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Abstract

Recently, a concave optimization approach has been pro-
posed to solve the robust point matching (RPM) problem.
This method is globally optimal, but it requires that each
model point has a counterpart in the data point set. Unfor-
tunately, such a requirement may not be satisfied in certain
applications when there are outliers in both point sets. To
address this problem, we relax this condition and reduce the
objective function of RPM to a function with few nonlinear
terms by eliminating the transformation variables. The re-
sulting function, however, is no longer quadratic. We prove
that it is still concave over the feasible region of point cor-
respondence. The branch-and-bound (BnB) algorithm can
then be used for optimization. To further improve the ef-
ficiency of the BnB algorithm whose bottleneck lies in the
costly computation of the lower bound, we propose a new
lower bounding scheme which has a k-cardinality linear as-
signment formulation and can be efficiently solved. Exper-
imental results show that the proposed algorithm outper-
forms state-of-the-arts in its robustness to disturbances and
point matching accuracy.

1. Introduction

Point matching is a fundamental yet challenging prob-
lem in areas such as computer vision, pattern recognition
and medical image analysis. Disturbances such as deforma-
tions, noise and outliers often makes this problem difficult.
Many methods (see Sec. [2]for an overview) have been pro-
posed to address these difficulties, e.g., the classical robust
point matching (RPM) method [6]. However, most of them
are heuristic schemes, which means their performance de-
pends on if the employed heuristics can well fit the problem.

Recently, Lian and Zhang [14]] proposed a concave opti-
mization approach for the objective function of RPM. The
method has several desirable advantages over the original
RPM. First, it is globally optimal and hence more robust
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to disturbances; second, it can be rendered invariant to the
corresponding transformation when simple transformations
such as similarity are employed. But this method assumes
that each model point has a counterpart in the data point
set. This assumption may fail to hold in certain applications
when there are outliers in both point sets.

This paper aims to solve this problem. Similar to [14]],
by eliminating the transformation variables, we reduce the
RPM objective function to a function of point correspon-
dence with few nonlinear terms. Therefore, large scale
global optimization techniques can be applied to our prob-
lem and our method has the merit of scaling well with prob-
lem size as in [[14]. Different from [14]], however, the result-
ing function is no longer quadratic, which makes the opti-
mization harder. But we prove that the derived objective
function is still concave over the feasible region of point
correspondence. Then the branch-and-bound (BnB) algo-
rithm can be employed for optimization. One bottleneck of
the BnB algorithm is the costly computation of the lower
bound. To address this problem, we further propose a new
lower bounding scheme which has a k-cardinality linear as-
signment formulation and can be efficiently solved.

The rest of the paper is organized as follows. We review
related work in Sec. 2land RPM in Sec. Bl We then discuss
the new energy function and its optimization in Sec. 4| and
[l We finally present the experimental results in Sec. [6|and
conclude the paper in Sec.

2. Related work

Point matching: The iterative closest point (ICP)
method [3] iterates between finding point correspondence
based on the nearest neighbor relationship and updating the
transformation as a least square problem. ICP is prone to
be trapped in local minima because of the discrete nature
of point correspondence. To address this problem, RPM
[6] relaxes point correspondence to be continuously valued
and employs deterministic annealing (DA) for optimization.
The coherent point drift (CPD) method [[17] uses one point



set to represent the Gaussians mixture model (GMM) cen-
troids, and converts point matching into the problem of fit-
ting the GMM centroids to another point set. Kernel cor-
relation was used in [22]] for point matching. This method
was later generalized in [11] by minimizing the distance be-
tween two mixtures of Gaussians (MG) representing two
point sets. In [4], an amendment to the objective function
in [L1] was proposed by using the log-exponential func-
tion. Under this formulation, ICP can be interpreted as
a special case. The method in [11]] was later generalized
to group-wise point-set registration in [5]. The covariance
driven correspondence method [21]] uses the covariance of
the transformation to guide the determination of point cor-
respondences, but this method is only suitable for rigid reg-
istration. A robust way of estimating transformation was
proposed in [15]] by utilizing the Lo F estimator. The above
methods are all heuristic schemes, hence they cannot guar-
antee the global optimality of the solutions. Roots-finding
technique was used in [9] for affine invariant point set reg-
istration. But the method is sensitive to outliers due to use
of moments.

