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Abstract

In this paper, we address the problem of synthesizing

novel views from a set of input images. State of the art

methods, such as the Unstructured Lumigraph [4], have

been using heuristics to combine information from the orig-

inal views, often using an explicit or implicit approxima-

tion of the scene geometry. While the proposed heuristics

have been largely explored and proven to work effectively,

a Bayesian formulation was recently introduced [28], for-

malizing some of the previously proposed heuristics, point-

ing out which physical phenomena could lie behind each.

However, some important heuristics were still not taken into

account and lack proper formalization.

We contribute a new physics-based generative model and

the corresponding Maximum a Posteriori estimate, provid-

ing the desired unification between heuristics-based meth-

ods and a Bayesian formulation. The key point is to system-

atically consider the error induced by the uncertainty in the

geometric proxy. We provide an extensive discussion, an-

alyzing how the obtained equations explain the heuristics

developed in previous methods. Furthermore, we show that

our novel Bayesian model significantly improves the quality

of novel views, in particular if the scene geometry estimate

is inaccurate.

1. Introduction

We address the problem of novel view synthesis in the

domain of Image-Based Rendering (IBR) [19], where the

aim is to synthesize views from different viewpoints using

a set of input views in arbitrary configuration. Most of the

methods from the state of the art use heuristics to define

energies or target functions to minimize, achieving excel-

lent results. A major breakthrough in IBR was the inspir-

ing work of Buehler et al. [4]. They define the “desirable

properties” which any IBR algorithm should have. Those
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Figure 1. A depth distribution along an optical ray of camera vi

will propagate differently depending on the viewing angle of the

rendered camera u or u
′. The bigger the angle, the bigger the

projected uncertainty will be.

directives still prevail throughout the current state of the art.

Recently, however, the use of the Bayesian formalism

has been introduced in IBR techniques, with the work pro-

posed by Wanner and Goldluecke [28]. They provide the

first Bayesian framework for novel view synthesis, de-

scribing the image formation process with a physics-based

generative model and deriving its Maximum a Posteriori

(MAP) estimate. Moreover, their variational method does

not only address the problem of novel view synthesis. It

directly addresses the synthesis of new super-resolved im-

ages, and provides a solid framework for other related prob-

lems, namely image denoising or image deblurring.

Interestingly, although [4] and [28] have addressed the

same problem, their theoretical results do not converge into

a unified framework. On the one hand, the guidelines dic-

tated by Buehler et al. in [4] have proven to be very effec-

tive, but lack a formal reasoning supporting them. More-

over, it is unclear how the balance between some of the de-
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Figure 2. View D is generated from cameras Ci using [28]. Left:

camera C2 will be favored over camera C1 because of the fore-

shortening effect. However, the angular distance of the viewing

rays between D and C1 is much smaller than D and C2. Right:

configuration with a flat scene. All cameras will have the same

contribution, despite the different viewing angles.

sirable properties should be handled. An illustrative exam-

ple is the tradeoff between epipole consistency and resolu-

tion sensitivity. The former notes that “when a desired ray

passes through the center of projection of a source cam-

era it can be trivially reconstructed”, while the latter ob-

serves that “in reality, image pixels are not really measures

of a single ray, but instead an integral over a set of rays

subtending a small solid angle. This angular extent should

ideally be accounted for by the rendering algorithm.” The

epipole consistency is enforced with an angular deviation

term, while the resolution sensitivity is driven by the Ja-

cobian of the planar homography relating the views. Both

heuristics seem reasonable, but which one should domi-

nate? The choice of the weights between the properties is

user-tuned, and in their experiments, parameters have to be

adjusted differently depending on the scene.

On the other hand, the existing Bayesian model [28] is

able to explain some of the heuristics, but still violates oth-

ers which seem evident and have proven to work effectively.

For example, we do find an analytic deduction of the influ-

ence of the foreshortening effects due to the scene geometry

in the energy. The findings confirm the heuristic proposed

by Buehler et al. in [4]: it is driven by the Jacobian of the

transformation relating the views. However, when carefully

analyzing the final equations in [28], an important desirable

property proposed in [4] is still missing: the minimal angu-

lar deviation of the viewing rays is not enforced and even

violated in some cases, as illustrated in Fig. 2.

