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Abstract

The appearance of an attribute can vary considerably

from class to class (e.g., a “fluffy” dog vs. a “fluffy” towel),

making standard class-independent attribute models break

down. Yet, training object-specific models for each at-

tribute can be impractical, and defeats the purpose of us-

ing attributes to bridge category boundaries. We propose a

novel form of transfer learning that addresses this dilemma.

We develop a tensor factorization approach which, given

a sparse set of class-specific attribute classifiers, can in-

fer new ones for object-attribute pairs unobserved during

training. For example, even though the system has no la-

beled images of striped dogs, it can use its knowledge of

other attributes and objects to tailor “stripedness” to the

dog category. With two large-scale datasets, we demon-

strate both the need for category-sensitive attributes as well

as our method’s successful transfer. Our inferred attribute

classifiers perform similarly well to those trained with the

luxury of labeled class-specific instances, and much better

than those restricted to traditional modes of transfer.

1. Introduction

Attributes are visual properties that help describe objects

or scenes [6, 12, 4, 13, 16], such as “fluffy”, “glossy”, or

“formal”. A major appeal of attributes is the fact that they

appear across category boundaries, making it possible to de-

scribe an unfamiliar object class [4], teach a system to rec-

ognize new classes by zero-shot learning [13, 19, 16], or

learn mid-level cues from cross-category images [12].

But are attributes really category-independent? Does

fluffiness on a dog look the same as fluffiness on a towel?

Are the features that make a high heeled shoe look formal

the same as those that make a sandal look formal? In such

examples (and many others), while the linguistic semantics

are preserved across categories, the visual appearance of

the property is transformed to some degree. That is, some

attributes are specialized to the category.1 This suggests

1We use “category” to refer to either an object or scene class.
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Figure 1. Having learned a sparse set of object-specific attribute

classifiers, our approach infers analogous attribute classifiers. The

inferred models are object-sensitive, despite having no object-

specific labeled images of that attribute during training.

that simply pooling a bunch of training images of any ob-

ject/scene with the named attribute and learning a discrimi-

native classifier—the status quo approach—will weaken the

learned model to account for the “least common denomina-

tor” of the attribute’s appearance, and, in some cases, com-

pletely fail to generalize.

Accurate category-sensitive attributes would seem to re-

quire category-sensitive training. For example, we could

gather positive exemplar images for each category+attribute

combination (e.g., separate sets of fluffy dog images, fluffy

towel images). If so, this is a disappointment. Not only

would learning attributes in this manner be quite costly in

terms of annotations, but it would also fail to leverage the

common semantics of the attributes that remain in spite of

their visual distinctions.

To resolve this problem, we propose a novel form of

transfer learning to infer category-sensitive attribute mod-

els. Intuitively, even though an attribute’s appearance may

be specialized for a particular object, there likely are latent

variables connecting it to other objects’ manifestations of

the property. Plus, some attributes are quite similar across



some class boundaries (e.g., spots look similar on Dalma-

tian dogs and Pinto horses). Having learned some category-

sensitive attributes, then, we ought to be able to predict how

the attribute might look on a new object, even without la-

beled examples depicting that object with the attribute. For

example, in Figure 1, suppose we want to recognize striped

dogs, but we have no separate curated set of striped-dog

exemplars. Having learned “spotted”, “brown”, etc. classi-

fiers for dogs, cats, and equines, the system should leverage

those models to infer what “striped” looks like on a dog.

For example, it might infer that stripes on a dog look some-

what like stripes on a zebra but with shading influenced by

the shape dogs share with cats.

Based on this intuition, we show how to infer an anal-

ogous attribute—an attribute classifier that is tailored to

a category, even though we lack annotated examples of

that category exhibiting that attribute. Given a sparse set

of category-sensitive attribute classifiers, our approach first

discovers the latent structure that connects them, by factor-

izing a tensor indexed by categories, attributes, and classi-

fier dimensions. Then, we use the resulting latent factors

to complete the tensor, inferring the “missing” classifier pa-

rameters for any object+attribute pairings unobserved dur-

ing training. As a result, we can create category-sensitive

attributes with only partial category-sensitive labeled data.

