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Abstract

In this work we use loopy part models to segment en-

sembles of organs in medical images. Each organ’s shape

is represented as a cyclic graph, while shape consistency is

enforced through inter-shape connections.

Our contributions are two-fold: firstly, we use an effi-

cient decomposition-coordination algorithm to solve the re-

sulting optimization problems: we decompose the model’s

graph into a set of open, chain-structured, graphs each

of which is efficiently optimized using Dynamic Program-

ming with Generalized Distance Transforms. We use the

Alternating Direction Method of Multipliers (ADMM) to fix

the potential inconsistencies of the individual solutions and

show that ADMM yields substantially faster convergence

than plain Dual Decomposition-based methods.

Secondly, we employ structured prediction to encompass

loss functions that better reflect the performance criteria

used in medical image segmentation. By using the mean

contour distance (MCD) as a structured loss during train-

ing, we obtain clear test-time performance gains.

We demonstrate the merits of exact and efficient infer-

ence with rich, structured models in a large X-Ray image

segmentation benchmark, where we obtain systematic im-

provements over the current state-of-the-art.

1. Introduction

Deformable part models (DPMs) are ubiquitous in com-

puter vision, and are currently being used in a broad range

of high-level tasks, including object detection [14, 16], pose

estimation [1, 33, 34] and facial landmark localization [47].

When deformable models are used to detect objects, defor-

mations are treated as a hurdle, that must be done away

with, in order to achieve robust detection: during training,

deformations are commonly treated as latent variables, and
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Figure 1. ADMM optimization for shape segmentation with

loopy part models: loopy graphs can encode shape constraints

(closure, inter-organ dependecies), but yield hard optimization

problems. We decompose the original, loopy optimization prob-

lem into a subset of easier, loop-free problems (slaves), and use a

‘master’ procedure to ensure consistency. At each iteration, every

slave i communicates its solution Xi to the master; the master then

detects inconsistencies in the individual slave solutions (indicated

by red arrows) and drives the slaves towards a consistent solution

in the next iteration, py passing parameters u(r), λi(r) that affect

the slave problems around the common nodes, r. ADMM quickly

leads to consensus among the different slaves, as shown on the

right: the dual and the primal problems reach a zero duality gap

in a small number of iterations. The estimated organ boundaries

closely match the color-coded ground truth organ segmentation.

ignored in performance evaluation.

Here instead we use deformable models in a setting sim-

ilar to human pose estimation [1, 33, 34] where accurate

body part estimation is the main goal. Our goal is to seg-

ment ensembles of shapes in medical images: this involves

outlining the boundaries of medical organs, while poten-

tially exploiting inter-organ dependencies to transfer infor-

mation from clearly visible parts to harder areas.

Apart from the obvious societal impact of medical imag-

ing, what we find most interesting in this problem is the

complexity, and accuracy of the annotation being employed
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-we have 196 landmarks, localized by expert physicians.

Such datasets provide a challenging testbed for algorithm

assessment, while with the advent of strongly supervised

object annotations [2, 5, 41] we anticipate that our advances

will become increasingly relevant to recognition.

In this work we cast multi-organ shape segmentation and

landmark localization in a graphical model framework, and

present advances on both the optimization and learning side.

In particular, we represent every organ as a cyclic graph,

whose nodes indicate landmarks positions. Importantly, we

use loopy graphs to incorporate problem constraints (e.g.

contour closedness and relative shape positions) that cannot

be encoded through chain- or tree- structured graphs.

This directly raises the computational efficiency issue -

addressing which is a main contribution of this work. In

our case we have many (196) nodes and a label space in

the order of tens, or hundreds of thousands of values, cor-

responding to discretized 2D positions. To deal with the

complexity of optimization we first constrain our models to

use separable quadratic pairwise terms; as such, we can use

Generalized Distance Transforms (GDTs) [17, 14] to per-

form Dynamic Programming (DP) with complexity that is

linear rather than quadratic in the number of pixels.

We couple GDT-based DP with a coordination-

decomposition scheme akin to Dual Decomposition (DD)

[25, 3, 37]: we rewrite the score of our graphical model as a

sum of score functions defined on overlapping chain graphs

(slaves), perform inference efficiently for every chain, and

use an iterative master-slave scheme to enforce that the

computed solutions are consistent. Earlier works [34] have

reported that when implemented for spatial variables Dual

Decomposition is slow, or does not converge (500 iterations

were used in [34]). We have observed this is true if we

use a simple subgradient-based implementation; however

by using the Alternation Direction Method of Multipliers

(ADMM) [8, 27] we achieve convergence in a few (typi-

cally less than 10) iterations, even when sharing multiple

(30) nodes among the slaves.

