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Abstract

Existing methods on video-based action recognition are
generally view-dependent, i.e., performing recognition from
the same views seen in the training data. We present
a novel multiview spatio-temporal AND-OR graph (MST-
AOG) representation for cross-view action recognition, i.e.,
the recognition is performed on the video from an unknown
and unseen view. As a compositional model, MST-AOG
compactly represents the hierarchical combinatorial struc-
tures of cross-view actions by explicitly modeling the geom-
etry, appearance and motion variations. This paper pro-
poses effective methods to learn the structure and param-
eters of MST-AOG. The inference based on MST-AOG en-
ables action recognition from novel views. The training of
MST-AOG takes advantage of the 3D human skeleton data
obtained from Kinect cameras to avoid annotating enor-
mous multi-view video frames, which is error-prone and
time-consuming, but the recognition does not need 3D in-
formation and is based on 2D video input. A new Multiview
Action3D dataset has been created and will be released. Ex-
tensive experiments have demonstrated that this new action
representation significantly improves the accuracy and ro-
bustness for cross-view action recognition on 2D videos.

1. Introduction

In the literature of video-based action recognition, most
existing methods recognize actions from the view that is
more or less the same as the training videos [6]. Their
general limitation is the unpredictable performance in the
situation where the actions need to be recognized from a
novel view. As the visual appearances are very different
from different views, and it is very difficult to find view-
invariant features. Therefore, it is desirable to build models
for cross-view action recognition, i.e., recognizing video
actions from views that are unseen in the training videos.
Despite some recent attempts [13, 7], this problem has not
been well explored.

One possible approach is to enumerate a sufficiently
large number of views and build dedicated feature and clas-
sifier for each view. This approach is too time consuming,

because it requires annotating a large number of videos for
all views multiplied by all action categories. Another pos-
sible approach is to interpolate across views via transfer
learning [13]. This method learns a classifier from one view,
and adapts the classifiers to new views. The performance of
this approach is largely limited by the discrimination power
of the local spatio-temporal features in practice.

In this paper, we approach this problem from a new
perspective: creating a generative cross-view video action
representation by exploiting the compositional structure in
spatio-temporal patterns and geometrical relations among
views. We call this model multiview spatio-temporal AND-
OR graph model (MST-AOG), inspired by the expressive
power of AND-OR graphs in object modeling [18]. This
model includes multiple layers of nodes, creating a hier-
archy of composition at various semantic levels, including
actions, poses, views, body parts and features. Each node
represents a conjunctive or disjunctive composition of its
children nodes. The leaf nodes are appearance and motion
features that ground the model. An important feature of the
MST-AOG model is that the grounding does not have to be
at the lowest layer (as in conventional generative models),
but can be made at upper layers to capture low resolution
spatial and temporal features. This compositional represen-
tation models geometry, appearance, and motion properties
for actions. Once the model is learned, the inference pro-
cess facilitates cross-view pose detection and action classi-
fication.

The AND/OR structure of this MST-AOG model is sim-
ple, but the major challenges lie in the learning of geomet-
rical relations among different views. This paper proposes
novel solutions to address this difficult issue. To learn the
multiple-view structure, we take advantage of the 3D hu-
man skeleton produced by Kinect sensors as the 3D pose
annotation. This 3D skeleton information is only available
in training, but not used for cross-view action recognition.
The projection of the 3D poses enables explicit modeling
of the 2D views. Our model uses a set of discrete views
in training to interpolate arbitrary novel views in testing.
The appearances and motion are learned from the multiview
training video and the 3D pose skeletons.

To learn the multiple-pose structure, we design a new
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discriminative data mining method to automatically dis-
cover the frequent and discriminative poses. This data-
driven method provides a very effective way to learn the
structure for the action nodes. Since this hierarchical struc-
ture enables information sharing (e.g., different view nodes
share certain body part nodes), MST-AOG largely reduces
the enormous demands on data annotation, while improving
the accuracy and robustness of cross-view action recogni-
tion, as demonstrated in our extensive experiments.