Our solution offers a middle ground between completely

category-independent training (the norm today [12, 4, 13,

19, 16, 17]) and completely category-sensitive training. We

don’t need to observe all attributes isolated on each cate-

gory, and we capitalize on the fact that some categories and

some of their attributes share common parameters.

Compared to existing forms of transfer learning, our idea

has three key novel elements. First, performing transfer

jointly in the space of two labeled aspects of the data—

namely, categories and attributes—is new. Critically, this

means our method is not confined to transfer along same-

object or same-attribute boundaries; rather, it discovers ana-

logical relationships based on some mixture of previously

seen objects and attributes. Second, our approach produces

a discriminative model for an attribute with zero training ex-

amples from that category. Third, while prior methods often

require information about which classes should transfer to

which [2, 29, 26, 1] (e.g., that a motorcycle detector might

transfer well to a bicycle), our approach naturally discov-

ers where transfer is possible based on how the observed at-

tribute models relate. It can transfer easily between multiple

classes at once, not only pairs, and we avoid the guesswork

of manually specifying where transfer is likely.

We validate our approach on two large-scale attribute

datasets, SUN [17] and ImageNet [19], to explore both

object-sensitive and scene-sensitive attributes. We first

demonstrate that category-sensitive attributes on the whole

outperform conventional class-independent models. Then

we show that our method accurately infers analogous at-

tribute models, in spite of never seeing labeled examples

for that property and class. Furthermore, we show its ad-

vantages over applying traditional forms of transfer learn-

ing that fail to account for the intrinsic 2D nature of the

object-attribute label space.

2. Related Work

The standard approach to learn an attribute is to pool im-

ages regardless of their object category and train a discrim-

inative classifier [12, 4, 13, 19, 16, 17]. While this design

is well-motivated by the goal of having attributes that tran-

scend category boundaries, it sacrifices accuracy in prac-

tice, as we will see below. We are not aware of any prior

work that learns category-sensitive attributes, though class-

specific attribute training is used as an intermediate fea-

ture generation procedure in [4, 27], prior to training class-

independent models.

While attribute learning is typically considered sepa-

rately from object category learning, some recent work ex-

plores how to jointly learn attributes and objects, either to

exploit attribute correlations [27], to promote feature shar-

ing [25, 9], or to discover separable features [30, 20]. Our

framework can be seen as a new way to jointly learn mul-

tiple attributes, leveraging structure in object-attribute rela-

tionships. Unlike any prior work, we use these ties to di-

rectly infer category-sensitive attribute models without la-

beled exemplars.

In [8], analogies between object categories are used to

regularize a semantic label embedding. Our method also

captures beyond-pairwise relationships, but the similari-

ties end there. In [8], explicit analogies are given as in-

put, and the goal is to enrich the features used for near-

est neighbor object recognition. In contrast, our approach

implicitly discovers analogical relationships among object-

sensitive attribute classifiers, and our goal is to generate

novel category-sensitive attribute classifiers.

In vision, factorized models have been used for vari-

ous problems, from bi-linear models for separating style

and content [7], to multi-linear models separating the

modes of face image formation (e.g., identity vs. expression

vs. pose) [22, 24]. While often applied for visualization,

the discovered factors can also be used to impute missing

data—for example, to generate images of novel fonts [7] or

infer missing pixels for in-painting tasks [15]. Tensor com-

pletion is an area of active research in machine learning,

and forms the basis of modern recommender systems to in-

fer missing labels (e.g., movie ratings) [11, 28]. In contrast,

we use tensor factorization to infer classifiers, not data in-

stances or labels. This enables a new “zero-shot” transfer

protocol: we leverage the latent factors underlying previ-

ously trained models to create new analogous ones without



any labeled instances.2

Transfer learning has been explored for object recogni-

tion [5, 2, 29, 18, 26, 21, 14, 1], where the goal is to learn a

new object category with few labeled instances by exploit-

ing its similarity to previously learned class(es). While of-

ten the source and target classes must be manually spec-

ified [2, 26, 1], some techniques automatically determine

which classes will benefit from transfer [21, 14, 10]. In our

setting the motivation to reduce labeled data requirements

is as much about data availability as labeling cost: it can

be difficult to obtain sufficient category-specific images for

each possible attribute, even if we did not mind the label-

ing effort. More importantly, as discussed above, our idea

for transfer learning jointly in two label spaces is new, and,

unlike the prior work, we can infer new classifiers without

training examples.