The differences between state of the art generative mod-

els and the energies proposed by generally accepted heuris-

tics is what has motivated the present work. Our goal is to

retain the advantage of the intrinsically parameter-free en-

ergies arising from the Bayesian formalism, while pushing

the image formation model boundaries of [28] and provide

a new model which is capable of explaining most of the cur-

rently accepted intuitions of the state of the art in IBR.

Contributions. The key theoretical contribution of the

proposed method is the systematic modeling of the error in-

troduced in the lambertian image formation process via the

inaccuracy in the estimates of the geometric proxy. We call

this inaccuracy depth uncertainty, referring to the depth es-

timates from the input images. In addition to this error, we

also consider the image sensor noise, commonly modeled

as Gaussian. We extensively analyze the theoretical impli-

cations of the obtained energy, discussing the formal deduc-

tion of the state of the art heuristics from our model. This

work provides the first Bayesian formulation explicitly de-

riving the heuristics of [4].

From a practical point of view, we numerically evaluate

the performance of our method comparing it to the best ex-

isting method within the Bayesian framework. Experimen-

tal results show that we achieve state of the art results with

regard to objective measures on public datasets. Moreover,

we are also capable of addressing super-resolution, capital-

izing on the general framework established in [28]. The

new model is not without a price, since its optimization is

less straightforward. However, existing methods allow us to

overcome this difficulty. Source code is publicly available

at http://sf.net/projects/cocolib/.

2. Related work

Since the early work on plenoptic modeling [14] pro-

posed by McMillan and Bishop, many IBR techniques have

been developed for several purposes, e.g. free-viewpoint

rendering [24], image morphing [30] or image view interpo-

lation [21] among others. The taxonomy done by Shum et

al. [19] shows that most IBR methods use a geometric

proxy, and they classify them in an “IBR Continuum” de-

pending on how much geometry they use. On one end of

this continuum we have methods which do not use any but

rely on a large collection of input images, like light field

rendering [13], and concentric mosaics [20]. On the oppo-

site end, we have rendering techniques relying on explicit

geometry, using accurate geometric models but few images,

such as layered depth images [17, 6] and view-dependent

texture mapping [9]. In between, we find methods using an

implicit representation of the geometry, such as view inter-

polation techniques [7, 27] relying generally on optical flow,

transfer methods [12] establishing correspondences along

the viewing rays using epipolar geometry, and the Lumi-

graph [11], which uses an approximate explicit geometry

and a relatively dense set of images.

When Buehler et al. introduced Unstructured Lumigraph

Rendering [4], they established the seven “desirable prop-

erties” that all IBR methods should fulfill: use of geometric

proxies, unstructured input, epipole consistency, minimal

angular deviation, continuity, resolution sensitivity, equiv-

alent ray consistency, and real-time. This work has been of

major importance in the community, and most IBR methods

http://sf.net/projects/cocolib/


follow these guidelines.

Although Bayesian formalisms are a common way to

deal with spatial super-resolution in the multi-view and light

field setting [3, 10], they have only recently been introduced

to IBR with the work by Wanner and Goldluecke [28].

While their work provides a physical explanation for the

resolution sensitivity property, the minimal angular devia-

tion can be violated in their final equations. Most interest-

ingly, Vangorp et al. [26] empirically verify which proper-

ties in IBR methods are prone to create visual artifacts, and

one of their main results identifies angular deviation as a key

property to be taken into account to avoid visual artifacts.

Even if the performance achieved by state of the art 3D

reconstruction methods in estimating geometric proxies is

phenomenal, considering them as perfect seems too strong

of an assumption: even the best ones have an uncertainty

in their final estimates. Naturally, novel view synthesis is

prone to producing visual artifacts in regions with a poor

(implicit or explicit) reconstruction. One way to address

this problem is to improve the acquisition setting, as done

by Zitnick et al. [31]. They achieve a good enough recon-

struction, leading to impressive novel view synthesis. How-

ever, their setting is heavily constrained.

In [22], Takahashi studies the theoretical impact of errors

in the geometric proxy when rendering a new view from

2 images. We improve [22] by addressing more general

camera configurations and providing an efficient method

to find the solution, both explicitly left as future work. In

[23] Takahashi and Naemura use the depth uncertainty in-

formation to leverage the regularizer term (prior). But this

consideration does still not take into account the minimal

angular deviation, because distinct contributions for each

camera are not allowed. We solve this issue in this work.