2. Related Work and Our Contributions
The literature on action recognition can be roughly di-

vided into the following categories:
Local feature-based methods. Action recognition

methods can be based on the bag-of-words representation
of local features, such as HOG [1] or HOF [9] around
spatio-temporal interest points [8]. Transfer learning-bsaed
cross-view action recognition methods [3, 11, 25] are based
on local appearance features. Hankelet [10] represents ac-
tions with the dynamics of short tracklets, and achieves
cross-view action recognition by finding the Hankelets that
are relative invariant to viewpoint changes. Self tempo-
ral similarity [7] characterizes actions with temporal self-
similarities for cross-view action recognition. These meth-
ods work well on simple action classification, but they usu-
ally lack discriminative power to deal with more complex
actions.

2D Pose-based methods. Recently, human pose estima-
tion from a single image has make great progresses [20].
There is emerging interest in exploiting human pose for ac-
tion recognition. Yao et al. [22] estimates the 2D poses
from the images, and matches the estimated poses with
a set of representative poses. Yao et al. [23, 24] devel-
oped spatio-temporal AND-OR graph to model the spatio-
temporal structure of the poses in an actions. Desai et al. [2]
learns a deformable part model (DPM) [4] that estimates
both human poses and object locations. Maji et al. [14] uses
the activations of poselets, which is is a set of pose detec-
tors. Ikizler-Cinbis et al. [6] learns the pose classifier from
web images. [21] proposes a coupled action recognition
and pose estimation method by formulating pose estimation
as an optimization over a set of action-specific manifold.
In general, these methods were not specifically designed to
handle cross-view actions. In contrast, this paper presents a
new multi-view video action recognition approach.

3D skeleton-based methods. Pose-based action recog-
nition generally needs a large amount of annotated poses
from images. Recently, the development of depth cameras
offers a cost-effective method to track 3D human poses [17].
Although the tracked 3D skeletons are noisy, it has been
shown that they are useful to achieve good results in recog-
nizing fine-grained actions [19]. In addition, the 2D DPM
model can be extended to 3D [5, 12] to facilitate multi-
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Figure 1. The MST-AOG action representation. The geometrical
relationship of the parts in different views are modeled jointly by
projecting the 3D poses into the given view, see Fig. 2. The parts
are discriminately mined and shared for all the actions.

view object detection. Parameswaran [15] proposes view-
invariant canonical body poses and trajectories in 2D in-
variant space. In this paper, our proposed method uses the
tracked 3D skeleton as supervision in training, but it stands
out from other skeleton-based method because it does not
need 3D skeletons inputs for action recognition in testing.

In comparison with the literature, this paper makes the
following contributions:
• The proposed MST-AOG model is a compact but ex-

pressive multi-view action representation that unifies
the modeling of geometry, appearance and motion.
• Once trained, this MST-AOG model only needs 2D

video input to recognize actions from novel views.
• To train this MST-AOG model, we provide new and

effective methods to learn its parameters, as well as
mining its structure to enable effective part sharing.

3. Multi-view Spatio-Temporal AOG
3.1. Overview

Being a multi-layer hierarchical compositional model,
the proposed multiview spatio-temporal AND-OR graph
(MST-AOG) action representation is able to compactly ac-
commodate the combinatorial configurations for cross-view
action modeling. It consists of AND, OR and leaf nodes
at various layers, and each node is associated with a score
computed from its children. An AND node models the
conjunctive relationship of its children nodes, and its score
takes the summation over those of its children. An OR node
captures the disjunctive relationship or the mixture of possi-
bilities of its children node, and its score takes the maximum
over its children. A leaf node is observable and is associated
with evidence, and thus grounds the model.