3. Approach

Given training images labeled by their category and one

or more attributes, our method produces as output a series of

category-sensitive attribute classifiers. Some of those clas-

sifiers are explicitly trained with the labeled data, while the

rest are inferred by our method. We show how to create

these analogous attribute classifiers via tensor completion.

In the following, we first describe how we train category-

sensitive classifiers (Sec. 3.1). Then we define the tensor of

attributes (Sec. 3.2) and show how we use it to infer analo-

gous models (Sec. 3.3). Finally, we discuss certain salient

aspects of the method design (Sec. 3.4).

3.1. Learning CategorySensitive Attributes

In existing systems, attributes are trained in a category-

independent manner [12, 4, 13, 19, 16, 17]. Positive exem-

plars consist of images from various object categories, and

they are used to train a discriminative model to detect the

attribute in novel images. We will refer to such attributes as

universal.

In this work, we challenge the convention of learning

attributes in a completely category-independent manner.

As discussed above, while attributes’ visual cues are often

shared among some objects, the sharing is not universal. It

can dilute the learning process to pool cross-category exem-

plars indiscriminately.

The naive solution to instead train category-sensitive at-

tributes would be to partition training exemplars by their

category labels, and train one attribute per category. Were

labeled examples of all possible attribute+object combina-

tions abundantly available, such a strategy might be suf-

ficient. However, in initial experiments with large-scale

datasets, we found that this approach is actually inferior to

2This is not to be confused with zero-shot learning in [13], where un-

seen objects are learned by listing their attributes.

training a single universal attribute. We attribute this to two

things: (1) even in large-scale collections, the long-tailed

distribution of object/scene/attribute occurrences in the real

world means that some label pairs will be undersampled,

leaving inadequate exemplars to build a statistically sound

model, and (2) this naive approach completely ignores at-

tributes’ inter-class semantic ties.

To overcome these shortcomings, we instead use an

importance-weighted support vector machine (SVM) to

train each category-sensitive attribute. Let each training ex-

ample (xi, yi) consist of an image descriptor xi ∈ ℜD and

its binary attribute label yi ∈ {−1, 1}. Suppose we are

learning “furriness” for dogs. We use examples from all

categories (dogs, cats, etc.), but place a higher penalty on

violating attribute label constraints for the same category

(the dog instances). This amounts to an SVM objective for

the hyperplane w:

minimize





1

2
||w||2 + Cs

∑

i

ξi + Co

∑

j

γj



 (1)

s.t. yiw
T
xi ≥ 1 − ξi; ∀i ∈ S

yjw
T
xj ≥ 1 − γj ; ∀j ∈ O

ξi ≥ 0; γj ≥ 0,

where the sets S and O denote those training instances in

the same-class (dog) and other classes (non-dogs), respec-

tively, and Cs and Co are slack penalty constants. Note, S
and O contain both positive and negative examples for the

attribute in consideration.

Instance re-weighting is commonly used, e.g., to account

for label imbalance between positives and negatives. Here,

by setting Co < Cs, the out-of-class examples of the at-

tribute serve as a simple prior for which features are rel-

evant. This way we benefit from more training examples

when there are few category-specific examples of the at-

tribute, but we are inclined to ignore those that deviate too

far from the category-sensitive definition of the property.

As we will see in results, these models typically outperform

their universal counterparts.

3.2. ObjectAttribute Classifier Tensor

Next we define a tensor to capture the structure un-

derlying many such category-sensitive models. Let m =
1, . . . ,M index the M possible attributes in the vocabulary,

and let n = 1, . . . , N index the N possible object/scene

categories. Let w(n,m) denote a category-sensitive SVM

weight vector trained for the n-th object and m-th attribute

using Eqn. 1.