3. Novel view synthesis generative model

Our goal is to synthesize a (possibly super-resolved)

view u : Γ → R from a novel viewpoint c using a set of

images vi : Ωi → R captured from general positions ci. We

assume we have an estimate of a geometric proxy which

is sufficient to establish correspondence between the views.

More formally, the geometric proxy induces a backwards

warp map τi : Ωi → Γ from each input image to the novel

view, as well as a binary occlusion mask mi : Ωi → {0, 1},

which takes the value one if and only if a point in Ωi is visi-

ble in Γ. If we restrict τi to the set of visible points Vi ⊂ Ωi,

it is injective and its left inverse βi : τi(Vi) → Ωi is well

defined, see Fig. 3.

Ideal image formation model. In order to consider the

loss of resolution from super-resolved novel view to input

view, we model the subsampling process by applying a blur

kernel b in the image formation process of vi. It corresponds

to the point spread function (PSF) of camera i. Each pixel of

vi stores the integrated intensities from a collection of rays

xx′
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Figure 3. Transfer map τi from image plane Ωi into target image

plane Γ. The depth uncertainty σzi
may be different among pixels.

from the scene, and the novel view u will always be consid-

ered as having a higher resolution than the input views.

Let us discard the effects of visibility for a moment, sup-

posing all points are visible. Also suppose we have a perfect

backward warp map τ∗i from Ωi to Γ, and perfect input im-

ages v∗i . Assuming the lambertian image formation model,

the idealized exact relationship between novel view and in-

put views is

v∗i = b ∗ (u ◦ τ∗i ), (1)

being ◦ the function composition operator. However, the

observed images vi and geometry τi are not perfect, and we

need to consider these factors in the image formation model.

Sensor error and image error. First, we consider Gaus-

sian sensor noise on all cameras with variance σ2
s . While

the sensor noise variance σ2
s and the subsampling kernel b

could be different among views, for the sake of simplicity

of notation, we will assume them to be identical.

Second, we consider the error in the geometry estimate,

which implies that the corresponding backwards warp τi is

different from the ideal map τ∗i . This induces an intensity

error ǫgi in the image formation process,

ǫgi = b ∗ (u ◦ τ∗i )− b ∗ (u ◦ τi). (2)

The uncertainty related to the intensity error ǫgi is denoted

by σgi : Ωi → R. Note that both have intensity units.

Taking into account the above errors, the image forma-

tion model becomes:

vi = b ∗ (u ◦ τi) + ǫgi + ǫs. (3)

While we make the common assumption that ǫs follows a

Gaussian distribution, the distribution of ǫgi is yet unknown

to us. What we know is that ǫgi is strongly related to the ge-

ometric error. In the next section, we study the relationship

between their distributions.

Dependency of image error on geometric error. The

geometric proxy yields for each pixel x in Ωi a depth mea-

sure zi which is associated with an uncertainty σzi , giving



us a distribution of depth along the viewing ray, as illus-

trated in Fig. 3. We now consider the error ǫzi in the es-

timation of the geometric proxy, expressed in world units.

The previous image error ǫgi is dependent on the underly-

ing geometric error. Note that the image error has intensity

units and must not be confused with ǫzi having geometric

units. In contrast to the blur kernel and the sensor noise, we

allow these errors to be different for each view and for each

pixel in each view, as made explicit in the notation.

We assume that the error distribution for the depth es-

timates is normal, ǫzi ∼ N (0, σ2
zi
). The goal is now to

derive how this distribution generates a color error distribu-

tion in the image formation process. Propagating a distribu-

tion with an arbitrary function is not straightforward, even

if in our case, this depth error distribution is assumed to be

Gaussian, and will only be propagated along the epipolar

geometry between the views. Instead of computing the full

color distribution along the viewing ray, we linearize and

consider the first order Taylor expansion of vi with respect

to zi. This implies that the resulting color distribution is

also Gaussian, with mean u ◦ τi and standard deviation

σgi = σzi

∣

∣

∣

∣

∂vi
∂zi

∣

∣

∣

∣
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Using Eq. (1) and the chain rule, we find that

σgi = σzi
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∣

∣

∣

. (5)

MAP estimate and energy. In the Bayesian formula-

tion, the MAP estimate of the novel view can be found as

the image u minimizing the energy

E(u) = Edata(u) + λEprior(u), (6)

where the data term Edata(u) is deduced from the gener-

ative model, and Eprior(u) is a smoothing term which is

detailed afterwards. λ > 0 is the only parameter of our

method, and it controls the smoothness of the solution.

