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Abstract

Recently, there has been a great interest in computer-aided Alzheimer’s Disease (AD) and Mild 

Cognitive Impairment (MCI) diagnosis. Previous learning based methods defined the diagnosis 

process as a classification task and directly used the low-level features extracted from 

neuroimaging data without considering relations among them. However, from a neuroscience 

point of view, it’s well known that a human brain is a complex system that multiple brain regions 

are anatomically connected and functionally interact with each other. Therefore, it is natural to 

hypothesize that the low-level features extracted from neuroimaging data are related to each other 

in some ways. To this end, in this paper, we first devise a coupled feature representation by 

utilizing intra-coupled and inter-coupled interaction relationship. Regarding multi-modal data 

fusion, we propose a novel coupled boosting algorithm that analyzes the pairwise coupled-

diversity correlation between modalities. Specifically, we formulate a new weight updating 

function, which considers both incorrectly and inconsistently classified samples. In our 

experiments on the ADNI dataset, the proposed method presented the best performance with 

accuracies of 94.7% and 80.1% for AD vs. Normal Control (NC) and MCI vs. NC classifications, 

respectively, outperforming the competing methods and the state-of-the-art methods.

1. Introduction

Alzheimer’s Disease (AD) and its early stage, Mild Cognitive Impairment (MCI), are 

becoming the most prevalent neurodegenerative brain diseases in elderly people world-wide. 

According to [1], the prevalence of AD will rise dramatically during the next 20 years, and 1 

in 85 people will be affected by 2050. To this end, there have been a lot of efforts on 

investigating the underlying biological or neurological mechanisms and also discovering 

biomarkers for early diagnosis or prognosis of AD and MCI. Neuroimaging tools such as 

Magnetic Resonance Imaging (MRI) [2], Positron Emission Tomography (PET) [9], and 

functional MRI (fMRI) [4] have played the key roles in those works, and different 

neuroimaging tools can convey different information for diagnosis. Recent studies have 

shown that information fusion from multiple modalities can thus help enhance the diagnostic 

performance [5, 8, 16, 19, 22, 26, 25].
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Regarding the multi-modal fusion, most of the previous methods first extracted features 

from each modality (e.g., gray matter tissue volume from MRI, mean signal intensities from 

PET), trained a typical classifier to model the training examples for each modality 

independently, and then combined the outputs from classifiers in an ensemble way for a 

final decision. Here, we should note that, to our best knowledge, those methods assumed the 

conditional independence among the features. However, since we extract features in a 

homogeneous way, e.g., statistical information from particular Region Of Interests (ROIs) in 

a brain, they are naturally related to each other in certain ways. Furthermore, it’s important 

to combine multi-modal information in a systematic manner.

To this end, in this paper, we design a new framework, in which we consider the feature-

level coupled-interaction analysis and modality-level coupled-interaction analysis. 

Specifically, for the feature-level coupled-interaction, we devise a coupled-feature 

representation using intra-coupled interaction (correlations between features and their own 

powers) and inter-coupled interaction (correlations between features and the powers of other 

features) [19]. For the modality-level coupled-interaction, we propose a novel coupled 

boosting method that analyzes the pairwise coupled-diversity correlation between 

modalities. We illustrate the major difference between the previous methods and our new 

method in Fig. 1.

Fig. 2 schematizes the proposed framework, where we adopt two neuroimaging modalities 

of MRI and PET. Without loss of generality, we denote the MRI as modality A, and the PET 

as modality B. After the image preprocessing and low-level feature extraction, we find a 

coupled feature representation [19] by mapping the original feature vectors into the 

expanded feature vectors via both linear and nonlinear fashion. We then select the label-

related features from the expanded feature vectors by means of Least Absolute Shrinkage 

and Selection Operator (LASSO), which is one of the most widely used feature selection 

methods in the literature. Finally, the proposed coupled boosting algorithm trains the base 

learners that analyze the pairwise coupled-diversity correlation between modalities at 

multiple rounds. Our major contributions can be two folds:

• We propose a novel coupled boosting algorithm that makes a full use of the 

pairwise coupled diversity between multi-modal data (i.e., MRI and PET) to 

improve the generalization power. Unlike the previous boosting algorithms [10, 11] 

that usually focused on single-modal data classification, the proposed coupled 

boosting algorithm introduces the large diversity theory in ensemble learning and 

thus deals with multi-modal data classification problems, but still maintaining the 

general steps of AdaBoost.