Our second contribution lies in introducing a structured

prediction framework suited to the task at hand. In particu-

lar, we use structural SVMs to optimize a loss function spe-

cific to contours, considering the minimization of the mean

contour distance performance measure (MCD). The result-

ing learned score function allows us to rank each candidate

contour according to its MCD to the ground truth configura-

tion, and lends itself to straightforward inclusion into struc-

tured prediction learning by virtue of being decomposable

into a sum over landmark nodes.

In Sec. 6 we demonstrate the merit of our contribu-

tions using the Segmentation in Chest Radiographs (SCR)

benchmark [36, 40]. As baseline we use a recent model

of ours [7], that employs chain-structured graphs, and is

trained with the standard zero-one loss; this already out-

performed the current state-of-the-art in medical image seg-

mentation, by virtue of its end-to-end discriminative train-

ing. As demonstrated by a host of evaluation measures, in-

cluding the Mean Contour Distance, the Dice and the Jac-

card coefficient, each of the above steps adds to our model’s

performance.

Our implementation will be made available from cvn.

ecp.fr/personnel/haithem/.

2. Prior work

Deformable contour models (DCMs) have been used to

localize boundaries in medical images starting from the

seminal works of Snakes [22], Deformable Templates [46]

and Active Shape/Appearance Models [11, 12], also known

as point distribution models; a rich set of works revolved

around the reformulation of DCMs in intrinsic geometric

terms [9] and the introduction of statistical shape priors

[26, 31, 10, 13] in curve evolution. Complementary to this

has been the incorporation of richer, landmark-specific lo-

cal terms [35, 29, 30, 4] instead of the simpler gradient-

based terms used in earlier works such as [9, 31]. Finally,

star-shaped graphical models [14, 15] have been adopted to

organ detection in [29, 30, 4], while recently SIFT-like fea-

tures have been used for shape matching in both the sparse

[38, 4], and dense settings [29, 30].

Even though these works revolve around the theme of

learning for shape matching in medical imaging, to the best

of our understanding, none is trained in a integrated, end-

to-end manner. Having started with this task in the simplest

setting in [7], in this work we move on towards more chal-

lenging and interesting inference and learning problems.

2.1. Dual Decomposition and ADMM in vision

As will be detailed in Section 4, one of our main tech-

nical contributions consists in introducing ADMM to infer-

ence in loopy graphs with large label spaces, corresponding

to discretized spatial variables. ADMM can be understood

as a generalization of Dual Decomposition (DD) [25, 3, 37]

which in turn is already extensively used in vision and med-

ical image segmentation [43, 42, 44].

ADMM has found tremendous success in image pro-

cessing/compressed sensing, commonly under the name

of ‘Bregman iteration’ methods [19, 45]. In connec-

tion with optimization problems revolving around MRFs,

ADMM has recently been used in conjunction with discrete

MRFs [27], but little work has been done for MRFs with

large/continuous label spaces.

Recently [32] used ADMM to perform inference with

polynomial energies in continuous graphical models, by it-

eratively linearizing a cost function used for registration;

this was done to constrain the energy function to be poly-

nomial in the unary terms. This is however not an option

for our case, where we want to match deformable shapes to

cvn.ecp.fr/personnel/haithem/
cvn.ecp.fr/personnel/haithem/
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Figure 2. We decompose energy functions on loopy graphs

into functions on chain-structured subgraphs, and use the latter

as slaves in a decomposition-coordination optimization algorithm.

Shown in (a) is an example of a complex graph involving a ‘zip-

per’ chain between shapes (e.g. nodes 1-4 can belong to the lung,

and nodes 5-8 to the heart) and in (b) the decomposition of the

complex graph into chain structured subproblems.

unconstrained images - where the unary terms are far from

linear, or convex.

Earlier works on applying DD in a setting similar to ours

[34] had concluded that DD converges very slowly, which

we also observed empirically; by contrast we show that

ADMM typically converges in less than 10 iteations, com-

monly attaining a duality gap equal to zero.

