
Efficient Hierarchical Graph-Based Segmentation of RGBD Videos

Steven Hickson1

shickson@gatech.edu

Stan Birchfield2

stanleyb@microsoft.com

Irfan Essa1

irfan@cc.gatech.edu

Henrik Christensen1

hic@cc.gatech.edu
1Georgia Institute of Technology, Atlanta, GA, USA , 2Microsoft Robotics, Seattle, WA, USA

http://www.cc.gatech.edu/cpl/projects/4dseg

Abstract

We present an efficient and scalable algorithm for seg-
menting 3D RGBD point clouds by combining depth, color,
and temporal information using a multistage, hierarchical
graph-based approach. Our algorithm processes a moving
window over several point clouds to group similar regions
over a graph, resulting in an initial over-segmentation.
These regions are then merged to yield a dendrogram us-
ing agglomerative clustering via a minimum spanning tree
algorithm. Bipartite graph matching at a given level of the
hierarchical tree yields the final segmentation of the point
clouds by maintaining region identities over arbitrarily long
periods of time. We show that a multistage segmentation
with depth then color yields better results than a linear com-
bination of depth and color. Due to its incremental process-
ing, our algorithm can process videos of any length and in
a streaming pipeline. The algorithm’s ability to produce
robust, efficient segmentation is demonstrated with numer-
ous experimental results on challenging sequences from our
own as well as public RGBD data sets.

1. Introduction

Segmentation is used as a building block for solving prob-
lems such as object detection, activity recognition, and
scene understanding. Traditionally, segmentation involves
finding pixels with similar perceptual appearance in a single
image and grouping them. In recent years, there has been in-
creasing emphasis upon video segmentation, in which pixels
with similar appearance and spatiotemporal continuity are
grouped together over a video volume[11, 7, 23]. Given the
widespread availability of depth data from low-cost RGBD
sensors we are interested in robust unsupervised segmenta-
tion of streaming 3D point clouds with temporal coherence.
Our algorithm is aimed at super-toxel extraction; since

RGB

Segmented 

Point Cloud

Segmented

Image

Depth

Figure 1. Segmentation of streaming 3D Point clouds. Top: RGB
and depth maps used as input in our algorithm. Bottom: Rendered
version of the point cloud and its frame segmentation output.

voxels are limited to 3D data, we define a new term toxels.
Toxels are temporal voxels, which can be understood
as a generalization of voxels for 4D hyperrectangles.
Each toxel is a hypercube discretization of a continuous
4D spatiotemporal hyperrectangle. Voxels are generally
used to refer to the discretization of 3D volumes or the
discretization of 2D frames over time. When these are
combined, we get XYZT data, which can be discretized
using toxels. Super-toxels are just large groupings of toxels.

Our method uses measurements such as color, spatial co-
ordinates, and RGBD optical flow to build a hierarchi-
cal region tree for each sequence of n frames (we use
n = 8), which are then sequentially matched to produce
long-term continuity of region identities throughout the se-
quence. This bottom-up design avoids limitations on the
length of the video or on the amount of memory needed due
to the high volume of data. In contrast to segmentation-

1

ar
X

iv
:1

80
1.

08
98

1v
1 

 [
cs

.C
V

] 
 2

6 
Ja

n 
20

18

http://www.cc.gatech.edu/cpl/projects/4dseg


tracking methods, we do not assume a priori knowledge
of the content of the scene and/or objects, and we do not
perform initialization of seeds or any other type of human
intervention. Our motivation is that regions should not
merge across depth boundaries despite color similarity. Our
method was tested on several challenging sequences from
the TUM Dataset [20], the NYU Dataset [18], and our own
examples. It produces meaningful segmentation, even un-
der difficult conditions such as significant motion of scene
objects, camera motion, illumination changes, and partial
occlusion.
Our primary contributions are: (1) A robust and scal-
able, RBGD video segmentation framework for streaming
data. (2) A streaming method that maintains temporal con-
sistency and can be run on a robot or on videos of indefinite
length. (3) An efficient framework that runs at 0.8 fps but
can be downsized to run pairwise in near real-time at 15
fps. (4) A nonlinear multistage method to segment color
and depth that enforces that regions never merge over depth
boundaries despite color similarities. And finally (5) The
ability to segment and maintain temporal coherence with
camera movement and object movement. The code and data
are publicly available at the paper web page.

