 0.368 0.291 0.138 9858 4 0.496 0.396 0.219
STHs 5000 380 1 0.197 0.151 0.051 6878 4 0.246 0.175 0.058
FastH 5000 304 21 0.517 0.462 0.243 331 21 0.634 0.575 0.358
FastH-Full 50000 | 1681 21 0.649 0.653 0.450 1794 21 0.763 0.775 0.605

IAPRTCI12

"7 KSH 5000] 51864 5 0.182 0126~ 0.083 | 51927 51 0273 ~ 0169 0123
BREs 5000 6052 1 0.138 0.109 0.074 6779 3 0.163 0.124 0.097
SPLH 5000 154 1 0.160 0.124 0.084 10261 2 0.220 0.157 0.119
STHs 5000 628 1 0.099 0.092 0.062 10108 2 0.160 0.114 0.076
FastH 5000 286 9 0.232 0.168 0.117 331 9 0.285 0.202 0.146
FastH-Full 17665 | 590 9 0.316 0.240 0.178 620 9 0.371 0.276 0.210

ESPGAME

"7 KSH 5000] 52061 5 0.118 ~ 0.077 ~ 0.054 | 52115 46 0.163 ~ 0.100 0072
BREs 5000 714 1 0.095 0.070 0.050 16628 3 0.111 0.076 0.059
SPLH 5000 185 1 0.160 0.124 0.084 11740 2 0.148 0.104 0.074
STHs 5000 616 1 0.099 0.092 0.062 11045 2 0.087 0.064 0.042
FastH 5000 289 9 0.157 0.106 0.070 309 9 0.188 0.125 0.081
FastH-Full 18689 | 448 9 0.228 0.169 0.109 663 9 0.261 0.189 0.126

MIRFLICKR

"7 KSH 5000] 51983 3 0379 0321 0234 | 52031 0 0434 ~ 0350 0254
BREs 5000 1161 1 0.347 0.310 0.224 13671 2 0.399 0.345 0.250
SPLH 5000 166 1 0.379 0.337 0.241 9824 2 0.444 0.391 0.277
STHs 5000 613 1 0.268 0.261 0.172 10254 2 0.281 0.272 0.174
FastH 5000 307 7 0.477 0.429 0.299 338 7 0.555 0.487 0.344
FastH-Full 12500 | 451 7 0.525 0.507 0.345 509 7 0.595 0.558 0.420

1. The average block size is reported in the table. We also
evaluate a special case where the block size is set to 1 for
Block-CG (labeled as Block-CG-1), in which case Block-
GC is reduced to the ICM [2, 20] method. It shows that
when the training set gets larger, the spectral method be-
comes slow. The objective value shown in the table is di-
vided by the number of defined pairwise relations. The pro-
posed Block-GC achieves much lower objective values and
takes less inference time, and hence outperforms the spec-
tral method. The inference time for Block-CG increases
only linearly with the training set size.

We now provide results comparing different combina-
tions of hash functions (Step 2) and binary code infer-
ence methods (Step 1). We evaluate the linear SVM and
the proposed decision tree hash functions with different bi-
nary code inference methods (Spectral method in TSH and
Block-GC in FastHash). The 11200-dimensional codebook
features are used here. The retrieval performance is shown
in Fig. 1 by varying the number of bits. As expected, the
proposed decision tree hash function performs much bet-
ter than linear SVM hash function. It also shows that our
FastHash performs much better than TSH when using the
same type of hash function for Step 2 (decision tree or lin-
ear SVM hash function), which indicates that the proposed
Block-GC method for binary code inference and the stage-
wise learning strategy is able to generate high quality bi-
nary codes. We also can train RBF-kernel SVM as hashing
function in Step 2, however, as the case here, when applied
on large training set and high-dimensional data, the training

of RBF SVM almost become intractable. Even using the
stochastic kernel SVM (BSGD) [25] with a support vector
budget, the training and testing cost are still very expensive.

3.3. Comparison on different features

We compare hashing methods on the the low-
dimensional (320 or 512) GIST feature and the high-
dimensional (11200) codebook feature. We extract GIST
features of 320 dimensions for CIFAR10 which contains
low resolution images, and 520 dimensions for other
datasets. Several state-of-the-art supervised methods are
included in this comparison: KSH [16], Supervised Self-
Taught Hashing (STHs) [28], and Semi-supervised Hashing
(SPLH) [24]. The result is presented in Table 3. The code-
book features consistently show better result than GIST fea-
tures. Comparing methods are trained on a sampled training
set (5000 examples). Results show that comparing meth-
ods can be efficiently trained on the GIST features. How-
ever, when applied on high dimensional features, even on a
small training set (5000), their training time dramatically
increase. Large matrix multiplication and solving eigen-
value problem on a large matrix may account for the ex-
pensive computation in these comparing methods. It would
be very difficult to train these methods on the whole train-
ing set. The training time of KSH mainly depends on the
number of support vectors (3000 is used here). We run
our FastHash on the same sampled training set (5000 ex-
amples) and the whole training set (labeled as FastHash-
Full). Results show that FastHash can be efficiently trained

1976

Table 4: Results of methods with dimension reduction. KSH, SPLH and
STHs are trained with PCA feature reduction. Our FastHash outperforms
others by a large margin on retrieval performance.