We construct a 3D tensor W ∈ ℜN×M×D using all

available category-sensitive models. Each entry wd
nm con-

tains the value of the d-th dimension of the classifier

w(n,m). For a linear SVM, this value reflects the impact of



the d-th dimension of the feature descriptor x for determin-

ing the presence/absence of attribute m for the object class

n. To use non-linear SVM classifiers, we use the efficient

kernel map approach of [23], which computes explicit linear

embeddings for additive kernels, including the intersection

and χ2 kernels commonly used in visual recognition. This

lets us maintain an explicit tensor W while still benefitting

from more powerful non-linear classifiers.3 In this case, D

is the dimension of the feature map embedding, and all else

is the same. We test both variants in our experiments.

The resulting tensor is quite sparse. We can only fill en-

tries for which we have class-specific positive and negative

training examples for the attribute of interest. In today’s

most comprehensive attribute datasets [19, 17], this means

only ∼ 25% of the possible object-attribute combinations

can be trained in a category-sensitive manner. Rather than

resort to universal models for those “missing” combina-

tions, we propose to use the latent factors for the observed

classifiers to synthesize analogous models for the unob-

served classifiers, as we explain next.

3.3. Inferring Analogous Attributes

Having learned how certain attributes look for certain

object categories, our goal is to transfer that knowledge to

hypothesize how the same attributes will look for other ob-

ject categories. In this way, we aim to infer analogous at-

tributes: category-sensitive attribute classifiers for objects

that lack attribute-labeled data. We pose the “missing clas-

sifier” problem as a tensor completion problem. We recover

the latent factors for the 3D object-attribute tensor W, and

use them to impute the unobserved classifier parameters.

Let O ∈ ℜK×N , A ∈ ℜK×M , and C ∈ ℜK×D denote

matrices whose columns are the K-dimensional latent fea-

ture vectors for each object, attribute, and classifier dimen-

sion, respectively. We assume that wd
nm can be expressed

as an inner product of latent factors,

wd
nm ≈ 〈On, Am, Cd〉, (2)

where a subscript denotes a column of the matrix. In ma-

trix form, we have W ≈
∑K

k=1 Ok ◦ Ak ◦ Ck, where a

superscript denotes the row in the matrix, and ◦ denotes the
vector outer product.

The latent factors of the tensor W are what affect how

the various attributes, objects, and image descriptors covary.

What might they correspond to? We expect some will cap-

ture mixtures of two or more attributes, e.g., factors distin-

guishing how “spots” appear on something “flat” vs. how

they appear on something “bumpy”. The latent factors can

also capture useful clusters of objects, or supercategories,

that exhibit attributes in common ways. Some might cap-

ture other attributes beyond the M portrayed in the training

3Alternatively, kernelized factorization methods could be applied.

images—namely, those that help explain structure in the ob-

jects and other attributes we have observed.

We use Bayesian probabilistic tensor factorization [28]

to recover the latent factors. Using this model, the likeli-

hood for the explicitly trained classifiers (Sec. 3.1) is

p(W|O,A,C, α) = ΠN

n=1
ΠM

m=1
ΠD

d=1

ˆ

N (wd

nm|〈On, Am, Cd〉, α
−1)

˜Inm ,

where N (w|µ, α) denotes a Gaussian with mean µ and

precision α, and Inm = 1 if object n has an explicit

category-sensitive model for attribute m, and Inm = 0 oth-

erwise. For each of the latent factors On, Am, and Cd, we

use Gaussian priors. Let Θ represent all their means and

covariances. Following [28], we compute a distribution for

each missing tensor value by integrating out over all model

parameters and hyper-parameters, given all the observed at-

tribute classifiers:

p(ŵd

nm|W) =

Z

p(ŵd

nm|On, Am, Cd, α)p(O,A,C, α, Θ|W) d{O,A,C, α, Θ}.

After initializing with the MAP estimates of the three

factor matrices, this distribution is approximated using

Markov chain Monte Carlo (MCMC) sampling:

p(ŵd
nm|W) ≈

L
∑

l=1

p(ŵd
nm|O(l)

n , A(l)
m , C

(l)
d , α(l)). (3)

Each of the L samples {O
(l)
n , A

(l)
m , C

(l)
d , α(l)} is generated

with Gibbs sampling on a Markov chain whose stationary

distribution is the posterior over the model parameters and

hyper-parameters. We use conjugate distributions as priors

for all the Gaussian hyper-parameters to facilitate sampling.