The structure of the proposed MST-AOG model is shown
in Fig. 1. The root node is an OR node representing the
mixture of the set of all actions. We regard an action as a
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sequence of discriminative 3D poses. A 3D pose exhibits a
mixture of its projections on a set of 2D views. A 2D view
includes a set of spatio-temporal parts, and each part is as-
sociated with its appearance and motion features. Thus, the
action nodes, view nodes and part nodes are AND nodes,
and pose nodes are OR nodes. We will discuss the scores
and parameters for these nodes in the following subsections.

The strong expressive power of an AOG [18] lies in the
structure of layered conjunctive and disjunctive composi-
tions. Moreover, MST-AOG shares the part nodes across
different views via interpolation. An example will be given
when discussing the action node in Sec. 3.4.

3.2. Pose/View Nodes and 3D Geometry

To handle multi-view modeling, we introduce pose and
view nodes. A pose node is an OR node that models the
association of spatio-temporal patterns to a 3D pose pro-
jected to various views (each of which is a view node).
For each view node, it captures the AND relationship of a
number of parts (i.e., the limb of the human). Each part
node captures its visual appearance and motion features un-
der a specific view θ. Specifically, we use a star-shaped
model for the dependencies among body parts, inspired by
DPM [4], as Fig. 2 shows. Their 2D locations are denoted
by V = {v0,v1, · · · ,vN}, where v0 is for the root part (the
whole pose). Denote by I the image frame. We define the
score associated with the i-th part node to be SR(vi, I, θ)
(details will be provided in Sec. 3.3).

Two factors contribute to the score of a view node: the
score of its children part nodes SR(vi, I, θ) and the spa-
tial regularization among them Si(v0,vi, θ) that specifies
the spatial relationship between the root part and each child
part. Such spatial regularization measures the compatibility
among the parts from view θ (we only consider the rotation
angle, details will follow). In view of this, the total compat-
ibility score of a view node is written as:

SV(v0, θ) =

N∑
i=0

SR(vi, I, θ) +

N∑
i=1

Si(v0, vi, θ) (1)

where vi is the location of the part i, and θ is the view.
The 2D global location of a 2D pose is set to be the lo-

cation of the root part, i.e.,v0. As the pose node is an OR
node, the score for a pose node is computed by maximizing
the scores from its children view nodes:

SP(v0) = max
θ
SV(v0, θ) (2)

The evaluation of the spatial regularization of the parts
needs a special treatment, because a pose node represents a
3D pose and it can be projected to different views to lead to
different part relationships explicitly, as illustrated in Fig.
2.

HOG

HOF

ST Parts

Figure 2. 3D parts and projected parts in different views.
The 3D geometrical relationship of the parts can be mod-

eled as the 3D offsets of the i-th part with respect to the root
part. Each offset can be modeled as a 3D Gaussian distribu-
tion with the mean µi as well as diagonal covariance matrix
Σi.

logP (∆pi) ∝ −
1

2
(∆pi − µi)

T
Σ−1i (∆pi − µi) (3)

where ∆pi = (∆xi,∆yi,∆zi) is the 3D offset between the
part i and the root part. Here µi can be estimated using the
3D skeleton data, and Σi will be learned (in Sec. 5).

The distribution of the 3D part offsets is projected to 2D
for a given view. Here we assume scaled orthographic pro-
jections: Qθ

i

Qθ
i =

[
k1 cos θ 0 −k1 sin θ

0 k2 0

]
(4)

where θ is a rotation angle of the view, and k1 and k2 are the
scale factors for two image axes. In training, we take advan-
tage of the 3D skeleton data from Kinect cameras. Since we
have the ground truth 3D (from 3D skeleton data) and 2D
(from multiview videos) locations in our training data, these
parameters can be easily estimated. The orthographic pro-
jection approximation works well in practice because the
actors are sufficiently far away from the camera when per-
forming actions. Since Qθ

i is a linear transform, the re-
sulting projected 2D offset distribution is also a Gaussian
distribution, with mean µθi = Qθ

ivi and covariance matrix
Σθ
i = Qθ

iΣ(Qθ
i )
T . Thus the 2D spatial pairwise relation-

ship score Si(v0,vi, θ) can be written as follows:

Si(v0,vi, θ) = ((Σθ
i )
−1
11 , (Σ

θ
i )
−1
22 , (Σ

θ
i )
−1
12 )T .