3. Merit Function Formulation

Our shape representation involves a set of K anatomical

landmarks: X = {x1, . . . ,xK}, where every landmark’s

position is described by a 2D position vector xi = (hi, vi);
we denote vectors with boldface letters and will alternate

between the vector notation x and the horizontal/vertical

notation (h, v) based on convenience. Given an image I

we score a landmark configuration X with a merit function

S formed as the sum of unary and pairwise terms:

SI(X) =
K
∑

i=1

UI,i(xi) +
∑

i,j∈E

Vi,j(xi,xj), (1)

where E is the set of edges on the graph.

The unary terms capture the local fidelity of the image

observations at xi to a landmark-specific appearance model

Ui, in terms of an inner product between a weight vector ui

and dense image features extracted around every point xi:

UI,i(xi) = 〈ui, fI(xi)〉. (2)

We denote by fI(xi) : R
2 → RD a ’dense’ mapping from

image coordinates to D-dimensional features; as detailed in

Sec. 6, we experiment with Daisy [39] and dense SIFT [18].

The pairwise term Vi,j(xi,xj) constrains the location

xi = (hi, vi) of landmark i with respect to its neighbor

xj = (hj , vj) with a quadratic expression of the form:

Vi,j(xi,xj)=− (xj−xi−µi,j)
T
Ci,j (xj − xi − µi,j) ,

(3)

where Ci,j = diag(νi, ηi) is a diagonal matrix and µi,j =
(h̄, v̄)T is the nominal displacement between xi and xj .

The form of Ci,j allows us to write the pairwise term as

a function separable in h and v:

Vi,j(xi,xj) = 〈vi,j ,p(xi,xj)〉, (4)

vi,j = (νi, ηj), (5)

p(xi,xj) = (−(hj − hi − h̄)2,−(vj−vi − v̄)2).(6)

Having written the pairwise terms as the inner product be-

tween a weight and a feature vector, and given that the unary

terms are also inner products between weights and features,

it follows that Eq. 1 can be written as:

SI(X,w) = 〈w,hI(X)〉, where (7)

w = (ui,vi,j) hI(X) = (fI(xi),p(xi,xj), i, j ∈ E (8)

We will write SI(X,w) to stress that SI(X) depends on w.

4. ADMM for Inference in Loopy Graphs

The model outlined above makes no assumption about

the model structure, and as such can contain loops; this may

directly reflect the problem structure (e.g. the closedness

constraint of a region’s boundary), but when working with

spatial variables in a large label space it is practically pro-

hibitive to work even with the easiest loopy graphs; even if

the graph’s treewidth is two, the complexity of MAP infer-

ence grows by O(N3) where N is the number of pixels.

We address this problem by building on the Dual De-

composition (DD) technique [3, 25], and in particular its

acceleration attained with the Alternating Direction Method

of Multipliers [8, 28]. This combines the benefits of DD [3]

(fast optimization of the slave problems) and ADMM (rapid

convergence) in a seamless manner, without practically al-

tering the optimization procedure for the slaves.

We now describe how we use ADMM for our problem.

Our goal is, given an image I to solve:

X∗
I = argmax

X

SI(X,w). (9)

Dual Decomposition proceeds by rewriting the score

SI of our graphical model as a sum of score functions

Si defined on overlapping subgraphs (slaves), S(X) =
∑N

i=1 Si(X), allowing (temporarily) each slave to have its

own solution, Xi, but adding the constraint that, on com-

mon nodes, different slaves must have identical solutions.

As illustrated in Fig. 2, in our problem we break every

closed contour into two open chains that overlap at their

end and start nodes, and introduce ‘zipper’ chains among



organs that share edges, where the ‘zipper’ passes through

the intra-organ edges. These are the slave problems Si of

our problem. Denoting by R ⊂ 1..K the subset of point

indices belonging to more than one chain model, our infer-

ence problem becomes:

maxS(X) =

N
∑

i=1

Si(Xi) s.t.Xi(r) = u(r) ∀r ∈ R (10)

where X = {Xi}, i = 1 . . . N is the ensemble of slave so-

lutions and u(r) ensures consistency at overlapping points.