See [28] for details.

We use these factors to generate analogous attributes.

Suppose we have no labeled examples showing an object

of category n with attribute m (or, as is often the case, we

have so few that training a category-sensitive model is prob-

lematic). Despite having no training examples, we can use

the tensor to directly infer the classifier parameters

ŵ(n,m) = [ŵ1
nm, . . . , ŵD

nm], (4)

where each ŵd
nm is the mean of the distribution in Eq. (3).

Our method is quite efficient. For the datasets in Sec. 4,

training all explicit category-sensitive models takes around

5 minutes. Factorizing the tensor with M = 59 and N =
280 and D = 512 takes around 180 seconds. Then inferring

a new attribute classifier takes 0.05 seconds.

3.4. Discussion

We stress that while tensor completion itself is certainly

not new, prior work in vision [15, 7, 22, 24] and data mining

(e.g., [11, 28]) focuses on inferring missing data instances



or missing labels. For example, for data problems, the ten-

sor could be a corrupted video in which one wants to in-

paint missing voxels [15]; for missing label problems, the

tensor could be the movie ratings given by different users

for various films over time, and one wants to guess how a

user would rate a new movie [28].

In contrast, we propose to use factorization to infer clas-

sifiers within a tensor representing two inter-related label

spaces. Our idea has two key useful implications. First,

it leverages the interplay of both label spaces to generate

new classifiers without seeing any labeled instances. This

is a novel form of transfer learning. Second, by working di-

rectly in the classifier space, we have the advantage of first

isolating the low-level image features that are informative

for the observed attributes. This means the input training

images can contain realistic (un-annotated) variations. In

comparison, existing data tensor approaches often assume

a strict level of alignment; e.g., for faces, examples are cu-

rated under n specific lighting conditions, m specific ex-

pressions, etc. [22, 24].

Our design also means that the analogous attributes can

transfer information from multiple objects and/or attributes

simultaneously. That means, for example, our model is not

restricted to transferring the fluffiness of a dog from the

fluffiness of a cat; rather, its analogous model for dog fluffi-

ness might just as well result from transferring a mixture of

cues from carpet fluffiness, dog spottedness, and cat shape.

In general, transfer learning can only succeed if the

source and target classes are related. Similarly, we will only

find an accurate low-dimensional set of factors if some com-

mon structure exists among the explicitly trained category-

sensitive models. Nonetheless, a nice property of our for-

mulation is that even if the tensor is populated with a variety

of classes—some with no ties—analogous attribute infer-

ence can still succeed. Distinct latent factors can cover the

different clusters in the observed classifiers. For similar rea-

sons, our approach naturally handles the question of “where

to transfer”: sources and targets are never manually speci-

fied. Below, we consider the impact of building the tensor

with a large number of semantically diverse categories ver-

sus a smaller number of closely related categories.

4. Experimental Results

The experiments analyze four main aspects: (1) how

category-sensitive attributes compare to standard universal

attributes (Sec. 4.1), (2) how well our inferred attributes

compete with the upper bound category-sensitive attributes

trained explicitly with images, and compared to a traditional

transfer approach (Sec. 4.2), (3) the impact of focusing the

tensor on closely related classes (Sec. 4.3), and (4) the fea-

sibility of inferring non-linear models (Sec. 4.4).
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Figure 2. Data availability: white entries denote category-attribute

pairs that have positive and negative image exemplars. In Ima-

geNet, most vertical stripes are color attributes, and most horizon-

tal stripes are man-made objects. In SUN, most vertical stripes are

attributes that appear across different scenes, such as vacationing

or playing, while horizontal stripes come from scenes with varied

properties, such as airport and park.

Datasets and features We evaluate our approach on two

datasets: the attribute-labeled portion of ImageNet [19] and

SUN Attributes [17]. ImageNet contains 9,600 total im-

ages, with 384 object categories and 25 attributes describing

color, patterns, shape, and texture. SUN contains 14,340

total images, with 717 scene categories and 102 attributes

describing global properties, activity affordances, materi-

als, and basic textures. We use all 280 categories and 59

attributes for which SUN contains both positive and nega-

tive examples for the scene-attribute pair. For both datasets,

we use features provided by the authors. For ImageNet, we

concatenate color histograms, SIFT bag of words, and shape

context (D = 1550). For SUN, we use GIST (D = 512).