Let us consider the two error sources as independent, ad-

ditive and Gaussian. Then their sum is also a normal distri-

bution with zero mean and variance σ2
s+σ2

gi
. The data term

computed from the generative model of Eq. (3) is given by:

Edata(u)=
n
∑

i=1

1

2

∫

Ωi

ωi(u)mi(b ∗ (u ◦ τi)− vi)
2 dx, (7)

with ωi(u) =
(

σ2
s + σ2

gi

)

−1
. (8)

This data term is similar to the one found in the previous

model from [28], except for the factor ωi(u), which can be

seen as a weight that depends both on the depth uncertainty

and on the latent image u being computed. If there were

no depth uncertainty, this term would reduce to σ2
s , which

gives exactly the energy found in [28].

From Eq. (5), we can observe that the term σ2
gi

in ωi(u)
becomes smaller if the length of the vector ∂τi/∂zi de-

creases. The derivative ∂τi/∂zi denotes how much the re-

projection of a point xi from the original view vi onto the

novel view u varies when its depth zi(xi) changes. This

vector points towards the direction of the epipolar line on u
issued from the point xi of vi, and its magnitude decreases

with the angle between the optical ray issued from the orig-

inal view vi and the optical ray from the novel view u. As

illustrated in Fig. 1, the term σ2
gi

thus accounts for the mini-

mal angular deviation “desirable property” from [4], which

was not accounted for in [28].

Let us analyze more precisely under which circum-

stances the weight ωi(u) reaches its maximal value 1/σ2
s ,

which is the value found in the previous model. There are

three situations in which this occurs. The first one is if

∂τi/∂zi = 0, i.e. the depth of a point in vi has no influ-

ence on its reprojection onto u. This can only happen if

the two optical rays are identical, which corresponds to the

epipole consistency property from [4]. The second one is

if ∇u = 0, i.e. the rendered image has no gradient or tex-

ture at the considered point: in this case, an error on the

depth estimate has no effect on the rendered view. The last

situation is if ∇u at the rendered point is orthogonal to the

direction of the epipolar line from camera i passing through

the rendered point: a small error on the depth estimate in

camera i does not have an effect on the rendered view be-

cause the direction of influence of this error is tangent to a

contour.

Choosing the prior. The prior is introduced in the

Bayesian formulation to restrain the possible configura-

tions of the target image. Usually, it is used to overcome

the ill-posedness of the problem: in the analysis of super-

resolution by Baker and Kanade [1], they show that the di-

mension of the null-space of the matrix system increases

with an increase of the super-resolution factor. Further-

more, in novel view synthesis, some parts of the image

may not be seen by any contributing view, thus a regulariza-

tion prior allows to fill the gaps with plausible information.

Thus, the choice of the prior will have significant influence

on the final result.

Very interesting priors have been developed in order to

overcome specific issues in super-resolution [18]. There are

also techniques allowing to learn generic image priors from

a collection of images [16]. However, in this work we focus

on the generative model, and we use basic total variation as

a regularizer,

Eprior(u) =

∫

Γ

|Du| , (9)

which is convex and has been extensively studied in the con-

text of image analysis problems [5]. The search for optimal

priors will be a topic of future work.