Dual Decomposition relaxes the constraints in Eq. 10 by

introducing a Lagrange multiplier λi(r) for each agreement

constraint. ADMM adds a quadratic penalty for constraint

violation, yielding the augmented Lagrangian:

A(X, u, λ) =
N
∑

i=1

(Si(Xi) +
∑

r∈R

λi(r)Xi(r)) (11)

−
∑

r∈R

(
∑

i

λi(r))u(r)− ρ
∑

i

∑

r

(Xi(r)− u(r))2

where ρ is a positive parameter that controls the intensity

of the augmenting penalty (we note that we deviate a bit

from the common presentaton of the method, e.g. [8], as we

phrase our original problem as one of maximization rather

than minimization). To find an extremum of the augmented

Lagrangian, ADMM iterates the following steps:

Xt+1
i = argmax

Xi

A(Xi, u
t, λt) (12)

ut+1 = argmax
u

A({Xt+1
i }, u, λt) (13)

λt+1
i (r) = λt

i(r)− αt(X
t+1
i (r)− ut+1(r)) (14)

In words, the slaves efficiently solve their sub-problems

(Eq. 12), and deliver Xi to the master. The master then

coordinates the individual solutions, by updating the cur-

rent multipliers λt+1
i (r) (Eq. 14) and ut+1(r) (Eq. 13), and

communicating them to the slaves for the next iteration.

We observe that solving Eq. 12 for a given i amounts to

solving independently for a chain structured model. We can

verify that the effect of the (augmented) Lagrangian func-

tion on the individual subproblems is absorbed by updating

the unary terms of the slaves with a parametric, quadratic

function of position; since the slaves are chain-structured,

means we can still efficiently optimize them with GDTs.

As shown in Fig. 3, ADMM is dramatically faster than

Dual Decomposition for our problem. For our full-blown

model, involving |R| = 30 shared nodes in Eq. 10, Dual

Decomposition would often not converge even after 100 it-

erations, while we obtained convergence of ADMM in typ-

ically no more than 20 iterations. This means that the ef-

fective complexity of our joint inference algorithm in loopy

Figure 3. Evolution of the dual objective and the primal one as

a function of DD/ADMM iterations. ADMM-based optimization

rapidly converges, achieving a duality gap of zero typically in less

than 20 iterations. Subgradient based method does not converge

even after 100 iterations. These results are obtained by averaging

over hundred different example images.

graphs is linear in the number of pixels, since every slave

can be optimized in linear time with GDTs.

We note that ADMM is guaranteed to converge to the

global optimum only if the score function being maximized

is concave. In our case, this is not guaranteed (the unary

terms are arbitrary), so we can understand ADMM only as

an approximate optimization algorithm. The fact that we

have a zero duality gap at convergence indicates that for the

examples considered in our experiments approximate infer-

ence delivers the exact solution.

Finally, before moving on to learning, we note that

we accommodate global scale changes through multi-

resolution optimization; from our original image I we con-

struct an image pyramid by resampling at a set of scales

S = (1, r, r2, . . . , rS) and compute:

X∗
I,S = argmax

X,i

sI(ri)(X,w), (15)

where I(ri) denotes the image resampled with a ratio ri.

For notational convenience we will drop the S subscript

from now on and it will be implied that the result is obtained

through a multi-scale optimization.

5. Structured Prediction for Segmentation

We assume that we have been provided with a training

set of images and associated ground-truth contour locations,

which we will denote as X = {(Ii, X̂i)}, i = 1 . . . N . We

recall that our merit function SIi(X,w) is an inner product

between a weight vector w and a feature vector hIi(X). As

is common in structured prediction, [21], we measure the



performance of a particular weight vector in terms of a loss

function ∆(X∗
Ii
, X̂i) which represents the cost incurred by

labelling image i as X∗
Ii

when the ground truth is X̂i.

The simplest option we consider is the general 0-1 loss:

∆0−1(X, X̂) =

{

0, X = X̂

1, otherwise.
(16)

which penalizes any discrepancy between the ground truth

and the recovered solution. Different loss functions can be

used however to better reflect the nature of our problem.

In particular we use the Mean Contour Distance (MCD)

which measures the average distance of the landmarks of

two contours. In our case, the contours are discretized to a

set of landmark positions, connected through straight lines.