2. Related Work
One way to organize related work is use the five types
of algorithms for super-voxel video segmentation analyzed
by Xu and Corso [23]. (A) Paris and Durand [11] pro-
pose a mean shift method that achieves hierarchical seg-
mentation in videos using topological persistence using the
classic mode-seeking meanshift algorithm interpreted un-
der Morse theory as a topological decomposition of the fea-
ture space. (B) [17] use Nystrom normalized cuts, in which
the Nystrom approximation is applied to solve the normal-
ized cut problem, for spatiotemporal grouping. (C) Seg-
mentation by Weighted Aggregation (SWA) [16] is a variant
of optimizing the normalized cut that computes a hierar-
chy of sequentially coarser segments by an algebraic multi-
grid solver. (D) Graph-Based (GB) is an adaptation of the
Felzenszwalb and Huttenlocher image segmentation algo-
rithm [5] to video segmentation by building the graph in
the spatiotemporal volume where voxels (volumetric pix-
els) are nodes connected to 26 neighbors. (E) Hierarchical
graph based (GBH) is an algorithm for video segmentation
proposed in [7] that iteratively builds a tree structure of re-
gion graphs, starting from over-segmented spatiotemporal
volumes obtained using the method illustrated above. The
regions are described by LAB histograms of the voxel mem-
bers, the edge weights are defined by the χ2 distance, and
the regions are merged using the same technique as in [5].
Surveying the literature, there has been little work on unsu-
pervised segmentation of streaming 3D point clouds besides
[1], which uses a parallel Metropolis algorithm and the Potts

model and focuses only on a specific environment and [22],
which combines color and depth and uses spectral graph
clustering without a hierarchical method. We are unable to
compare against either of these since no code or data was
released. Additionally, most of the research conducted in
3D segmentation of point clouds has been focused on static
scenes, without considering time. For example, planar and
non-planar surfaces are segmented from 3D point clouds
using either NURBS [8, 14], surface normal segmentation
[19], or 3D shape matching [10] to identify objects with a
particular shape. Scene modeling is performed by analyz-
ing support relationships of the regions [18] or contextual
modeling of both super-pixel MRFs and paths in segmen-
tation trees [13]. Temporal evolution of the 3D point cloud
has been considered in cases where a learned 3D model of
the segmented object is available, such as in the simultane-
ous segmentation and pose tracking approach of [12], the
rigid object tracking approach of [15], or the segmentation-
tracking method of an arbitrary untrained object in [21].

3. Proposed Method
Our approach involves four main steps, as illustrated in Fig-
ure 2. First, a segmentation of 8 consecutive frames using
the depth and motion information is performed. In the sec-
ond step, an over-segmentation of the frames is done us-
ing color and motion information while respecting depth
boundaries. Next, histograms of the resulting regions are
used to build a hierarchical segmentation of the spatiotem-
poral volume represented as a dendrogram, which can then
yield a particular segmentation depending on the desired
segmentation level output. The final step performs a bi-
partite graph matching with the 8 previous frames with 4
frames overlapping to enforce the consistency of region
identities over time.

3.1. Spatiotemporal segmentation

Graph-based segmentation: A natural approach to seg-
menting RGBD images would be to simply use [5] after set-
ting the edge weights to a weighted combination of differ-
ences in depth and color: (1−α)dC(p1, p2)+αdD(p1, p2),
where p1 and p2 are two pixels, dC is the difference in color,
dD is the difference in depth, and α is a scalar weighting the
relative importance between the two. We shall show in the
experimental results in Figure 3 that this approach does not
yield good results in practice, because there is no value of
α that will work consistently well for a variety of images.
In fact, in many cases no value of α works well even for
the various regions of a single image. Instead we use the
multistage approach described in Section 3.1.1.