Optimization. The energy from Eq. (6) is hard to opti-



mize because the weights ωi(u) in Eq. (7) are a nonlinear

function of the latent image u. Similarly to [8], we propose

a re-weighted iterative method. We use an estimate ũ of u,

set at ũ = 1
n

∑

vi ◦ βi in the first iteration. We consider

then ωi(ũ) constant during each iteration, making the sim-

plified energy convex. Furthermore, with arguments similar

to [28], we can show that the functional derivative of the

simplified data term is

dEi
data(u) = ωi(ũ) |detDβi|

(

mib̄ ∗ (b∗(u ◦ τi)−vi)
)

◦βi,
(10)

where b̄(x) = b(−x) is the adjoint kernel. This functional

derivative is Lipschitz-continuous, which allows to mini-

mize the energy via the fast iterative shrinkage and thresh-

olding algorithm (FISTA) [2]. With the solution of this sim-

plified problem, we update ũ, thus obtaining new weights,

and a new energy. We solve it again with FISTA, and iter-

ate. Although the minimization problem to be solved within

each iteration is convex, in general we cannot hope to find

the global minimum of Eq. (6).

4. Relation to the principles of IBR

As we see in Eq. (10), the weighting factor for each view

is composed of two terms. The term |detDβi| is the same

as in [28] and corresponds to a measure of image deforma-

tion: it is the surface of a pixel from u projected to vi. We

can formulate the intuition behind it as how much does the

observed scene change when the viewpoint changes?

The term ωi(u) corresponds to the depth uncertainty, as

was explained in the previous section. The intuition behind

this is: how much does the observed scene change if the

measured depth changes?

Let us now carefully establish the links of the proposed

energy with the “desirable properties” of IBR stated in [4].

Use of geometric proxy & unstructured input. The ge-

ometric proxy is incorporated via the backward warp maps

τi, and the input can be unstructured (i.e. a random set of

views in generic position).

Epipole Consistency. As explained previously, the

weighting factor ωi(u) is maximal as soon as the optical

rays from xi and x are identical, so that if a camera has its

epipole at x, then the contribution of this camera at x via the

ωi(u) term is higher. Epipole Consistency is thus satisfied.

Minimal angular deviation. This heuristic is provided

by σgi from Eq. (5): if all other dimensions are kept con-

stant (resolution, distance to the scene, etc.), then the mag-

nitude of the vector ∂τi/∂zi in Eq. (5) is exactly propor-

tional to the sine of angle between the optical rays from

both cameras to the same scene point.

Resolution sensitivity. This heuristic is followed by the

term |detDβi|, which measures the surface of a pixel from

u projected to vi. The larger the resolution of camera i, the

bigger this surface, so that resolution sensitivity is properly

handled.

Equivalent ray consistency. “Through any empty re-

gion of space, the ray along a given line-of-sight should be

reconstructed consistently, regardless of the viewpoint posi-

tion (unless dictated by other goals ...)” [4]. This is trivially

satisfied by our framework, since the weights are varying

continuously with the camera parameters (through the con-

tinuous variation of the backward warp maps τi). Moving

the novel view camera along an optical ray (which is the sit-

uation used to describe this property in [4]) is just a special

case.

Continuity. The continuity principle in IBR demands

that the final rendered image is varying continuously with

the camera parameters of the original views. This implies

that there are no seams at visibility boundaries between

cameras, which may happen near the borders of the inter-

section of the field of view of each camera with the scene,

or at depth discontinuities seen from each camera. The typ-

ical heuristic to enforce this form of continuity is to lower

the contribution of a camera near a visibility boundary or

the boundary of its field-of-view [15, 4]. Our equations do

not satisfy this property and the obtained weights do not fall

to zero when approaching a visibility boundary. This could

easily be enforced by smoothing the visibility maps mi near

the depth and visibility discontinuities, without changing

the zero set of these functions. However, since we claim

to have a completely physics-based Bayesian formulation,

any operation on the visibility map should be sustained by

a physical explanation, which we are still missing, and this

is part of our future work.

Note that the prior term in the energy reduces the prob-

lems, most notably visual artifacts, which are due to not

handling the continuity properly. However, a prior on the

novel views cannot completely solve the continuity prob-

lem, which depends on the scene and camera geometry.

Real-Time. The final “desirable property” is for the

method to be real-time. Our method is not yet real-time,

mainly because of the computational complexity of the

MAP estimate: 2 to 3 seconds are necessary to render a

768×768 image from 8 source images. However, both the

resolution algorithms and the hardware architectures are

evolving quickly, and much better performance can be ex-

pected in the next few years.

If super-resolution is not important, instead of solving

the full MAP problem, it seems reasonable to use real-time

regularization in the form of inpainting methods to obtain

an acceptable result.