The datasets do not contain data for all possible

category-attribute pairings. Figure 2 shows which are avail-

able: there are 1,498 and 6,118 pairs in ImageNet and SUN,

respectively. The sparsity of these matrices actually un-

derscores the need for our approach, if one wants to learn

category-sensitive attributes.

We split both datasets in half for training and testing.

When explicitly training an attribute, we randomly sample

S% of the images from all other categories (S = 50% for

ImageNet and S = 10% for SUN, proportional to their

sizes). We use L = 100 samples and fix the number of

latent factors K = 30, following [28]. We set the slack

penalties Co = 0.1 and Cs = 1. We did not tune these val-

ues. Unless otherwise noted, all methods use linear SVMs.

4.1. CategorySensitive vs. Universal Attributes

First we test whether category-sensitive attributes are

even beneficial. We explicitly train category-sensitive at-

tribute classifiers using importance-weighted SVMs, as de-

scribed in Sec. 3.1. This yields 1,498 and 6,118 classi-

fiers for ImageNet and SUN, respectively. We compare

their predictions to those of universal attributes, where we

train one model for each attribute (M = 25 for ImageNet



Datasets Trained explicitly Trained via transfer

# Categ (N) # Attr (M) Category-sens. Universal Inferred (Ours) Adopt similar One-shot Chance

ImageNet 384 25 0.7304 0.7143 0.7259 0.6194 0.6309 0.5183

SUN 280 59 0.6505 0.6343 0.6429 N/A N/A 0.5408

Table 1. Accuracy (mAP) of attribute prediction. Category-sensitive models improve over standard universal models, and our inferred

classifiers nearly match their accuracy with no training image examples. Traditional forms of transfer (rightmost two columns) fall short,

showing the advantage of exploiting the 2D label space for transfer, as we propose. These results are averages over thousands of attributes;

category-sensitive attributes achieve an average gain of 0.15 in AP in 76% of the cases.

and M = 59 for SUN). When learning an attribute, both

models have access to the exact same images; the univer-

sal method ignores the category labels, while the category-

sensitive method puts more emphasis on the in-category ex-

amples.4 We evaluate both methods on the same test set.

Table 1 (cols 4 and 5) shows the results, in terms of

mean average precision across all 84 attributes and 664 cat-

egories. Among those, our category-sensitive models meet

or exceed the universal approach 76% of the time, with

average increases of 0.15 in AP, and gains of up to 0.83

in AP for some attributes. This indicates that the status

quo [12, 4, 13, 19, 16, 17] pooling of training images across

categories is indeed detrimental.

4.2. Inferring Analogous Attributes

The results so far establish that category-sensitive at-

tributes are desirable. However, the explicit models above

are impossible to train for 18K of the ∼26K possible at-

tributes in these datasets. This is where our method comes

in. It can infer all remaining 18K attribute models even

without class-specific labeled training examples.

We perform leave-one-out testing: in each round, we re-

move one observed classifier (a white entry in Figure 2),

and infer it with our tensor factorization approach. Note that

even though we are removing one at a time, the full tensor

is always quite sparse due to the available data. Namely,

only 16% (in ImageNet) and 37% (in SUN) of all possible

category-sensitive classifiers can be explicitly trained.

Table 1 (cols 4 to 6) shows this key result. In this ex-

periment, the explicitly trained category-sensitive result is

the “upper bound”; it shows how well the model trained

with real category-specific images can do. We see that our

inferred analogous attributes (col 6) are nearly as accurate,

yet use zero category-specific labeled images. They approx-

imate the explicitly trained models well. Most importantly,

our inferred models remain more accurate than the univer-

sal approach. Our inferred attributes again meet or exceed

the universal model’s accuracy 79% of the time, with gains

averaging 0.13 in AP.