• A coupled feature representation method is employed to analyze the intra-coupled 

and inter-coupled interaction among features for AD/MCI diagnosis, which can 

successfully capture the intrinsic linear and nonlinear information.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the related 

work for AD/MCI diagnosis with multi-modal data. The MRI and PET image processing 

and feature extraction are described in Section 3. In Section 4, we propose our new coupled 
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feature representation and coupled boosting algorithm. Experimental results and 

performance comparisons with competing methods are presented in Section 5. We conclude 

this paper by summarizing the proposed method and also discussing the obtained results in 

Section 6.

2. Related Work

Recent studies have shown that fusing the complementary information from multiple 

modalities helps enhance the AD/MCI diagnostic accuracy [5, 8, 16, 18, 19, 22, 26]. In 

general, we can divide the previous methods into two categories: feature-concatenation 

approach and kernel-based approach. The first approach simply concatenates features from 

different modalities into a long feature vector and then build a classifier to find the relations 

implicitly. For example, Kohannim et al. concatenated features from modalities into a vector 

and trained a Support Vector Machine (SVM) classifier using the concatenated feature 

vectors [8]. Walhovd et al. applied multi-method stepwise logistic regression analyses [18], 

and Westman et al. exploited a hierarchical modeling of orthogonal partial least squares to 

latent structures [22]. Meanwhile, the latter approach fuses multi-modal information by 

means of a kernel technique, in which the original feature vectors are mapped into a higher 

dimensional space via different types of kernels. For example, Hinrichs et al. [5] and Zhang 

et al. [26], independently, utilized a multi-kernel SVM to combine information from 

different modalities.

However, none of these methods considered relational information inherent in the original 

feature vectors. Since a human brain is a highly complicated system and multiple brain 

regions interact consistently, we believe that there exist relations among brain regions, and 

therefore the features extracted from multiple ROIs are also highly correlated to each other. 

Recently, Suk and Shen used a deep learning method to find the latent high-level features 

that capture the relations inherent in the low-level features and achieved prominent results 

[16].

In this paper, we focus on the problems of feature representation and multi-modal data 

fusion for AD/MCI diagnosis. Specifically, we devise a feature-coupled representation by 

considering intra-coupled and inter-coupled interactions among features within a modality, 

and then propose a novel coupled boosting algorithm that systematically combine multi-

modal information by building base learners at multiple rounds and finally combine them in 

an ensemble manner for a final decision.

3. Preprocessing and Feature Extraction

The MRI and PET images are preprocessed to extract ROI-based features. For MR images, 

we first perform anterior commissure-posterior commissure correction using MIPAV 

software1, and then re-sample the images to 256×256×256 resolution. The intensity 

inhomogeneity correction and skull stripping are performed by [14] and [20], respectively. 

The MR images are then segmented into three different types of tissues, i.e., Gray Matter 

1http://mipav.cit.nih.gov/
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(GM), White Matter (WM) and CerebroSpinal Fluid (CSF), using FAST [27] in the FMRIB 

Software Library (FSL) package [23]. After registration using HAMMER [12], we obtain 

the subject-labeled images based on a template with 93 manually labeled ROIs [7]. For each 

subject, we use the volumes of GM tissue of the 93 ROIs, which are normalized by the total 

intracranial volume (which is estimated by the summation of GM, WM and CSF volumes 

from all ROIs), as features. For PET images, we first align them to their respective MR 

images through affine transformation, and then compute the average intensity of each ROI 

as feature. In summary, we have 93 features from MRI and 93 features from PET, and, 

hereafter, we regard these features as original low-level features.