(−∆u2
i ,−∆v2i ,−2∆ui∆vi)

(5)

where (∆ui,∆vi) = vi − v0 − µθi is the 2D deformation
between the i-th part and the root part.

This 3D geometrical relationship is shared and learned
across different views. The 2D geometrical relationship of
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the novel views can be obtained by projecting the 3D geo-
metrical relationship to the novel views.

3.3. Part Node and Motion/Appearance

The spatio-temporal patterns of a part under a view are
modeled as its motion and appearance features. Each part
has an appearance node with score Ai(vi, I, θ), and a mo-
tion node with score Mi(vi, I, θ). They capture the like-
lihood (or compatibility) of the appearance and motion of
part i located at vi under view θ, respectively. The score
associated with a part node is thus written as:

SR(vi, I, θ) = Ai(vi, I, θ) +Mi(vi, I, θ). (6)

We exploit commonly used HOG [1] and HOF [9] fea-
tures to represent the appearance and motion of a given part,
respectively. In order to model the difference and correla-
tion of the appearance and motion for one part in different
view, we discretize the view angle θ into M discrete bins
(each bin corresponds to a view node), and use exponential
interpolation to obtain the appearance and motion features
in the view bins. The appearance score functionAi(vi, I, θ)
and motion score function is defined as

Ai(vi, I, θ) =

∑M
m=1 e

−d2(θ,θm)φTi,mφ(I, vi, θ)∑M
m=1 e

−d2(θ,θm)
(7)

where e−d
2(θ,θm) is the exponential of angular distance be-

tween the view θ and the view of bin m, φ(I,vi, θ) is the
HOG features at the location vi in image I under the view
θ. φi,m is the HOG templates of view bin m, and need
to be learned from the training data (see Sec. 5). The mo-
tion score function Mi(vi, I, θ) is defined and learned from
HOF features in a similar way.

Thus, the part node of different nodes are shared across
different views via interpolation. We can learn the appear-
ance/motion of the part nodes for the novel views via inter-
polation.

3.4. Action Node

Basically an action consists of a number of NP 3D dis-
criminative poses, but it is insufficient for an action node to
include only a set of pose nodes for two reasons. First, when
the image resolution of the human subject is low, further
decomposing the human into body parts is not plausible,
as detecting and localizing such tiny body parts will not be
reliable. Instead, low resolution visual features may allow
the direct detection of rough poses. Suppose we have NL
low resolution features, denoted by ϕi, i = 1, 2, · · · , NL.
We simply use a linear prediction function

∑NL
i wT

i ϕi to
evaluate low-resolution-feature action prediction score. The
weights wi can be learnt for each low-resolution features.
We use two low-resolution features: intensity histogram and
size of the bounding boxes of the foreground.

Therefore, an action node consists of two kinds of chil-
dren nodes: a NP number of pose nodes and a NL number
of leaf nodes for low-resolution grounding. The score of an
action node evaluates:

SA(l) =

NP∑
i

SiP(v0) +

NL∑
i

wTi ϕi (8)

where SiP(v0) is the score of the i-th pose node, and wi

is weights of the low-resolution features to be learned (as
discussed in Sec. 5).

4. Inference
Given an input video from a novel view, the inference

of MST-AOG calculates the scores of all the nodes so as to
achieve cross-view action classification. Since this MST-
AOG model is tree-structured, inference can be done via
dynamic programming. The general dynamic programming
process contains bottom-up phase and top-down phase,
which is similar to sum-product and max-product algorithm
in graphical model.