Balance between properties. One of the advantage of

our method with respect to [4] is that the balance between

the different properties is not handled by user-defined pa-

rameters, but implied from a formal deduction. Imagine a

configuration with two cameras: one with low minimal an-

gular distance but high resolution sensitivity change, and



another with high minimal angular distance but low res-

olution sensitivity change. Which one should contribute

more to the final image? In [4], the angular distance is pre-

ferred to the resolution sensitivity by a ratio of 1/0.05 = 20
(Hallway dataset). In our equations, these variations are

completely physics-based. An angular deviation of ∆α be-

tween views is penalized proportionally to 1
sin2 ∆α

, due to

the change in σ2
gi

. A foreshortening effect or resolution dif-

ference causing an image scale factor s is penalized propor-

tionally to 1
s2

, due to the change in |detDβi|. The balance

between these factors is properly handled by taking into ac-

count the sensor noise σ2
s .

An exception is the weight λ, used in the prior term.

Note that this is common in all work on image analysis

based on Bayesian principles: since there is currently no

meaningful way to obtain a prior distribution on the space

of images , one needs to work with regularization by objec-

tive priors. Of course one could also use existing methods

[16] allowing to estimate this prior directly from the input

images, thus obtaining a completely parameter-free model.

5. Experiments

Simplified camera configuration. Although we are ad-

dressing a generic case of novel view synthesis, in order

to simplify the implementation of the optimization proce-

dure, in the experiments we suppose that our cameras have

a simplified configuration. Specifically, all viewpoints are

in a common plane, which is parallel to all image planes,

i.e. we are dealing with a 4D light field in the Lumigraph

parametrization [11]. The novel view is also synthesized in

the same image plane, which means that τi is simply given

by a translation proportional to the normalized disparity di,

τi(x) = x+ di(x)(c− ci). (11)

Normalized disparity is expressed in pixels per world

units, and is together with its associated uncertainty related

to depth via:

di(x) =
fi

zi(x)
and σdi

(x) = σzi(x)
fi

zi(x)2
, (12)

where fi is the camera focal length expressed in pixels.

Plugging (12) and (11) into (5), we derive the link be-

tween the geometric error and its associated image error as:

σgi = σdi
|(b ∗ ((∇u ◦ τi) · (c− ci)))| , (13)

where σdi
models the disparity noise. Finally, the deforma-

tion term in Eq. (10) is:

|detDβi| = |detDτi|
−1

= |1 +∇di · (c− ci)|
−1

. (14)

Datasets. To validate the theoretical contribution, we

compare results on two light field datasets: The HCI

Light Field Database [29], and the Stanford Light Field

Archive [25]. These datasets provide a wide collection of

challenging synthetic and real-world scenes.

In a first set of experiments, we render an existing view

from the dataset at the same resolution, without using the

respective view as an input to the algorithm. We consider

two different qualities of geometric proxy: an approximate

one from estimated disparity maps, and an extremely poor

one represented by an infinite flat fronto-parallel plane in

the estimated center of the scene. We adapt σdi
accordingly,

i.e. when using the estimated disparity, we use a value cor-

responding to the expected accuracy of the reconstruction

method: σdi
= dmax−dmin

nbLayers
, where nbLayers is the num-

ber of disparities considered by the method. When a bare

plane in the middle of the scene is used, we instead use

σdi
= dmax−dmin

4
. In all cases, σs = 1/255.

A second set of experiments is performed by rendering

a 3×3 super-resolved image from a set of 5×5 input views.

Although super-resolution is not the main purpose of the

paper, we also provide a comparison with the state of the art.

As super-resolution relies on sub-pixel disparity values, we

only show the results obtained with the estimated disparity

maps.

In Tab. 1, we show the numerical results obtained by

our method, and compare it to the ones achieved with [28].

We measure the PSNR and DSSIM between the actual and

generated images. Although our method visibly performs

better, numerical values should be interpreted carefully. In

Fig. 4, we show detailed closeups illustrating the benefits

or our method. As high resolution images are not available

for most of the datasets, PSNR and DSSIM values for the

super-resolved images are computed by subsampling the in-

put images, generating the novel super-resolved view and

comparing it with the original one.