4. Proposed Method

4.1. Notations

In this paper, we denote matrices as boldface uppercase letters, vectors as boldface 

lowercase letters, and scalars as normal italic letters, respectively. For a matrix Z = [Zji], its 

j-th row is denoted as Zj,‥ For the k-th element in a vector zi, we denote it as zi,k. We further 

denote a transpose operator of a vector or a matrix with a superscript⊤.

Suppose that we have a set of samples , where m 

and n denote, respectively, the number of training samples and the number of testing 

samples, and without loss of generality we assume that the samples are sorted in the order of 

training and testing samples. Here,  and  denote, respectively, the original feature 

vector from MRI (modality A) and PET (modality B) of the i-th sample (i = 1, …, m + n), 

and yi ∈ {− 1, +1} is the ground truth label of the i-th sample. pA and pB denote the 

dimensionality of MRI and PET feature vectors, respectively2. Then, we can represent the 

whole original feature samples with matrices  and 

.

4.2. Coupled Feature Representation

To our best knowledge, the previous work that addressed the AD/MCI diagnosis as a 

classification problem and used original low-level features without considering their 

relationships. However, it’s well known that a human brain is a complex system that 

multiple brain regions are anatomically connected and functionally interact with each other 

for tasks. That is, it is natural to hypothesize that the original features extracted from MRI 

and PET in multiple ROIs are related to each other in a way. To this end, in this work, we 

propose to find such latent relations among features with a coupled feature representation 

method [19] and use the high-level information for the AD/MCI diagnosis.

In particular, we consider two types of relational information inherent in the original low-

level features: ‘intra-coupled interaction’ with correlations between features and their own 

2In this work, pA = 93 and pB = 93.
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powers, and ‘inter-coupled interaction’ with correlations between features and the powers of 

other features. Here, we should note that we find the coupled feature representation for each 

modality individually. That is, although we describe the feature representation for a 

modality A, it’s equally applicable to a modality B.

For an original feature vector  of the modality A in the i-th sample, we map it to an 

expanded feature space with the incorporation of linear and nonlinear information by means 

of a matrix expansion as follows:

where  indicates the e-th power of the numerical value  and in this case e ∈ {1, 2}.

Utilizing the matrix expansion described above, we first define an intra-coupled interaction, 

which considers the correlations between the j-th feature and its own powers as follows:

where  denotes a Pearson’s correlation coefficient between  and , e1 = 

{1, 2, ⋯, E}, e2 = {1, 2, ⋯, E}, and E is a maximal power.

Besides the intra-coupled interaction, we also define an inter-coupled interaction that 

captures the correlations between the j-th feature and the powers of other features as 

follows:

where qj = [1, ⋯, j − 1, j + 1, ⋯, pA]⊤ ∈ ℝpA − 1, and  is a Pearson’s correlation 

coefficient between  and . Note that we use both the training and testing 

samples in inter-coupled interaction estimation for robustness by taking advantage of the 

information from testing samples, but the testing samples are not further involved in the 

following steps, i.e., feature selection and classifier learning.
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Let 

, and w = [1/(1!), 1/(2!), …, 1/(E!)]. We integrate the intra-coupled interaction  and 

inter-coupled interaction  to obtain the coupled feature representation of the j-th 

feature for the i-th sample as follows:

where ⊙ and ⊗ denote, respectively, a Hadamard product and a matrix multiplication. 

Therefore, the final coupled feature representation for the i-th sample can be represented as 

follows:

(1)

We then apply a feature selection method to focus on only the label-related features. 

Specifically, we use a LASSO method [17] that selects features with a sparsity constraint in 

an objective function. In the following, we denote the dimension-reduced coupled-feature 

representation of the modality A for the i-th sample as .

4.3. Coupled Boosting

In a nutshell, our coupled boosting algorithm follows the general steps of AdaBoost [3]: 

iteration of (1) drawing training samples and (2) learning a base learner and determining the 

respective weight function.