The MCD between two contours X and X̂ is defined as:

∆mcd(X, X̂) =
1

K

K
∑

i=1

||xi − x̂i||2 . (17)

For cutting plane training of structural SVMs [21] we

need, given the current value of w, to find a Xi
cp that has

good score according to the model, and a high loss accord-

ing to the ground-truth; for our case, this results in the prob-

lem:

Xi
cp = argmax

X

sIi(X,w) + ∆(X, X̂i). (18)

For the loss in Eq. 17, finding the most violated constraint

is equivalent to the following modified inference problem:

Xi
cp=argmax

X

K
∑

k=1

(UIi,k(xk)+δ(xk, x̂k))+
∑

(k,j)∈E

Vk(xk,xj),

where δ(xi, x̂i) = 1
K

||xi − x̂i||2 is the per-landmark de-

composition of the loss; since this term is absorbed in the

unary term, it follows that optimizing this last expression

can be done as efficiently as solving the original optimiza-

tion problem.

6. Experimental Settings and Results

In all of our experiments we use the publicly available

dataset and evaluation setup described in [36, 40]; this

dataset contains 247 standard posterior anterior chest radio-

graphs of healthy and non-healthy subjects presenting nod-

ules. The database contains gold standard segmentations

from radiologists that provided a delineation of the lung

fields, the heart and the clavicles. Gold standard segmen-

tation masks are hence available as well as corresponding

landmark positions lying on the contour.

Following the evaluation setup described in [36], we use

123 images for training and a separate set of 124 images for

testing, using the provided training/testing split; all of the

Figure 4. Our graphical model’s topology reflects the placement

of multiple organs corresponding to a patient’s heart, lungs, and

clavicles. In the detail (right) we are showing in black the edges

used to connect the left clavicle and the left lung, as well as the

edge that makes the lung contour closed.

reported results are on the whole test set, using images of

size 256 by 256.

Our model contains 196 nodes including 30 shared

nodes. We have 16 slave problems, 2 per organ plus 26 for

the links (’zipper’ contours). For ADMM we found that we

achieve fastest convergence when setting ρ = 1 in 12 and

setting the step size αt to follow a non-summable diminish-

ing step length rule, as detailed in [3]. Since our code will

be publicly available, we refrain from thoroughly present-

ing implementation details.

Starting with computational efficiency, for our problem

the computation of unary terms requires 0.4 seconds on a

standard PC; each slave problem takes 0.06 seconds per

contour and scale, for a contour with 20 nodes; for 8 con-

tours and 7 scales, this means 3.4 seconds per iteration of

ADMM/Dual Decomposition. ADMM/DD take practically

the same time per iteration, but ADMM converges in less

than 20 iterations (typically 10) while DD did not converge

even after 100 iterations.

Turning to accuracy, we first note that both optimization

and learning do not suffer from local minima issues, while

the complexity penalty coefficient of structured SVM is de-

termined with 10-fold cross validation; we can thus attribute

any difference in the final results exclusively to the low-

level feature, model structure, and loss function choices.

In particular in Table 1 we compare the segmentations

delivered by different design choices to the ground truth us-

ing the Dice and Jaccard area overlap coefficients and the

Mean Contour Distance, as defined in [40]. Our design

choices include (a) the use of different low-level features,

comparing Daisy features [39] and Dense SIFT [18] com-

puted at different scales (b) graph topology, comparing our

earlier chain-graph baseline (CG) [7], to the use of a loopy

graph (LG) and (c) the use of the 0-1 loss versus the use of

the MCD loss during training.

Our very first observation is that our baseline outper-

forms the previous state-of-the-art in medical imaging, and

with a large margin. We further verify (i) that the use of
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(a,b): chain graph (baseline). (c,d): loopy-graph results (ADMM results).
Figure 5. Segmentation results on lungs, heart and clavicles. Ground truth contours are shown in green, our results are shown in other

colors. We observe that the loopy-graph model delivers more accurate results that stick more closely to the ground truth annotations. We

attribute this to the ability of our loopy-graph model to account for closedness constraints, and also to model interactions among multiple

parts - for instance that the clavicle boundaries need to be at a prescribed distance from the lung boundaries.

Figure 6. Dice coefficients (left) and Mean Contour Distance statistics (right) on different chest organs (the overall decrease in the DICE

coefficients for the clavicles is anticipated due to their smaller scale).