Concave optimization: Concave optimization was used
in [16] to solve correspondence problems arising from com-
puter vision. The optimization technique employed in [16]
is however only suitable for small scale problems. In con-
trast, our method scales well with problem size due to the
special structure of our optimization scheme, which facili-
tates the use of large scale optimization techniques.

Branch-and-bound: BnB is a popular optimization
technique with global optimality guarantee. It was used
in [18] to estimate the transformation given the correspon-
dence. In comparison, both types of variables are unknown
in our problem, which makes our task more difficult. BnB
was used in [13]] for 3D rigid point set registration by
traversing the space of rotations, but the method does not
permit the presence of outliers. In contrast, our method can
handle outliers in both point sets. In [[1], BnB was used to
find the maximum set of consistent point correspondences.
But the method is very slow because a generic linear pro-
gram needs to be solved to obtain the upper bound. In con-
trast, our method is much faster since, instead of a generic
linear program, only a k-cardinality linear assignment prob-
lem needs to be solved to obtain the lower bound.

In [20], two BnB algorithms were proposed for the ob-
jective function of RPM. The first method directly branches
over the correspondence variable. Because of the high di-
mensionality of the correspondence variable, this method is
only applicable to small scale problems. In contrast, our
method branches over a new variable whose dimension is
only related to the transformation, which is in general very
small. The second method in [20]] branches over the trans-
formation variable. Because of lack of concavity by the en-
ergy function, the lower bound of this method is not tight.

3. The energy function of RPM

Since our method originates from the energy function of
RPM [[14], we first briefly review RPM in this section. Sup-
pose we are given two point sets: the model point set 2~ =

{x;,i = 1,...,m} with point x; = [z};--- ;2¢] € R,
and the data point set # = {y;,j = 1,...,n} with point
y; = [y};--+;y4] € R Our task is to find the transfor-

mation and the point correspondence between the two sets
so that the transformed model points can best match the data
points.

To solve this problem, RPM jointly estimates the trans-
formation and the point correspondence. It models point
matching as a mixed linear assignment—least square prob-
lem:

min  E(P,0) =Y pijlly; — T(x:[0)[I” + () (1a)
i

st. P1,<1,, 1LpPp<1l P>0 (1b)

n?

Here P = {p,;} is the correspondence matrix with p;; = 1
if there is a matching between x; and y; and 0 otherwise.
1,, denotes an m x 1 vector with all ones. T'(-|@) denotes
the spatial transformation with parameters 6. g(8) is a reg-
ularization term on 6. To solve problem (Ta), (Ib), RPM
relaxes P to be continuously valued and employs determin-
istic annealing (DA) for optimization. However, DA is a
heuristic scheme which causes RPM to be less robust to
disturbances. In the next section, we present a new energy
function based on RPM, which is more amenable to global
optimization.

4. The new energy function

To make the problem tractable, similar to [14], we as-
sume that the transformation T'(x;|@) is linear w.r.t. its
parameters 0, i.e., T(x;|0) = J(x;)0, where J(x;) is
called the Jacobian matrix. Examples of J(x;) are pre-
sented in Sec. [6] We consider the following regularizer
for @: g(0) = (0 —0y)TH(6—0,), i.e., 0 is required to be
close to a constant vector 8. Here H is a positive semidef-
inite matrix, denoted by H > 0, whose entries represent the
weights assigned to the elements of 6.

With the above assumption, the energy function (Ta) now
takes the following form:

E(P,6) = pily; — J(x:)0|* + (6 — 60)" H(6 — )
2]
=0"[J"diag((P1,) ® I)J + H]0 + 1% Pz
— 20T [JT (P ® 1)y + HOo + 03 HOy  (2)

where J £ [JT(xl), cee JT(xm)]T, y & [le, e ,yﬂT,

andz = [|ly1[3,..., ||yn||§]T The operator *diag” denotes
converting a vector into a diagonal matrix. Iz denotes the



d-dimensional identity matrix and ® denotes the Kronecker
product.
We consider the following constraints on P:

P1,<1,, 1'p<i1? 17pP1,=s5 P>0 (3)
i.e., the matching is one-to-one and the number of matches
is s < min(m,n), a constant positive integer. The
constraints in (3) satisfy the total unimodularity property
[16l [19], which implies that the vertices of the polytope
(i.e., bounded polyhedron) determined by have integer
valued coordinates. By also taking into account the fact that
0 < ps; < 1, the coordinates of the vertices are actually 0, 1
valued.