Let T denotes the total number of iterations, and  and  are, respectively, the trained 

base learners3 for modalities of A and B at the t-th iteration. For the base learners at t-th 

iteration, one for each modality, we have the respective weight distributions, represented by 

 and , where m is the number of training 

samples in our dataset.

At the t-th iteration, we draw samples according to the weight distributions and use them to 

train our base learners. After training base learners of  and , we then measure the errors 

over the total m training samples as follows:

(2)

3For a base learner, in this work, we use an SVM or a Sparse Representation Classifier (SRC).
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(3)

where  and  denote, respectively, the output label of the base learners  and 

 for inputs  and , and l (a, b) is a loss function that outputs 1 if and only if a ≠ b, and 

0 otherwise. Based on these errors, we determine the weight distributions  and 

for the next round.

Therefore, the core problem in our coupled boosting is the way of updating the weight 

distribution functions. For a binary classification problem with two modalities, there exist 

four different cases (see Table. 1): (Case 1) Both samples  and  are correctly classified; 

(Case 2 and Case 3) One of  and  is incorrectly classified; (Case 4) Both  and  are 

incorrectly classified and their predicted labels  and  are consistent with each 

other. Here, it is clear that we need to increase the weights of the samples belonging to Case 

2, Case 3, and Case 4 compared to the samples belonging to Case 1 for the next round.

First, for the incorrectly classified samples, we apply the following rule (similar to 

AdaBoost):

(4)

(5)

where  and , and  and  are the 

normalizing factors.

Meanwhile, for the inconsistently classified samples (Case 2 & Case 3), we impose the 

pairwise coupled-diversity to strengthen the generalization power, which has been 

mathematically validated in [6, 13]. Formally, we denote the pairwise coupled-diversity 

function  as follows:

(6)

where δ(·) is a Dirac Delta function.

By combining the functions of Eq.(4), Eq.(5) and Eq.(6), we define the following weight 

factors:
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(7)

(8)

where  and . Then, our new weight 

distributions can be estimated as follows:

(9)

(10)

where  and  are the normalizing factors.

Algorithm 1

Pseudo-code of a coupled boosting algorithm

Input: Data (x1
A, x1

B, y1), (x2
A, x2

B, y2), ⋯ , (xm
A , xm

B , ym),

and the maximum number of iteration T

Output: Ensemble classifier H(xA, xB)

1:
d1

A ← 1
m

× 1, d1
B ← 1

m
× 1

2: for t = 1, ⋯, T do

3:
  Train a base learner h t

A
 with samples drawn with dt

A

4:
  Train a base learner h t

B
 with samples drawn with dt

B

5:
  Compute errors εt

A
 and εt

B
 by Eq.(2) and Eq.(3)

6:
  if εt

A ≤
1
2

, εt
B ≤

1
2

 then

7:
    αt

A ← 1
2

lnεt
A(1 − εt

A)−1

8:
    αt

B ← 1
2

lnεt
B(1 − εt

B)−1

9:
    Update d(t+1),i

A
 and d(t+1),i

B
 by Eq.(9) and Eq.(10)

10:   end if

11: end for

12: H(xA, xB) defined by Eq.(11)
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After T iterations, we can finally get an ensemble classifier H(xA, xB) that makes a final 

decision via weighted majority voting on all the base learners as follows:

(11)

where sgn(·) is a sign function. We present the pseudo-code of the proposed coupled 

boosting method in Algorithm. 1.

5. Experimental Results and Analysis

5.1. Experimental Setup

We conducted experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset4, which has been considered as the benchmark database for performance evaluation 

of various methods for AD/MCI diagnosis. In our experiments, we used baseline MRI and 

PET data obtained from 202 subjects of 51 AD patients, 99 MCI patients5, and 52 healthy 

Normal Controls (NC).

Following the related works [21, 26], we considered two binary classification tasks: AD vs. 