RGBD optical flow: We compute optical flow between
each consecutive pair of RGBD images. First, the depth val-
ues are converted to XYZ coordinates in 3D space by using



Hierarchical Clustering of 4D 

S-Graph using LABXYZUVW 

Bipartite Graph Matching using 

LABXYZUVW Histogram Comp
Oversegmentation

of 4D C-graph using color

Build 4D Graph 

from Registered 

RGBD frames

Root

Region Region

Region Region RegionRegionRegion
Root

Region Region

Region Region RegionRegionRegion

Root

Region Region

Region Region RegionRegionRegion

Initial segmentation

of 4D D-graph using depth

S-Graph

Figure 2. Schematic of our method to segment streaming 3D point clouds.

the internal and external calibration parameters of the visi-
ble and IR cameras on the sensor to register the RGB and
depth images. Then we compute dense optical flow between
the two RGB images. Previous extensions of optical flow to
3D [2] assume a continuous spatiotemporal volume of in-
tensity values on which differentiation is then performed. In
our case, however, the depth values are already known, thus
enabling a much simpler calculation. We compute 2D opti-
cal flow (∆i,∆j) using a consecutive pair of RGB images
based on Farneback’s method [4]. Therefore, since the RGB
and depth images are registered, for the value Dn−1(i, j)
in the depth map at location (i, j) at time n, there exists a
corresponding depth value Dn(i+ ∆i, j + ∆j) in the next
frame. The optical flow, w, along the z axis, is then simply
the difference between the two depths:

w = Dn(i+ ∆i, j + ∆j)−Dn−1(i, j). (1)

We also project the motion of the (i, j) pixels into 3D space
using the camera calibration parameters.

Hence, the RGBD scene flow can be solved by extending
Equation 1 and the calibration of the data and is defined as:

(u, v, w) =((in − in−1)
zn
Fx
,

(jn − jn−1)
zn
Fy
,

Dn(i+ ∆i, j + ∆j)−Dn−1(i, j)).

(2)

3.1.1 Segmentation using depth and color

Our approach relies on the following observation: If the
scene consists only of convex objects, then every depth dis-
continuity corresponds to an object boundary. This obser-
vation was motivated by a study on primates [9] which con-
cluded that depth and color perception are handled by sepa-
rate channels in our nervous system that function quite dis-
tinctly. Obviously the world does not consist only of convex
objects, but nevertheless we have found this observation to
have great practical utility in everyday scenes. We exploit
this observation by first segmenting based on depth alone,
then based on color while preventing any merging to occur

across depth discontinuities. We show in the experimental
results that this approach yields more accurate segmentation
than combining depth and color into a single graph.

We build a graph (called the D-graph) shown in Fig-
ure 2, in which each node corresponds to a toxel. Within
each graph, nodes are connected to their 26-neighbors with
edges whose weights are the absolute difference in the
depth of the two toxels: |D(x, y, z, t) − D(x′, y′, z′, t′)|,
where D(x, y, z, t) is a function that yields the depth val-
ues from the spatiotemporal volume, and (x′, y′, z′, t′) ∈
N (x, y, z, t), where N (x, y, z, t) is the neighborhood of
toxel (x, y, z, t). Edges are then constructed between each
frame D(x, y, z, t− 1) and D(x, y, z, t) by connecting tox-
els based on the computed optical flow. Toxel (x, y, z, t−1)
in D is connected with toxel (x + u, y + v, z + w, t) in D
with an edge whose weight is given by |D(x, y, z, t− 1)−
D(x + u, y + v, z + w, t)|. The internal difference of a
region Int(R) is set as the highest edge weight in the min-
imum spanning tree of region R, and regions are merged
according to [5]. The constant that determines the size of
depth segments is called kdepth.