Given P, FE is apparently a convex quadratic function of
6. Therefore, the optimal solution 6 of E can be obtained

in close form by letting % = 0. The result is:

0 = (J7 (diag(P1,)®1y)J+H) ™' [JT(P ® 1)y + HO,]

) )
By substituting the optimal 6 back into (2), the variable 6
is eliminated and we arrive at an energy function which has
only one variable P El,

E(P)=1Y Pz — [y'(Po I,)'J + 6L HT)
- (JT(diag(P1,) @ I;)J + H)"HJT (P @ I)y + H6,]
@)

To facilitate the optimization of F, P needs first to be
vectorized. Let us define the vectorization of a matrix as
the concatenation of its rows El, denoted by vec(:). Let
p = vec(P). To obtain a new form of E which has fewer
nonlinear terms, we need some denotations. Let

JT(P ® I;)y = Ap,

vec(JT (diag(P1,)®14)J) = vec(JI ((P1,)®1;)) = Bp,

where ¢ denotes the dimensionality of 6 and J, =
[J(x1)TJ(x1),..., J(Xm)TJ(xm)]T. Based on the fact
vec(KLM) = (K @ MT)vec(L), we have

A=(JToyh)ywmm,

B=(J] @ L)W (I, ® 1],

A

where the mnd X mn matrix W;n T2 I, ®

(I, ®(e)T,.... I, ® (eg)T]T satisfies vec(Chy, , @ I4) =
Wi "vec(Chp ). Here €, denotes the d-dimensional col-
umn vector with the ¢-th entry being 1 and all other entries
being 0. W;"" is a large but sparse matrix and can be im-
plemented using the function speye in Matlab.

'We omit the constant Og H @y since it doesn’t affect the optimization.
2This is different from the conventional definition.

With the above preparation, E' can be written in terms of
vector p as:

E(p) =— (p" A" + 6§ H)(mat(Bp) + H) ™' (Ap + H6,)
+ (1), ®z")p (6)

Here the operator mat’ denotes reconstructing a symmetric
matrix from a vector which is the result of applying ’vec’
to a symmetric matrix. Therefore, operator mat’ can be
seen as the inverse of operator 'vec’ applied to symmetric
matrices and its meaning will be clear from the context.

A is of full rank ¢, which equals to the number of its
rows. B is rank deficient. Let By be the matrix whose rows
is formed by the nonzero unique rows of B. Examples of
B; will be presented in Sec. [6] Assume that the number
of rows in By is [. Let the QR factorization of [B] , AT
be QR = [Bj , AT], where R is an upper triangular matrix
and the columns of () are orthogonal unity vectors. In light
of the form of E in (6], we can see that the nonlinear part
E¢ of E (i.e., the first term in (6)) is solely determined by
variable

_r|B
uéRT{ﬂFQTp ™
The specific form of E¢ in terms of variable u is:

Ec(u) = —((W'R)it1,. 14t + 05 H)
~(mat((RTw)y ) + H) ' (RMa)4q

.....

where (RTu), .., denotes the vector formed by the a-th
to b-th elements of vector R7u. Here we abuse the use
of “mat’ so that mat(Byp) = mat(Bp), i.e., a matrix re-
constructed from the nonzero unique elements of a vector
should equal to the matrix reconstructed directly from the
vector. The meaning will be clear from the context. The di-
mensionality of u is /4, which is much smaller than that of
p and also independent of the cardinalities of the two point
sets. This is the key why our algorithm is applicable to large
scale problems and scale well with problem size.

Proposition 1 If the entries of a symmetric invertible ma-
trix G(p) and a vector f(p) are affine functions of p and
G(p) = 0 forp € 2 where 9 is a convex set, then
f(p)TG(p)~f(p) is convex.

Please refer to Appendix [A] for the proof. This proposition
shows that for p € D, E is a concave function of p since
P1 > 0 and consequently J 7 (diag(P1)®1,).J = 0, where
D denotes the feasible region of p, as determined by (3).
Analogous to [14]], we have the following proposition:

Proposition 2 There exists a minimum binary solution of
E under the constraints defined in (3).