Method # Train ‘ Train time Test time Precision MAP
CIFARI0

"PCA+KSH 50000 [— - - =
PCA+SPLH 50000 | 25984 18 0.4382 0.388
PCA+STHs 50000 | 7980 18 0.287 0.200
CCA+ITQ 50000 | 1055 7 0.676 0.642
FastH 50000 | 1794 21 0.763 0.775

IAPRTC12

"PCA+KSH 17665 [55031 11~ 0.082 ~ 0.103
PCA+SPLH 17665 | 1855 7 0.239 0.169
PCA+STHs 17665 | 2463 7 0.174 0.126
CCA+ITQ 17665 | 804 3 0.332 0.198
FastH 17665 | 620 9 0.371 0.276

ESPGAME

"PCA+KSH 18689 [55714 11 0.141 ~ 0.084
PCA+SPLH 18689 | 2409 7 0.153 0.103
PCA+STHs 18689 | 2777 7 0.098 0.069
CCA+ITQ 18689 | 814 3 0.216 0.131
FastH 18689 | 663 9 0.261 0.189

MIRFLICKR

"PCA+KSH 12500 [54260 '8 0384 0313
PCA+SPLH 12500 | 1054 5 0.445 0.391
PCA+STHs 12500 | 1768 5 0.347 0.301
CCA+ITQ 12500 | 699 3 0.519 0.408
FastH 12500 | 509 7 0.595 0.558

on the whole dataset. FastHash and FastHash-Full outper-
form others by a large margin both on GIST and codebook
features. The training of FastHash is also orders of magni-
tudes faster than others on the high-dimensional codebook
features. The retrieval performance on codebook features is
plotted in Fig. 2.

3.4. Comparison with dimension reduction

A possible way to reduce the training cost on high-
dimensional data is to apply dimension reduction. For
comparing methods: KSH, SPLH and STHs, here we re-
duce the original 11200-dimensional codebook features to
500 dimensions by applying PCA. We also compare to
CCA+ITQ [8] which combines ITQ with the supervised di-
mensional reduction. Our FastHash still use the original
high-dimensional features. The result is summarized in Ta-
ble 4. After dimension reduction, most comparing methods
can be trained on the whole training set within 24 hours (ex-
cept KSH on CIFAR10). However it still much slower than
our FastHash. The retrieval performance of most methods
get improved with more training data. Our FastHash still
significantly outperforms all others. The proposed decision
tree hash functions in FastHash actually perform feature se-
lection and hash function learning at the same time, which
shows much better performance than other hashing method
with dimensional reduction.

3.5. Comparison with unsupervised methods

We compare to some popular unsupervised hashing
methods: LSH [7], ITQ [8], Anchor Graph Hashing (AGH)
[17], Spherical Hashing (SPHER) [10], MDSH [26]. The
retrieval performance is shown in Fig. 3. Unsupervised

Table 5: Performance of our FastHash on more features (22400 dimen-
sions) and more bits (1024 bits). It shows that FastHash can be efficiently
trained on high-dimensional features with large bit length. The training
and binary coding time (Test time) of FastHash is only linearly increased
with the bit length.

Bits #Train Features ‘ Train time Test time Precision MAP

CIFARIO
64 50000 11200 | 1794 21 0763 0.775
256 50000 22400 | 5588 71 0.794 0814
1024 50000 22400 | 22687 282 0.803 0.826
IAPRTCI2
S64 17665 11200 |320 9 0.371 0276
256 17665 22400 | 1987 33 0439 0314
1024 17665 22400 | 7432 134 0483 0.338
ESPGAME
64 18689 11200 | 663 9 0.261 0.189
256 18689 22400 | 1912 34 0329 0233
1024 18689 22400 | 7689 139 0.373 0257
MIRFLICKR
T64 12500 11200]509 T 0.595 0558
256 12500 22400 | 1560 28 0.612 0567
1024 12500 22400 | 6418 105 0.628 0576

methods perform poorly for preserving label based similar-
ity. Our FastHash outperforms others by a large margin.