After the graph-based algorithm produces a segmenta-
tion according to the depth, another graph (called the C-
graph) is created with the same nodes as before shown in
Figure 2. As before, edges are created for each of the 26-
neighbors, and edges between frames are set according to
the RGBD optical flow vectors to be |C(x, y, z, t − 1) −
C(x+u, y+v, z+w, t)|whereC(x, y, z, t) is a function that
returns the euclidean difference in color. We use CIE LAB
color space to ensure perceptual uniformity of color differ-
ences. Invoking the observation above, the edge weights
connecting toxels that belong to different regions after pro-
cessing the D-graph are set to infinity in the C-graph to for-
bid merging across depth discontinuities. The constant that
determines the size of color segments is called kcolor. Af-
ter running the graph-based algorithm on the C-graph, we
have an over-segmentation consisting of super-toxel regions
across the spatiotemporal hyperrectangle.



3.2. Hierarchical Processing

Once the over-segmentation has been performed, feature
vectors are computed for each super-toxel region. For fea-
ture vectors, we use histograms of color, 3D position, and
3D optical flow, called LABXYZUVW histograms, using
all the toxels in a region. For computational efficiency
and storage requirements, rather than computing a single
9-dimensional histogram, we compute nine 1-dimensional
histograms. Experimentally we find that 20 bins in each of
the LAB and UVW features and 30 bins in each of the XYZ
features is adequate to balance generalization with discrim-
inatory power.
Using these feature vectors, a third graph (called the S-
graph) is created to represent the regions as shown in Fig-
ure 2. Each node of the graph is a region computed by
the super-toxel segmentation in Section 3.1.1 and edges are
formed to join regions that are adjacent to each other (mean-
ing that at least one toxel in one region is a 26-neighbor of at
least one toxel in the other region). The weight of each edge
is the difference between the two feature vectors, for which
we use Equation 6. On this graph, instead of running the
graph-based algorithm of [5], we use Kruskal’s algorithm
to compute the minimum spanning tree of the entire set of
regions. The result of this algorithm is a dendrogram that
captures a hierarchical representation of the merging in the
form of a tree, in which the root node corresponds to the
merging of the entire set.
By selecting a different threshold, a different cut in this min-
imum spanning tree can be found. To make the threshold
parameter intuitive, we choose the percentage of regions
to merge, which we denote by ζ. The value determines
the coarseness of the produced results, with ζ = 0 indi-
cating that all the regions are retained from the previous
step, whereas ζ = 100% indicates that all the regions are
merged into one. For values between these two extremes,
the dendrogram is recursively traversed, accumulating all
nodes until the desired percentage is obtained. Although
the value ζ can be changed on-the-fly for any given image
without incurring much computation to recompute the seg-
ments, we generally set ζ = 65% for the entire sequence to
avoid having to store all dendrograms for all frames.

3.3. Bipartite Graph Matching

After the dendrogram of the current pair of frames has
been thresholded according to ζ, correspondence must be
established between this thresholded dendrogram and that
of the previous pair of frames. To achieve this corre-
spondence, we perform bipartite graph matching between
the two thresholded dendrograms using the stable marriage
solution [6]. Figure 2 depicts the bipartite graph match-
ing process, which considers the difference in region sizes,
the change in location of the region centroid (after apply-
ing the 3D optical flow), and the difference between the

LABXYZUVW histograms.
Data is treated as two lists from the tree cut. The histogram
match from each region’s perspective is found with the his-
togram SAD difference equation between RegionR and Re-
gion S being:

∆H =

NUMBINS∑
i=1

|Rl[i]

RN
− Sl[i]

SN
|+ |Ra[i]

RN
− Sa[i]

SN
|

+|Rb[i]

RN
− Sb[i]

SN
|+ |Rx[i]

RN
− Sx[i]

SN
|+ |Ry[i]

RN
− Sy[i]

SN
|

+|Rz[i]

RN
− Sz[i]

SN
|+ |Ru[i]

RN
− Su[i]

SN
|+ |Rv[i]

RN
− Sv[i]

SN
|

+|Rw[i]

RN
− Sw[i]

SN
|

(3)

where RN is the number of toxels in Region R and SN is
the number of toxels in Region S.
For each histogram, we compute the distance the centroid
has traveled over time and the size difference.
The difference the centroid has traveled is computed as the
SAD of the center points normalized by the size:

∆d =
|Rx − Sx|+ |Ry − Sy|+ |Rz − Sz|

RN
(4)

and the size difference is computed as the absolute value of
the difference:

∆N = |RN − SN | (5)

Starting with the closest histogram, we merge the regions
R and S iff they each consider each other the best choice
using the weight as defined by Equation 6:

h = β∆H + γ∆d+ ε∆N (6)

where β, γ, and ε are fixed constraints to prevent over-
merging, found by computing statistics on multiple se-
quences and determining 3σ for each constraint.