We stress that our method infers models for all missing

attributes. That is, using the explicitly trained attributes,

it infers another 8, 064 and 10, 407 classifiers on Ima-

geNet and SUN, respectively. While the category-sensitive

4So the universal model also uses category-specific images. We find it

performs similarly whether it uses them or not.

method would require ∼ 20 labeled examples per classifier

to train those models, our method uses zero. That amounts

to saving 348K total labeled images. That in turn means

saving $17,400 in labeling costs, if we were to pay $0.05

per image forMTurkers to both track down and label images

exhibiting all those class-attribute pairings. (Due to ground

truth availability, though, we can only validate against the

held-out attributes.)

The results so far presume we know which category’s

attribute model to apply to a novel image. If we fur-

ther require the category to be predicted automatically—

by marginalizing over the category label to estimate the at-

tribute probability—our results remain similar. In particu-

lar, the explicit category-sensitive results (col 4 of Table 1)

become 0.7249 and 0.6419, and the inferred results (col 6)

become 0.7218 and 0.6401—still better than universal.

Table 1 also compares our approach to conventional

transfer learning. The first transfer baseline infers the miss-

ing classifier simply by adopting the category-sensitive at-

tribute of the category that is semantically closest to it,

where semantic distance is measured via WordNet using [3]

(not available for SUN). For example, if there are no furry-

dog exemplars, we adopt the wolf’s “furriness” classifier.

The second transfer baseline additionally uses one category-

specific image example to perform “one-shot” transfer (e.g.,

it trains with both the furry-wolf images plus a furry-dog ex-

ample).5 Unlike the transfer baselines, our method uses nei-

ther prior knowledge about semantic distances nor labeled

class-specific examples. We see that our approach is sub-

stantially more accurate than both transfer methods. This

result highlights the benefit of our novel approach to trans-

fer, which leverages both label spaces (categories and their

attributes) simultaneously.

Which attributes does our method transfer? That is,

which objects does it find to be analogous for an attribute?

To examine this, we first take a category j and identify its

neighboring categories in the latent feature space, i.e., in

terms of Euclidean distance among the columns of O ∈
ℜK×N . Then, for each neighbor i, we sort its attribute

classifiers (w(i, :), real or inferred) by their maximal co-

sine similarity to any of category j’s attributes w(j, :). The
resulting shortlist helps illustrate which attribute+category

pairs our method expects to transfer to category j.

5We also tried an Adaptive SVM [29] for the transfer baseline, but it

was weaker than the results reported above.
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Figure 3. Analogous attribute examples for ImageNet (top) and

SUN (bottom). Words above each neighbor indicate the 3 most

similar attributes (learned or inferred) between leftmost query cat-

egory and its neighboring categories in latent space. Query cate-

gory:neighbor category= 1.Bottle: filter, syrup, bullshot, gerenuk.

2.Platypus: giraffe, ungulate, rorqual, patas. 3.Airplane cabin:

aquarium, boat deck, conference center, art studio. 4.Courtroom:

cardroom, florist shop, performance arena, beach house.

Figure 3 shows 4 such examples, with one represen-

tative image for each category. We see neighboring

categories in the latent space are often semantically re-

lated (e.g., syrup/bottle) or visually similar (e.g., airplane

cabin/conference center); although our method receives no

explicit side information on semantic distances, it discovers

these ties through the observed attribute classifiers. Some

semantically more distant neighbors (e.g., platypus/rorqual,

courtroom/cardroom) are also discovered to be amenable to

transfer. The words in Figure 3 are the neighboring cate-

gories’ top 3 analogous attributes for the numbered category

to their left (not attribute predictions for those images). It

seems quite intuitive that these would be suited for transfer.

Next we look more closely at where our method suc-

ceeds and fails. Figure 4 shows the top (bottom) five cat-

egory+attribute combinations for which our inferred clas-

sifiers most increase (decrease) the AP, per dataset. As

expected, we see our method most helps when the visual

appearance of the attribute on an object is quite different

from the common case, such as “spots” on the killer whale.

On the other hand, it can detract from the universal model

when an attribute is more consistent in appearance, such

as “black”, or where more varied examples help capture a

generic concept, such as “symmetrical”.

Figure 5 shows qualitative examples that support these

findings. We show the image for each method that was

predicted to most confidently exhibit the named attribute.