4.1. Cross-view Pose Detection

The states of the pose nodes, view nodes, and part nodes
are their locations and scales. The score for a view node is
defined in Eq. (1), and the score for a pose node is defined in
Eq. (2). The inference of a pose node is simply comparing
the scores of all the child view nodes at each location and
scale, and finding the maximum score.

For a view node, since the score function (1) is convex,
we can maximize the score in terms of the locations of the
parts v0,v1, · · · ,vN very efficiently using distance trans-
form [4]. The inference step can be achieved by convolv-
ing the input frame and its optical flow with the appearance
and motion templates of all the parts from different views
and obtain the response maps. Then for each view bin, we
can compute its projected part offset relationship. Using the
distance transform, we can efficiently calculate the response
map for the poses under this view bin. This also enables the
estimation of the novel view by finding the view bin that has
the largest view score.

4.2. Action Classification

We apply the spatio-temporal pyramid to represent the
spatio-temporal relationship of poses and low-resolution
features for action recognition. The scores of the pose nodes
and the low-resolution feature nodes at different locations
and frames constitute a sequence of response maps. We ap-
ply the max-pooling over a spatio-temporal pyramid. The
response of a cell in the pyramid is the maximum among all
responses in this cell.

We divide one whole video into 3-level pyramid in the
spatio-temporal dimensions. This yields 1 + 8 + 64 = 73
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dimensional vector for each response map. Then, we can
use the linear prediction function defined in Eq. (8) to com-
pute the score of an action. The action node with the max-
imum score corresponds to the predicted action. Although
this representation only acts as a rough description of the
spatial-temporal relationships between the poses, we find it
achieves very good results on our experiments.

5. Learning
The learning process has two tasks. The first is to learn

the MST-AOG parameters, e.g., the appearance and motion
patterns of each part in the part nodes, 3D geometrical re-
lationship in the view and pose nodes, and the classifica-
tion weights in the action nodes. The second task is to dis-
cover a dictionary of discriminative 3D poses to determine
the structure of the MST-AOG model.

5.1. Learning MST-AOG Parameters

Learning MST-AOG parameters for the part and view
nodes can be formulated as a latent structural SVM prob-
lem. The parameters of the latent SVM include: the vari-
ance Σi in Eq. (3), the appearance and motion templates
βi,m and γi,m in Eq. (7).

Although we have the non-root part locations and the
view available in the training data, since we are more inter-
ested in predicting the pose rather than the precise location
of each part and the view, we treat the locations of the parts
vj and the view θ as latent variables. And we apply a latent
SVM to learn the our model using the labeled location of
the parts and the view angle as initialization. This treatment
is more robust to the noise in the training data.

For each example xn, we have its class label yn ∈
{−1,+1}, n ∈ {1, 2, · · · , N}. The objective function is:

min
β,γ,Σi

1

2
‖[β,γ,Σi]‖22 + C

N∑
n=1

max (0, 1− ynSP(v0 : xn))

(9)
where SP(v0 : xi) is defined in Eq. (2), which is the total
score for example xi.

The learning is done by iterating between optimizing
β, γ,Σi, and calculating the part locations and the views
of the positive training data.

For each pose, we use the samples whose distances are
less than η to this pose in the positive videos as positive
examples, and randomly sample 5000 negative training ex-
amples from negative videos. We apply two bootstrapping
mining of hard negatives during the learning process. As
the action score Eq. (8) is a linear function, the parameter
wi can be easily learned via a linear SVM solver.

5.2. Mining 3D Pose Dictionary

To learn the structure of the MST-AOG, we propose an
effective data mining method to discover the discriminative

3D poses, which are specific spatial configurations of a sub-
set body parts.