NC and MCI vs. NC. We employed four different metrics, namely, classification ACCuracy 

(ACC), SPEcificity (SPE), SENsitivity (SEN), and Area Under Receiver Operating 

Characteristic (ROC) Curve (AUC) to compare the proposed method with the previous 

methods. Particularly, ACC is calculated as the number of correctly classified testing 

samples divided by the total number of testing samples. SPE means the proportion of 

correctly classified NC samples. SEN means the proportion of correctly classified patient 

samples. Regarding the four metrics under consideration, the higher the values are, the better 

the respective method is. Due to a limited number of samples, we used a 10-fold Cross 

Validation (CV) technique in evaluating the performance, and repeated the 10-fold CV 100 

times to reduce the possible bias that could be raised during data partition. For the base 

learner in our coupled boosting, we used a linear SVM or a Sparse Representation-based 

Classifier (SRC), which are the most widely used classification methods in many real 

applications [15, 24, 26]. The model parameters of the base learners were determined by a 

nested CV on the training samples. Instead of considering the full combination of 

parameters which is computationally very expensive, we chose the parameters for each base 

learning separately that helps reduce the computational cost greatly. The sparsity control 

parameter in LASSO, and  and  in Eq.(7) and Eq.(8) were also chosen by a nested CV 

on the training samples. Hereafter, we denote our Coupled Boosting (CB) with SVM or SRC 

as CB-SVM or CB-SRC, respectively.

5.2. Coupled Feature Representation Evaluation

To validate the advantage of the coupled feature representation, we compared the 

performances of CB-SRC trained on the Original Feature Representations (CB-SRCwOFR) 

4http:\www.loni.ucla.edu/ADNI
5Including 43 MCI converters and 56 MCI non-converters.
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with those of CB-SRC trained on the Coupled Feature Representations (CB-SRCwCFR). 

We also compared results of CB-SVMwOFR with those of CB-SVMwCFR. In Fig. 3, we 

presented the performance changes of the competing methods by varying the power 

expansion value from 1 to 10. For all the methods, we applied LASSO on their respective 

feature representations.

For both AD vs. NC and MCI vs. NC classifications, the proposed CB-SRCwCFR and CB-

SVMwCFR outperformed CB-SRCwOFR and CB-SVMwOFR, respectively, in terms of 

ACC, SEN, SPE, and AUC. Specifically, the proposed method of CB-SRC/CB-SVM 

improved by 6%/4% (ACC), 3.30%/1.2% (SEN), 11%/9.5% (SPE), and 6%/3.50% (AUC) 

for AD diagnosis, and by 4.5%/0.69% (ACC), 2.45%/0.77% (SEN), 9.53%/0.6% (SPE), and 

4.43%/0.6% (AUC) for MCI diagnosis. That is, the coupled feature representation is helpful 

to improve the diagnostic accuracy for both AD vs. NC and MCI vs. NC classifications with 

the base learners of SRC and SVM.

Regarding the expansion parameter E, a small E deteriorates the classification performance 

while a large E increases the unnecessary computation burden. In the following experiments, 

we fixed E to 5.

5.3. Feature Selection Evaluation

In order to show the efficacy of feature selection, we compared the performances of CB-

SRC or CB-SVM without feature selection (called as CB-SRCwoFS or CB-SVMwoFS) 

with those of the same methods with feature selection (called as CB-SRCwFS or CB-

SVMwFS) in Fig. 4. It is obvious that feature selection helped improve the classification 

results both for CB-SRC and CB-SVM (see Table. 2).

5.4. Coupled Boosting Evaluation

If we set the parameters  and  to 0, then the proposed coupled boosting algorithm 

becomes the conventional AdaBoost by degenerating the weights for the inconsistently 

classified samples. In order to show the validity of the newly devised formulation for weight 

distributions, we compared the proposed method with AdaBoost, for which we also used 

SRC or SVM as a base learner (called as AdaBoost-SRC or AdaBoost-SVM) (see Fig. 5). 