4. Experimental Results
Our algorithm was evaluated with several 3D RGBD se-
quences, some from the NYU Dataset [18], some from the
TUM Dataset [20], and some that we obtained. To measure
the accuracy of the algorithm, we annotated some images
by hand to provide ground truth as 2D object boundaries.
To account for slight inaccuracies in the position error of
a boundary point, we use the chamfer distance [3]. The
boundary edges are extracted from the output segmentation
images as well as of the ground truth images. For each pixel
in the contour of the query image, we find the distance to the
closest contour pixel in the ground-truth image (which is ef-
ficiently computed using the chamfer distance), and then we
sum these distances and normalize by dividing by the num-
ber of pixels in the image. The error metric is shown in
Equation 7.



Ebound =

∑
i ‖NN

1(Outi − GroundTruth)‖
Width ∗ Height

, (7)

Where NN1 represents the closest point of the boundary
output Outi to the ground truth.
As mentioned earlier, we were unable to find a value for α
that enables the traditional graph-based algorithm in [5] to
produce robust, accurate results across all sequences. This
is demonstrated in Figure 3, where the output for various
values of α are shown, none of which clearly delineates
the objects properly. The linear combination never properly
segments the table, table legs, cup, magazine, and magazine
colored features in Figure 3, whereas our over-segmentation
does. In other words, the multistage segmentation combina-
tion of first depth and then color segmentation provides bet-
ter results than any linear combination of color and depth
features as the primate studies from [9] suggested.
To quantify these results, we evaluated the output of the
graph-based algorithm of [5] for different values of α for all
three sequences (shown in Figures 7-9 corresponding to S1-
S3). As shown in Figure 4, better results are obtained when
color is weighted higher than depth (α is small). Neverthe-
less, no value of α yields an acceptable segmentation. Also
shown is the initial over-segmentation step of our method.
Since our method is independent of α, these results are plot-
ted as horizontal lines. Note that the segmentation error of
our multistage segmentation algorithm is lower than the out-
put from the linear combination approach for any value of
α.
Even though our algorithm does not depend on α, it does
initially depend on kdepth and kcolor. The left of Figure 4
shows the error (measured by Equation 7 where k is the pa-
rameter from [5]) obtained from segmenting just based on
depth as the parameter kdepth is changed. Note that on all
three images the output gets worse as this value is increased
due to under-segmentation. On the right is a plot of all three
sequences for both approaches discussed in 3, where our
algorithm includes only the initial over-segmentation step.
With a low kdepth, these plots show the effect of chang-
ing the value of kcolor for our algorithm, or similarly of k
for [5]. For nearly all values our method achieves less error.
Figure 5 shows the error using the hierarchical method. On
the left is a set of plots of all three sequences for both ap-
proaches, where we vary the hierarchical tree percentage
cut. It can be seen that the hierarchy makes us invariant
to the values of kdepth and kcolor just as in [7]. On the
right are plots of the error of our hierarchical step applied to
the output of both our algorithm (initial over-segmentation
step) and the algorithm of [5]. These plots answer two
questions, namely, whether the hierarchical step improves
results, and whether our initial over-segmentation step is
needed (or whether the hierarchical step would work just

Figure 3. Top row: original RGB image (depth image not shown),
and ground truth object boundaries. Middle three rows: The out-
put of the graph-based algorithm using a linear combination of
color and depth, with α values of 0.1, 0.2, 0.4, 0.6, 0.8, and 0.9;
none produces a correct result. Bottom row: The output of the ini-
tial over-segmentation step of our algorithm (left), as well as the
boundaries of this output (right).