5.2.1 Part Representation

The 3D joint positions are employed to characterize the 3D
pose of the human body. For a human subject, 21 joint posi-
tions are tracked by the skeleton tracker [17] and each joint
i has 3 location coordinates pj(t) = (xj(t), yj(t), zj(t)), a
motion vector mj(t) = (∆xj(t),∆yj(t),∆zj(t)) as well
the visibility label hj(t) at a frame t. hj(t) = 1 indicates
that the j-th joint is visible in frame t and hj(t) = 0 other-
wise. The location coordinates are normalized so that they
are invariant to the absolute body position, the initial body
orientation and the body size. We manually group the joints
into multiple parts.

5.2.2 Part Clustering

Since the poses in one action are highly redundant, we clus-
ter the examples of each part to reduce the size of the search
space, and to enable part sharing. Let part k be one of
the K parts of the person and Jk be the set of the joints
of this part. For each joint j ∈ Jk in this part, we have
pj = (xj , yj , zj), m(j) = (∆x,∆y,∆z), and hi ∈ {0, 1}
as its 3D position, 3D motion and visibility map, respec-
tively. For a certain part, given the 3D joint positions of the
two examples s and r, we can define their distance:

Dk(s, r) =
∑
j∈Jk

(‖psj(t)− Ŝprj(t)‖22

+ ‖ms
j(t)− Ŝmr

j(t)‖22) (1 + hs,r(t))

(10)

where Ŝ is a similarity transformation matrix that mini-
mizes the distance between the part k of the example s and
the example t. The term hs,r is a penalty term based on the
visibility of the joint j in the two examples: hs,r(j) = a
if vs(j) = vr(j) and is 0 otherwise. Since this distance is
non-symmetric, we use a symmetric distance as the distance
metric: D̄(s, r) = (D(s, r) +D(r, s))/2.

Spectral clustering is performed on the distance matrix.
We remove the clusters that have too few examples, and use
the rest of the clusters as the candidate part configurations
for mining. We denote the set of all candidates part configu-
rations for the part k as: Tk = {t1k, t2k, · · · , tNkk}, where
each tik is called a part item represented by the average joint
positions and motions in the cluster.

5.2.3 Mining Representative and Discriminative Poses

The discriminative power of a single part is usually limited.
We need to discover poses (the combinations of the parts)
that are discriminative for action recognition.
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For a pose P that contains a set of part items T (P), with
each part item in this set belonging to different part. we
define the spatial configuration of a poses as the 3D joint
positions and motions of all the part items in this pose.

The activation of a pose P with configuration pP in a
video vi can be defined as: ap(i) = mint e

−D(pP ,p
t
P),

where ptP is the 3D joint positions of the poses P in the t-
th frame of video, and D(., .) is a distance function defined
in Eq. (10). If very similar poses exist in this video, the
activation is high. Otherwise, the activation is low. One dis-
criminative pose should have large activation in the videos
in a given category, while having low activation vector in
other categories. We define the support of the pose P for

category c as:Suppp(c) =
∑

ci=c ap(i)∑
ci=c 1 , where ci the cate-

gory label of video vi, and the discrimination of the poses p
as: Discp(c) =

Suppp(c)∑
c′ 6=c Suppp(c

′) .
We would like to discover the poses with large sup-

port and discrimination. Since adding one part item into a
pose always creates another pose with lower support, i.e.,
SuppP(c) < SuppP′(c) if T (P) ⊃ T (P ′). Thus we
can use the Aprior-like algorithm to find the discriminative
poses. In this algorithm, we remove the non-maximal poses
from the discriminative pose pool. For a pose P , if there
exist a pose P ′ such that T (P) ⊂ T (P ′) and both P and
P ′ are in the set of discriminative and representative poses,
then P is a non-maximal pose.

This algorithm usually produces an excessive large num-
ber of poses, we prune the sets of discriminative poses with
the following criteria. Firstly, we remove poses that are sim-
ilar to each other. This can be modeled as a set-covering
problem, and can be solved with a greedy algorithm. We
choose a pose P with highest discrimination, and remove
the poses whose distance is less than a given threshold. Sec-
ondly, we remove the poses with small validation scores for
the detectors trained for these poses.