Although there exist cases that the proposed method showed lower performance, i.e., −0.7% 

(SEN) with CB-SVM in AD vs. NC, and −1.3% (SEN) with CB-SRC and −2.6% (SPE) with 

CB-SVM in MCI vs. NC, overall, our method was statistically superior to AdaBoost with p-

values of 1.1e-17 (CB-SRC), 3.7e-05 (CB-SVM) in AD vs. NC, and 0.0061 (CB-SRC), 

2.7e-12 (CB-SVM) in MCI vs. NC. Thanks to the pairwise coupled-diversity, the proposed 

methods of CB-SRCwFS and CB-SVMwFS outperformed both AdaBoost-SRC and 

AdaBoost-SVM.

5.5. Comparison with Previous Methods

We also compared the classification performances of the proposed method with those of the 

state-of-the-art methods, namely, Wang et al.’s method [21] and Zhang et al.’s method [26]. 

For a comparison purpose, we also present the performance of four single-modality based 
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methods: (1) SRC with MRI features (SRC-MRI), SRC with PET features (SRC-PET), 

SVM with MRI features (SVM-MRI), and SVM with PET features (SVM-PET). For SRC-

MRI, SRC-PET, SVM-MRI, and SVM-PET, the parameters (e.g., the sparsity regularization 

parameter in SRC) in the respective models were determined by a nested CV on the training 

samples. Table. 3 compares the performances of the competing methods. For Wang et al.’s 

method [21] and Zhang et al.’s method [26], we presented the best performances reported in 

the respective papers. Our method achieved the best performance for both AD vs. NC (by 

CB-SVM) and MCI vs. NC (by CB-SRC) classifications. Regarding AUCs, we repeated the 

10-fold CV 100 times to reduce the possible bias caused by different data partition, and then 

obtained the mean AUC value. Our best AUCs were 0.975 (AD vs. NC) and 0.833 (MCI vs. 

NC), better than results in [21].

It is noteworthy that (1) coupled features assigned the lower weight for the higher power 

features, thus preventing the possible over-fitting caused by complex high power 

representations and (2) boosting-like algorithm is a well-known classifier which often does 

not overfit data by increasing the ensemble margin according to several empirical and 

theoretical studies. In this regard, we can say that our experimental results were not suffered 

from overfitting.

6. Conclusion

Recently, by addressing the AD/MCI diagnosis process as a classification problem, most of 

the previous methods assume the conditional independence among the low-level features 

extracted from neuroimaging data. However, since a human brain is a complex system in 

which different regions interact for cognitive tasks, it is obvious that the features are 

naturally correlated to each other. Furthermore, there also exists relational information 

between different imaging modalities such as MRI and PET.

In this paper, we devised a coupled feature representation with intra-coupled and inter-

coupled interaction relationship by means of a matrix expansion. Regarding multimodal data 

fusion, we proposed a novel coupled boosting algorithm that analyzes the pairwise coupled-

diversity correlation between modalities. Specifically, we formulated a method of updating 

weight distribution functions, which jointly considered both incorrectly and inconsistently 

classified samples. From our experiments on the publicly available ADNI dataset, we 

validated the effectiveness of the proposed method both on the AD vs. NC and the MCI vs. 

NC diagnosis by comparing with the competing methods and the state-of-the-art methods.
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Figure 1. 
The difference of the previous methods and our proposed method working on the AD/MCI 

diagnosis.
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Figure 2. 
An illustration of the proposed framework for AD diagnosis.
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Figure 3. 
The effectiveness of coupled feature representation.
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Figure 4. 
The effectiveness of feature selection by LASSO, compared with the methods without 

feature selection.
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Figure 5. 
The effectiveness of pairwise coupled-diversity employed in coupled boosting, compared 

with AdaBoost-SRC and AdaBoost-SVM (not considering the pairwise coupled-diversity).
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Table 1

Four different cases in binary classification with two modalities. (O: correct, X: incorrect)

h t
A(xi

A) = yi h t
B(xi

B) = yi h t
A(xi

A) = h t
B(xi

B)

Case 1 O O O

Case 2 O X X

Case 3 X O X

Case 4 X X O
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