Table 1. Performance measures for the previous state-of-the-art of [35], and different choices for our method, involving Daisy features,

dense SIFT at a resolution of 4, and 8 pixels per bin, the use of chain graphs (CG suffix) vs. loopy graphs (LG suffix), and the use of the

MCD loss for training (MCD suffix).
Right Lung (44 points) Left Lung (50 points) Heart (26 points) Right Clavicle (23 points) left Clavicle (23 points)

method Dice Jacc. mcd Dice Jacc. mcd Dice Jacc. mcd Dice Jacc. mcd Dice Jacc. mcd

[35, 40] N/A 94.0 1.5 N/A 92.0 1.7 N/A 88.0 3.5 N/A 78.7 2 N/A 75.8 2

Daisy+CG 97.97 96.0 1.2 97.52 95.2 1.4 95 91.3 2.3 90.4 82.48 1.8 88.11 78.75 2.3

Daisy+LG 98.1 96.27 1.3 97.66 95 1.2 96.5 93.2 1.3 91.8 84.84 1.7 89.19 80.5 2

Daisy+LG+MCD 98.24 96.54 1.0 97.89 95.9 1.7 96.84 93.9 1.7 93.04 86.99 1.5 89.95 81.9 1.8

Sift-4+CG 97.54 95.2 1.5 96.8 93.6 1.8 94.3 91.3 2.3 89.9 81.65 1.9 88.1 78.73 1.8

Sift-4+LG 97.35 94.84 1.7 97.52 95.2 1.4 96.17 92.6 2.7 92.04 85.25 2 88.85 79.9 1.8

Sift-4+LG+MCD 97.88 95.85 0.9 97.8 95.7 1.9 96.95 94.5 1.8 92.89 86.72 1.6 89.6 81.2 1.5

Sift-8+CG 97.71 95.52 1.5 97.00 94.1 2.0 95 90.7 2.3 90.00 81.82 1.9 87.4 77.6 2.8

Sift-8+LG 97.68 95.47 1.3 97.28 94.6 1.5 95.81 91.1 2.8 91.75 84.76 1.9 89.22 80.6 1.9

Sift-8+LG+MCD 98.00 96.1 0.9 97.9 95.9 1.4 96.20 92.7 1.7 92.8 86.57 1.7 89.8 81.5 1.4

Table 2. Pixel error results on the SCR database [36, 40]. The

proposed method scores better than the state-of-the art approaches.

method pixel error

Our 0.017±0.008

[7] 0.022±0.006

MISCP [35] 0.033±0.017

ASM tuned [40] 0.044±0.014

loopy models improves performance and (ii) that the use of

the MCD loss improves performance as well. These results

are consistently supported practically by all organs, evalu-

ation measures, and front-end feature choices. Optimizing

the MCD loss during training further improves the perfor-

mance of our system. This is reflected by the clear boost in

performance versus the 0-1 loss training, as assessed by the

MCD validation measure on the test set.

The results in Table 1 are complemented by the results

in Fig. 6 where we provide box plots of different validation

measures for the different organs that we work with. More-

over, we compare in Table 2 our pixel error results with the

current state-of-the-art results on the same dataset [40, 35].

We further verify through a paired T test [20] that the pixel

error improvement is statically significant (p=0.04). We val-

idate hence again that structured prediction with the MCD

loss coupled with a loopy model results in clear, systematic

improvements over the state-of-the-art for all of the organs

that we consider in our evaluation.

Finally, a side-by-side comparison of our baseline model

and the full-blown, loopy-graph model developed in this pa-

per is provided in Fig. 5, which qualitatively demonstrates

the higher accuracy attained by our model on challenging

areas with poor low-level information. Some notable cases

include the case of the heart, where the added geometric

constraint allows us to recover from unary detector failure

in the blank area.

7. Discussion

In this work, we developed an efficient technique to per-

forming inference on loopy graphs with spatial variables,

by employing the Alternating Directions Method of Multi-

pliers (ADMM) in conjunction with Generalized Distance

Transforms (GDTs) and introduced a structured prediction

approach to the task of learning to segment multiple or-

gans from medical images. We demonstrated systematic

improvements over the current state-of-the-art in medical

image segmentation, both due to the use of richer models,

and better adapted score functions, trained with structured

prediction.

On the efficient optimization side we intend to pursue

further acceleration by exploiting recent advances on fast

DPM detection using Branch-and-Bound [23, 24] in con-

junction with 3D optimization problems [6]. On the learn-

ing side we intend to further pursue the learning of loopy

graph models for other shape matching tasks, such as face

recognition and body pose estimation, where matching ac-

curacy is of importance [1, 33, 34, 5]; with the advent of

strongly-supervised datasets [2, 41] we anticipate that this

will become increasingly central to high-level vision tasks,

such as object detection.
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