When rendering with precise geometry, both methods

are roughly equivalent with respect to PSNR and DSSIM

values (first and last two rows of Tab. 1). When the qual-

ity of the proxy degrades (third and fourth rows of Tab. 1),

our method clearly outperforms previous work, taking ad-

vantage of the explicit modeling of depth uncertainty. As

shown in the closeups of Fig. 4, our method better recon-

structs color edges in all configurations. Full-resolution im-

ages are provided in the supplemental material.

Computation time when rendering at target resolution

768× 768 with 8 input images is on the order of 2 to 3 sec-

onds. Computation time for super-resolved view synthesis

with a factor of 3 × 3 and 24 input images is around 2 to

3 minutes. All experiments used an nVidia GTX Titan GPU.

6. Discussion and conclusion

The main contribution of this paper is to establish the

first formal link between the heuristics proposed in the re-

cent decades for novel view synthesis, and the energy de-



HCI light fields, raytraced HCI light fields, gantry Stanford light fields, gantry

still life buddha maria couple truck gum nuts tarot

Estimated disparity

Wanner et al. [28] 30.13 58 42.84 17 40.06 53 26.55 226 33.75 408 31.82 1439 28.71 60

Proposed 30.45 55 42.37 18 40.10 53 28.50 178 33.78 407 31.93 1437 28.88 58

Planar disparity

Wanner et al. [28] 21.28 430 34.28 74 31.65 144 20.07 725 32.48 419 30.55 1403 22.64 278

Proposed 22.24 380 37.51 44 34.38 99 22.88 457 33.79 386 31.30 1378 23.78 218

Super-resolution

Wanner et al. [28] 24.93 230 34.50 122 35.18 129 25.54 287 33.11 378 31.80 1475 26.66 113

Proposed 25.12 228 34.44 123 35.20 129 25.34 289 33.08 379 31.89 1471 26.54 117

Table 1. Numerical results for synthetic and real-world light fields from two different online archives. We compare our method to Wanner

and Goldluecke [28] with respect to same-resolution view synthesis for estimated disparity and a flat plane proxy, as well as super-resolved

view synthesis. For each light field, the first value is the PSNR (bigger is better), the second value is DSSIM in units of 10−4 (smaller is

better). The better value is highlighted in bold. See text for a detailed description of the experiments.
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Figure 4. Visual comparison of novel views obtained for different light fields. From top to bottom, the rows present closeups of the ground

truth images, the results obtained by [28], and our results. CD stands for computed disparity, PD for planar disparity and SR for super-

resolution, see text for details. Full resolution images can be found in the additional material. The results obtained by the proposed method

are visibly sharper, in particular along color edges.

ducted by a physics-based generative model.

This model can be used to solve the generic problem

which consists in generating a novel view from a hetero-

geneous set of input images, and a geometric description of

the scene (called a geometric proxy), which can be either

explicit (i.e. the estimated geometry of the 3D scene) or im-

plicit (i.e. a set of correspondence maps between original

views and the novel view).

Part of our contribution is the analysis of how the pro-

posed model fulfills almost all the guidelines established

by Buehler et al. [4]. The proposed generative model pro-

vides a formal description of the intuitive heuristics behind

these guidelines. The key element to this unification is to

take into account the error in the estimated geometric proxy

when rendering a new image. We have extensively dis-

cussed how our physics-based model explains the reasons

why some important heuristics were picked up in the first

place. The theoretical benefits of the model outperform

state of the art by overcoming its limitations. Moreover, the

experiments conducted on synthetic and real images show

that our method improves state of the art performance in

terms of rendered image quality.



Future work should better handle the visibility term in

the model. In this work, visibility is computed from depth,

but depth itself contains errors, which should propagate

onto the visibility maps. This could be a key solution to

incorporate the last missing Continuity heuristic into this

physics-based Bayesian framework. Also extending the

model to non-Lambertian scenes is crucial but quite hard.

One would need to include general BRDF and lighting in-

formation to correctly model the transformation between in-

put and novel views.

An important observation is that if the 3D reconstruc-

tion method or the 2D-2D image correspondence method

provides not only depth estimates, but also the associated

depth uncertainty, the image-based rendering method can

benefit from this information to create better novel views.

This should thus be a goal when developing new (implicit

or explicit) reconstruction methods aimed at IBR.
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