By inferring analogous attributes, we better capture object-

specific properties. For example, while our method cor-

rectly fires on a “smooth wheel”, the universal model mis-

takes a Ferris Wheel as “smooth”, likely due to the smooth-

ness of the background, which might look like other classes’

instantiations of smoothness.
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Figure 4. (Category,attribute) pairs for which our inferred models

most improve (left) or hurt (right) the universal baseline.
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Figure 5. Test images that our method (top row) and the univer-

sal method (bottom row) predicted most confidently as having the

named attribute. (X = positive for the attribute, X = negative,

according to ground truth.)

4.3. Focusing on Semantically Close Data

In all results so far, we make no attempt to restrict the

tensor to ensure semantic relatedness. The fact our method

succeeds in this case indicates that it is capable of discover-

ing clusters of classifiers for which transfer is possible, and

is fairly resistant to negative transfer.

Still, we are curious whether restricting the tensor to

classes that have tight semantic ties could enhance perfor-

mance. We therefore test two variants: one where we re-

strict the tensor to closely related objects (i.e., downsam-

pling the rows), and one where we restrict it to closely re-

lated attributes (i.e., downsampling the columns). To select

a set of closely related objects, we use WordNet to extract

sibling synsets for different types of dogs in ImageNet. This

yields 42 categories, such as puppy, courser, coonhound,

corgi. To select a set of closely related attributes, we extract

only the color attributes.

Table 2 shows the results. We use the same leave-one-

out protocol of Sec. 4.2, but during inference we only con-

sider category-sensitive classifiers among the selected cat-

egories/attributes. We see that the inferred attributes are

stronger with the category-focused tensor, raising accuracy

from 0.7173 to 0.7358, closer to the upper bound. This sug-



Subset Category- Inferred Inferred

sensitive (subset) (all)

Categories (dogs) 0.7478 0.7358 0.7173

Attributes (colors) 0.7665 0.7631 0.7628

Table 2. Attribute label prediction mAP when restricting the ten-

sor to semantically close classes. The explicitly trained category-

sensitive classifiers serve as an upper bound.

Category-sensitive Inferred Universal

linear SVM 0.7304 0.7259 0.7143

χ2 SVM 0.7589 0.7428 0.7037

Table 3. Using kernel maps [23] to infer non-linear SVMs.

gests that among the entire dataset, attributes for which cat-

egories differ can introduce some noise into the latent fac-

tors. On the other hand, when we ignore attributes unrelated

to color, the mAP of the inferred classifiers remains similar.

This may be because color attributes use such a distinct set

of image features compared to others (like stripes, round)

that the latent factors accounting for them are coherent with

or without the other classifiers in the mix. From this prelim-

inary test, we can conclude that when semantic side infor-

mation is available, it could boost accuracy, yet our method

achieves its main purpose even when it is not.

4.4. Inferring Nonlinear Classifiers

Finally, we demonstrate that our approach is not limited

to inferring linear classifiers. We use the homogeneous ker-

nel map [23] of order 3 to approximate a χ2 kernel non-

linear SVM. This entails mapping the original features to a

space in which an inner product approximates the χ2 ker-

nel. Using the kernel maps, we repeat the experiment of

Sec. 4.2. Table 3 shows the results on ImageNet. The non-

linear classifiers boost accuracy for both the explicit and in-

ferred category-sensitive attributes. Unexpectedly, we find

the kernel map SVM decreases accuracy slightly for the uni-

versal approach; perhaps due to overfitting.

5. Conclusions

We introduced a new form of transfer learning, in which

analogous classifiers are inferred using observed classifiers

organized according to two inter-related label spaces. We

developed a tensor factorization approach that solves the

transfer problem, even when no training examples are avail-

able for the decision task of interest.

Our work highlights the reality that many attributes are

not strictly category-independent. We offer a practical tool

to ensure category-sensitive models can be trained even

if category-specific labeled datasets are not possible. As

demonstrated through multiple experiments with two large-

scale datasets, the idea seems quite promising.

In future work, we will explore one-shot extensions of

analogous attributes, and analyze their impact for learning

relative properties.
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