as well if we simply used the algorithm of [5]). The answer
to both questions is in the affirmative. The rightmost figure
shows that our method also has a lower explained variation.
Further proof that having depth is better than just color is
shown in the comparison of RGBD images from the NYU
Dataset [18] in Figure 6.
Now that we have quantified our algorithm, we show seg-
mentation results of the entire approach on three different
4D RGBD sequences compared to the state of the art video
sequences of [24] and [7], shown in Figures 7, 8, and 9.
Note that as people move around the scene, the camera
moves, and brief partial occlusions occur, the segmentation
results remain fairly consistent and the identity of regions



Figure 4. Left: The error based on the choice of α on the output of
the linear combination algorithm on three sequences (blue lines),
as well as the output of our hierarchical algorithm (red lines),
which is not dependent on α Right: Effect of varying kcolor on the
output of our initial over-segmentation step, as well as the value of
k on the output of [5] (with the best α possible.

100 150 200 250 300 350 400 450 500 550
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of super voxels

E
x
p

la
in

e
d

 V
a

ri
a

ti
o

n

 

 

Our Method

Method from [8]

method from [23]

Figure 5. Left: Effect of varying ζ on the output of our hierar-
chical clustering applied to the output of either our initial over-
segmentation step or that of [5] (with the best α and k possible).
Right: The explained variation from [24] of our method, [24], and
[7] on Sequence 2.

are mostly maintained. It can be seen that our approach
seems to always outperform [24] in both segmentation and
temporal consistency. We maintain boundaries better and
segment better than [7]. [7] also tends to merge segments to-
gether improperly such as the people merged into the back-
ground in Figures 8 and 9. Although [7] maintains tem-
poral consistency better than our algorithm, it processes all
frames at once as opposed to being stream-based and can-
not run indefinitely, which is why last image in Sequence
(C) is always N/A. Although there is a perceived error in
boundaries, it is only due to the lack of overlap in the reg-
istration of the depth and color images inherent from the
RGBD camera. Our algorithm runs at approximately 0.8
fps on 8 frame sequences of 640x480 RGB and depth im-
ages. [7] runs in 0.2 fps on downscaled 240x180 videos and
[24] runs in 0.25 fps on downscaled 240x180 videos. See
the project web page for videos.

5. Conclusion, Limitations, and Future Work

In this paper, we have presented an unsupervised hierar-
chical segmentation algorithm for RGBD videos. The ap-
proach exhibits accurate performance in terms of segments
quality, temporal region identity coherence, and computa-
tional time. The algorithm uses a novel approach for com-
bining the depth and color information to generate over-

segmented regions in a sequence of frames. A hierarchical
tree merges the resulting regions to a level defined by the
user, and a bipartite matching algorithm is used to ensure
temporal continuity. We showed that our method outper-
forms a linear combination of color and depth. We per-
formed comparison against different graph segmentation
combinations showing lower errors in terms of quality of
the segmentation and thoroughly analyzing the effects of
various parameters. There are occasional problems with
noise from the depth image and maintaining temporal con-
sistency. Future work will be aimed at improving results
even further by incorporating boundary information, as well
as incorporating higher-level information.

6. Acknowledgments

The authors would like to thank Prof. Mubarak Shah and
his PhD student Gonzalo Vaca-Castano for their mentor-
ship and guidance to the primary author of this paper, when
he participated in the National Science Foundation funded
”REU Site: Research Experience for Undergraduates in
Computer Vision” (#1156990) in 2012 at the University of
Central Florida’s Center for research in Computer Vision.

References
[1] A. Abramov, K. Pauwels, J. Papon, F. Worgotter, and

B. Dellen. Depth-supported real-time video segmentation
with the Kinect. In IEEE Workshop on Applications of Com-
puter Vision (WACV), pages 457–464. IEEE, 2012.

[2] J. Barron and N. A. Thacker. Tutorial: Computing 2d and 3d
optical flow. Technical report, Imaging Science and Biomed-
ical Engineering Division, Medical School, University of
Manchester, 2005.

[3] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C.
Wolf. Parametric correspondence and chamfer matching:
Two new techniques for image matching. IJCAI, pages 659–
663, 1977.