6. Experiments
We evaluate the proposed method on two datasets: the

Multiview Action3D Dataset, collected by ourselves and the
MSR-DailyActivity3D dataset [19].

In all our experiments, we only use the videos from a
single unknown view for testing, and do not use the skeleton
information or the videos from multiple views.

6.1. Northwestern-UCLA Multiview Action3D
Dataset

Northwestern-UCLA Multiview 3D event dataset 1 con-
tains RGB, depth and human skeleton data captured simul-
taneously by three Kinect cameras. This dataset include 10
action categories: pick up with one hand, pick up with two

1http://users.eecs.northwestern.edu/ jwa368/my data.html
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Figure 3. The view distributions of the Multiview-Action3D
dataset (left) and MSR-DailyActivity3D dataset (right).

hands, drop trash, walk around, sit down, stand up, don-
ning, doffing, throw, carry. Each action is performed by 10
actors. Fig. 4 shows some example frames of this dataset.
The view distribution is shown in Fig. 3. This dataset con-
tains data taken from a variety of viewpoints.

The comparison of the recognition accuracy of the pro-
posed algorithm with the baseline algorithms is shown in
Table 1. We compare with virtual views [11], Hankelet [10],
Action Bank [16] and Poselet [14]. For Action Bank, we
use the actions provided by [16] as well as a portion of the
videos in our dataset as action banks. For Poselet, we use
the Poselets provided by [14]. We also compare our model
with training one dedicated model for each view, which is
essentially a mixture of deformable part models (DPM), to
compare the robustness of the proposed method under dif-
ferent viewpoints with DPM model. We have 50 pose nodes
for all the actions and 10 child view nodes for one pose node
for both mixture of DPM and MST-AOG. The number of
the part nodes in DPM and MST-AOG is both 1320 (differ-
ent poses can have different number of parts). MST-AOG
also has 2 child low-resolution feature nodes for each action
node. These parameters are chosen via cross-validation.
In MST-AOG, the appearance/motion and geometrical re-
lationship of the part nodes are shared and learned across
different view nodes, but the mixture of DPM treats them
independently.

We perform recognition experiments under three set-
tings.
• cross-subject setting: We use the samples from 9 sub-

jects as training data, and leave out the samples from 1
subject as testing data.
• cross-view setting: We use the samples from 2 cameras

as training data, and use the samples from 1 camera as
testing data.
• cross-environment setting: We apply the learned model

to the same action but captured in a different environ-
ment. Some of the examples of the cross environment
testing data are shown in Fig. 4.

These settings can evaluate the robustness to the variations
in different subjects, from different views, and in different
environments.
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Figure 4. Sample frames of Multiview Action3D dataset, cross en-
vironment test data, and MSR-DailyActivity3D dataset [19].

Method C-Subject C-View C-Env
Virtual View [11] 0.507 0.478 0.274
Hankelet [10] 0.542 0.452 0.286
Action Bank [16] 0.246 0.176 N/A
Poselet [14] 0.549 0.245 0.485
Mixture of DPM 0.748 0.461 0.688
MST-AOG w/o Low-S 0.789 0.653 0.719
MST-AOG w Low-S 0.816 0.733 0.793

Table 1. Recognition accuracy on Multiview-3D dataset.

The proposed algorithm achieves the best performance
under all three settings. Moreover, the proposed method
is rather robust under the cross-view setting. In contrast,
although the state-of-the-art local-feature-based cross-view
action recognition methods [10, 11] are relatively robust
to viewpoint changes, the overall accuracy of these meth-
ods is not very high, because the local features are not
enough to discriminate the subtle differences of the actions
in this dataset. Moreover, these methods are sensitive to
the changes of the environment. The Poselet method is ro-
bust to environment changes, but it is sensitive to viewpoint
changes. Since the mixture of DPM does not model the re-
lations across different view, its performance degrades sig-
nificantly under cross-view setting. The comparison of the
recognition accuracy of the different methods under cross-
view setting is shown in Fig. 6. We also observe that utiliz-
ing low-resolution features can increase the recognition ac-
curacy, and the proposed method is also robust under cross
environment setting.