3.6. More features and more bits

We increase the codebook size to 1600 for generating
higher dimensional features (22400 dimensions) and run up
to 1024 bits. The result is shown in Table 5. It shows that
our FastHash can be efficiently trained on high-dimensional
features with large bit length. The training and binary cod-
ing time (Test time) of FastHash is only linearly increased
with the bit length.

3.7. Large dataset: SUN397

The challenging SUN397 dataset is a collection of more
than 100,000 scene images from 397 categories. 11200-
dimensional codebook features are extracted on this dataset.
We compare with a number of supervised and unsupervised
methods. The depth for decision trees is set to 6. The result
is presented in Table 6 Supervised methods: KSH, BREs,
SPLH and STHs are trained to 64 bits on a subset of 10K
examples. However, even on this sampled training set and
only run to 64 bits, the training of these methods are al-
ready impractically slow. It would be almost intractable for
the whole training set and long bit length. Short length of
bits are not able to achieve good performance on this chal-
lenging dataset. In contrast, our method can be efficiently
trained to large bit length (1024 bits) on the whole train-
ing set (more than 100, 000 training examples). FastH-N is
our FastHash using weighted sampling of examples (5000
examples) for tree node splitting. FastH-N may consume
more training time due to less pruning based on minimum
node size. Both of our FastHash and FastH-N outperform
other methods by a large margin on retrieval performance.

For memory usage, many of the comparing methods re-
quire a large amount of memory for large matrix multipli-
cation. In contrast, the decision tree learning in our method

1977

Table 6: Results on the large image dataset SUN397 using 11200-dimensional codebook features. Our FastHash can be efficiently trained to large bit length
(1024 bits) on this large training set. Both of our FastHash and FastH-N outperform other methods by a large margin on retrieval performance.

Method #Train __ Bits [Train time Test time Precision MAP [[Method #Train__ Bits [Train time Test time Precision MAP
L ______SUNO7 o _________._
KSH 10000 64 57045 463 0.034 0.023 || ITQ 100417 1024 | 1686 127 0.030 0.021
BREs 10000 64 105240 23 0.019 0.013 || SPHER 100417 1024 | 35954 121 0.039 0.024
SPLH 10000 o4 27552 14 0.022 0.015 || LSH 100417 1024 | 99 99 0.028 0.019
STHs 10000 o4 22914 14 0.010 0.008 || CCA+ITQ 100417 1024 | 15580 127 0.120 0.081
CCA+ITQ 100417 512 | 7484 66 0.113 0.076 || FastH 100417 1024 | 62076 536 0.165 0.163
FastH 100417 512 | 29624 302 0.149 0.142 || FastH-N 100417 1024 | 71203 749 0.177 0.184

CIFAR10 ESPGAME IAPRTC12 MIRFLICKR

0.8 F— 0. 0. 0.4

= = || o TE]| el E

o6l AGH 029 ~-MDSH 04 ~-MDSH 055 o-MDSH

~6-MDSH SPHER SPHER SPHER
Sosf SPHER 5 o -a-1TQ 5099 -8-ITQ 5 09 “s-1TQ
'§ -8-1TQ 2 ¢ ——FastHash 2 03 —*-FastHash 2 045 —%FastHash
g —+FastHash 8 8 8
s, o 015 0 0.25; & 04

0.3 D6&gs , ogko 0.3 -

Z?MVWV""V"V"V"V”'V---v = Ov‘i%vvhv‘:\}:v’.v-v’. A e e e | o i

: 2000 o 2000 o1 1000 1500 2000 o 1500 2000

500 1000 1500 0! 00
Number of retrieved samples (64 bits) Number of retrieved samples (64 bits)

51
Number of retrieved samples (64 bits) Number of retrieved samples (64 bits)

Figure 3: The retrieval precision results of unsupervised methods. Unsupervised methods perform poorly for preserving label based similarity. Our

FastHash outperform others by a large margin.

SUN397
0.25
LSH
0. --SPHER
ITQ
0.15 -8-CCA+ITQ
—*-FastHash

Precision

501 1 500 2000
Number of retrieved samples (1024 bits)

Figure 4: The precision curve of top 2000 retrieved examples on large im-
age dataset SUN397 using 1024 bits. Here we compare with those methods
which can be efficiently trained up to 1024 bits on the whole training set.
Our FastHash outperforms others by a large margin.

only involves the simple comparison operation on quantized
feature data (256 bins), thus FastHash only consumes less
than 7GB for training, which shows that our method can be

easily applied for large-scale training.