[4] G. Farnebäck. Two-frame motion estimation based on poly-
nomial expansion. In Image Analysis, pages 363–370.
Springer, 2003.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-
based image segmentation. IJCV, 2(59):167–181, 2004.

[6] D. Gale and L. S. Shapley. College admissions and the sta-
bility of marriage. The American Mathematical Monthly,
69(1):9–15, 1962.

[7] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hi-
erarchical graph-based video segmentation. In CVPR, 2010.

[8] D. Holz and S. Behnke. Fast range image segmentation and
smoothing using approximate surface reconstruction and re-
gion growing. In Proceedings of the International Confer-
ence on Intelligent Autonomous Systems (IAS), 2012.

[9] M. Livingstone and D. Hubel. Segregation of form, color,
movement, and depth: anatomy, physiology, and perception.
Science, 240(4853):740–749, 1988.



Figure 6. Segmentation results from different 3D RGBD scenes from the NYU data set[18]. The top row is the images, the 2nd row is the
hierarchical result only using color with a hierarchical level of 0.7 described in [7], and the bottom row is our approach with a hierarchical
level of 0.7.

(A)

(B)

(C)
N/A

(D)
Figure 7. Sequence 1, (A) : RGB image, (B): Results from [24], (C): Results from [7] (N/A is used when the frame is beyond the length it
can run), (D): Our Results

[10] D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert. Con-
textual classification with functional max-margin markov
networks. In CVPR, 2009.

[11] S. Paris and F. Durand. A topological approach to hierarchi-
cal segmentation using mean shift. In CVPR, 2007.

[12] V. A. Prisacariu and I. D. Reid. Pwp3d: Real-time segmen-
tation and tracking of 3d objects. In British Machine Vision
Conference (BMVC), 2012.

[13] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features
and algorithms. In CVPR, 2012.

[14] A. Richtsfeld, T. Morwald, J. Prankl, J. Balzer, M. Zillich,

and M. Vincze. Towards scene understanding object seg-
mentation using rgbd-images. In Computer Vision Winter
Workshop (CVWW), 2012.

[15] R. B. Rusu and S. Cousins. 3d is here: Point cloud library
(pcl). In ICRA, 2011. Shanghai, China.

[16] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hi-
erarchy and adaptivity in segmenting visual scenes. Nature,
442(7104):810–813, 2006.

[17] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. TPAMI, 22(22):888–905, 2000.

[18] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor



(A)

(B)

(C)
N/A

(D)
Figure 8. Sequence 2, (A) : RGB image, (B): Results from [24], (C): Results from [7] (N/A is used when the frame is beyond the length it
can run), (D): Our Results

(A)

(B)

(C)
N/A

(D)
Figure 9. Sequence 3, (A) : RGB image, (B): Results from [24], (C): Results from [7] (N/A is used when the frame is beyond the length it
can run), (D): Our Results

segmentation and support inference from rgbd images. In
ECCV, 2012.

[19] J. Strom, A. Richardson, and E. Olson. Graph-based seg-
mentation for colored 3d laser point clouds. In IROS, 2010,
pages 2131–2136. IEEE, 2010.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In IROS, 2012, pages 573–580. IEEE, 2012.

[21] A. Teichman and S. Thrun. Learning to segment and track in
rgbd. In The Tenth International Workshop on the Algorith-



mic Foundations of Robotics (WAFR), 2012.
[22] D. Weikersdorfer, A. Schick, and D. Cremers. Depth-

adaptive supervoxels for rgb-d video segmentation. In ICIP,
pages 2708–2712, 2013.

[23] C. Xu and J. J. Corso. Evaluation of super-voxel methods for
early video processing. In CVPR, 2012.

[24] C. Xu, C. Xiong, and J. J. Corso. Streaming hierarchical
video segmentation. In ECCV, 2012.


	1 . Introduction
	2 . Related Work
	3 . Proposed Method
	3.1 . Spatiotemporal segmentation
	3.1.1 Segmentation using depth and color

	3.2 . Hierarchical Processing
	3.3 . Bipartite Graph Matching

	4 . Experimental Results
	5 . Conclusion, Limitations, and Future Work
	6 . Acknowledgments