The confusion matrix of the proposed methods with low-
resolution features under cross-view setting is shown in
Fig. 5. The actions that cause most confusion are “pick
up with one hand” versus “pick up with two hands”, be-
cause the motion and appearance of these two actions are
very similar. Another action that causes a lot of confusion
is “drop trash”, because the movement of dropping trash can
be extremely subtle for some subjects.

Figure 5. The confusion matrix of MST-AOG on multiview data
under cross-view setting (with low-resolution features).
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Figure 6. The recognition accuracy under cross-view setting.

6.2. MSR-DailyActivity3D Dataset

The MSR-DailyActivity3D dataset is a daily activity
dataset captured by a Kinect device. It is a widely used as a
Kinect action recognition benchmark. There are 16 activity
types: drink, eat, read book, call cellphone, write on a pa-
per, use laptop, use vacuum cleaner, cheer up, sit still, toss
paper, play game, lay down on sofa, walk, play guitar, stand
up, sit down. If possible, each subject performs an activ-
ity in two different poses: “sitting on sofa” and “standing”.
Some example frames are shown in Fig. 4. The view distri-
bution of this dataset can be found in Fig. 3. Although this
dataset is not a multiview dataset, we compare the perfor-
mance of the proposed method with the baseline methods to
validate its performance on single view action recognition.

We use the same experimental setting as [19], using the
samples of half of the subjects as training data, and the sam-
ples of the rest half as testing data. This dataset is very
challenging if the 3D skeleton is not used. The Poselet
method [14] achieves 23.75% accuracy, because many of
the actions in this dataset should be distinguished with mo-
tion information, which is ignored in the Poselet method.
STIP [8] and Action Bank [16] do not perform well on this
dataset, either. The proposed MST-AOG method achieves
a recognition accuracy of 73.5%, which is much better than
the baseline methods.

Notice that the accuracy of Actionlet Ensemble method
in [19] achieves 85.5% accuracy. However, the proposed
method only needs one RGB video as input during testing,
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Method Accuracy
STIP [8] 0.545
Action Bank [16] 0.23
Poselet [14] 0.2375
Actionlet Ensemble [19] 0.835a

MST-AOG 0.731

Table 2. Recognition accuracy for DailyActivity3D dataset.

aThis result is not directly comparable with MST-AOG, because it
uses 3D skeleton.

Figure 7. The confusion matrix of MST-AOG on MSR-
DailyActivity3D dataset.

while Actionlet Ensemble method requires depth sequences
and Kinect skeleton tracking during testing.

The confusion matrix of the proposed method on MSR-
DailyActivity3D dataset is shown in Fig. 7. We can see that
the proposed algorithm performs well on the actions that
are mainly determined by poses or motion, such as “stand
up”, “sit down”, “toss paper”, “cheer up”, “call cellphone”.
However, recognizing some actions requires us to recognize
objects, such as “playing guitar” and “play games”. Model-
ing the human-object interaction will improve the recogni-
tion accuracy for these actions.

7. Conclusion
We propose a new cross-view action representation, the

MST-AOG model, that can effectively express the geome-
try, appearance and motion variations across multiple view
points with a hierarchical compositional model. It takes ad-
vantage of 3D skeleton data to train, and achieves 2D video
action recognition from unknown views. Our extensive ex-
periments have demonstrated that MST-AOG significantly
improves the accuracy and robustness for cross-view, cross-
subject and cross-environment action recognition. The pro-
posed MST-AOG can also be employed to detect the view

and locations of the actions and poses. This will be our fu-
ture work.
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