4. Conclusion

We have proposed an efficient supervised hashing
method, which uses decision tree based hash functions and
GraphCut based binary code inference. Our comprehen-
sive experiments show the advantages of our method on re-
trieval performance and fast training for high-dimensional
data, which indicates its practical significance on many po-
tential applications like large-scale image retrieval.

References

[1] R. Appel, T. Fuchs, P. Dolldr, and P. Perona. Quickly boosting decision
trees-pruning underachieving features early. In Proc. Int. Conf. Mach. Learn.
(ICML),2013. 3

J. Besag. On the statistical analysis of dirty pictures. J. of the Royal Stat.
Society., 1986. 3, 6

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. [EEE T. Pattern Analysis Mach. Intelli. (TPAMI), 2001. 2

A. Coates and A. Ng. The importance of encoding versus training with sparse
coding and vector quantization. In Proc. Int. Conf. Mach. Learn. (ICML), 2011.
1,4

T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik.
Fast, accurate detection of 100,000 object classes on a single machine. In Proc.
IEEE Conf. Comp. Vis. Pattern Recogn. (CVPR), 2013. 1

(2]
(3]
[4]

[5]

(6]

(7]
(8]

91

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
(18]

[19]

[20]
[21]

[22]

23

[24]

[25]

[26]

[27]

[28]

1978

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a sta-
tistical view of boosting (with discussion and a rejoinder by the authors). The
annals of statistics, 2000. 3

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proc. Int. Conf. Very Large Data Bases (VLDB), 1999. 1,7

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: a
procrustean approach to learning binary codes for large-scale image retrieval.
IEEE T. Pattern Analysis Mach. Intelli. (TPAMI), 2012. 1,7

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discrimina-
tive metric learning in nearest neighbor models for image auto-annotation. In
Proc. IEEE Conf. Comp. Vis. Pattern Recogn. (CVPR), 2009. 4

J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical hashing. In
Proc. IEEE Conf. Comp. Vis. Pattern Recogn. (CVPR), 2012. 7

M. J. Huiskes and M. S. Lew. The MIR-Flickr retrieval evaluation. In Proc.
ACM Int. Conf. Multimedia Info. Retrieval, 2008. 4

R. Kiros and C. Szepesvari. Deep representations and codes for image auto-
annotation. In Proc. Adv. Neural Info. Process. Syst. (NIPS), 2012. 1,4

B. Kulis and T. Darrell. Learning to hash with binary reconstructive embed-
dings. In Proc. Adv. Neural Info. Process. Syst. (NIPS), 2009. 1, 4

X. Li, G. Lin, C. Shen, A. van den Hengel, and A. Dick. Learning hash func-
tions using column generation. In Proc. Int. Conf. Mach. Learn. (ICML), 2013.
1

G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general two-step approach
to learning-based hashing. In Proc. Int. Conf. Comp. Vis. (ICCV), 2013. 1, 2,
4,5

W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang. Supervised hashing with kernels.
In Proc. IEEE Conf. Comp. Vis. Pattern Recogn. (CVPR),2012. 1,2,4,6

W. Liu, J. Wang, S. Kumar, and S. F. Chang. Hashing with graphs. In Proc. Int.
Conf. Mach. Learn. (ICML), 2011. 7

M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable
discriminative binary codes. In Proc. Eur. Conf. Comp. Vis. (ECCV),2012. 2
C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing bi-
nary MRFs via extended roof duality. In Proc. IEEE Conf. Comp. Vis. Pattern
Recogn. (CVPR), 2007. 3

M. Schmidt. http://www.di.ens.fr/~mschmidt/Software/
UGM.html. 3,6

G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with
parameter-sensitive hashing. In Proc. Int. Conf. Comp. Vis. (ICCV), 2003. 2

F. Shen, C. Shen, Q. Shi, A. van den Hengel, and Z. Tang. Inductive hashing
on manifolds. In Proc. IEEE Conf. Comp. Vis. Pattern Recogn. (CVPR), 2013.
1

A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases
for recognition. In Proc. IEEE Conf. Comp. Vis. Pattern Recogn. (CVPR), 2008.
2

J. Wang, S. Kumar, and S. Chang. Semi-supervised hashing for large scale
search. IEEE T. Pattern Analysis Mach. Intelli. (TPAMI), 2012. 6

Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization:
Budgeted stochastic gradient descent for large-scale svm training. J. Mach.
Learn. Research (JMLR), 2012. 6

Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral hashing. In
Proc. Eur. Conf. Comp. Vis. (ECCV),2012. 1,7

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database:
Large-scale scene recognition from abbey to zoo. In Proc. IEEE Conf. Comp.
Vis. Pattern Recogn. (CVPR), 2010. 4

D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast similarity
search. In Proc. Annual ACM SIGIR Conf., 2010. 6