Proof It’s known that the minimum solution of a concave
function over a polytope can be taken at one of its vertices.
The proposition follows by combining this result with the
total unimodularity of D as stated previously.

5. Optimization

Our analysis in the previous section indicates that the
nonlinear part of E is determined by a low dimensional vari-
able u and is concave for p € D. Therefore it’s natural to
use the normal simplicial algorithm [10], a BnB algorithm
specifically designed for concave functions, to optimize E.

5.1. Initial bounding region

In the normal simplicial algorithm, simplexes are used
to construct the convex envelopes of a concave function.
Therefore the initial bounding region should be chosen as a
simplex or a collection of simplexes.

We use a collection of simplexes to bound the feasible
region U = {u|u = QTp, p € D} as the resulting bound-
ing could be more tight. The procedure is as follows. We
first choose an interior point v of U. v can be chosen as
QTminlmn, which corresponds to the fuzziest point corre-
spondence. We then construct a new coordinate system by
shifting the origin of the coordinate system of u to vy, as
illustrated in Fig. |1 We now construct each bounding sim-
plex as the intersection of an orthant of the new coordinate
system with a half space containing U, whose face, i.e., a
plane, supports U and has a normal vector h chosen as the
normalized mean of the orthant axes. Fig. |I|illustrates the
bounding simplex construction process.

Figure 1. Red region: the intersection of U with an orthant of the
new coordinate system. Blue region: the bounding simplex. The
normal vector h of the supporting plane is chosen as the normal-
ized mean of the orthant axes.

The distance from v to the supporting plane with nor-
mal h can be computed as:

max{h”(Q"p — vo)|p € D}

This is a k-cardinality linear assignment problem which can
be either directly solved [7] or transformed into a standard
linear assignment problem [23] (we adopt the latter ap-
proach and choose the Jonker-Volgenant algorithm [[12] for
the resulting problem in this paper). The supporting plane

with normal h can then be completely determined. In turn,
the vertices of the bounding simplex can be recovered which
has v as one of its vertices.

5.2. Choice of H

Although for feasible u € U, we have
mat((RTu)L___J) = 0 and consequently E is concave
according to Proposition I} this may not be the case for
infeasible u, which can happen at one of the vertices of the
bounding simplexes. Therefore, to ensure the concavity of
E over all the bounding simplexes, we let the eigenvalues
of H be large enough so that mat((RTu); ;) + H = 0.
The procedure is as follows. Assume that the eigenvalues of
mat((RTvi)L.__,l) constitute a vector \;, where v; is a ver-
tex of one of the bounding simplexes. We choose a vector
Ao such that its j-th element X} = min{min; A\},0}.
We then set H = —diag(Ag), and we now have
mat((RTv;)1...41) + H = 0. Based on the convexity
of the spectrahedra {u|mat((RTu), ;) + H = 0}, we
have mat((RTu)L___J) + H > 0 for any u that belongs to
the bounding simplexes. Based on Proposition|[I] it follows
that F is concave over the bounding simplexes.

5.3. Lower bounds

The convex envelope Ecg of the concave part Ec(u)

of E over a simplex S = [v1,...,Vv;1¢+1] is the unique

affine function which coincides with E at the vertices
. It+1

Vi, Vigeyr (10D, e, Ecs(n) = > .00 aiEo(vy)

with u = Zi:iﬂ a;Vi, Zl;t;rl a; =1, a; > 0, Vi.
Based on this result, the lower bound of E for region DN S
can be obtained as the optimal value of the following linear

program:

I+t+1
min Y a;Eo(vi)+ (1}, ® z")p
P i=1
I+t+1 I+t+1
s.t. Z oV = QTI), Z a; = 1,0[1‘ > O,Vz,p eD
=1 =1

€))

By tweaking this linear program, in Sec. [5.6] we will pro-
pose an alternative more efficient scheme to compute the
lower bound.

5.4. Division of a simplex

Since the BnB algorithm is used for optimization, dur-
ing the branching phase, a chosen simplex needs to be sub-
divided into several smaller simplexes. We adopt the fol-
lowing simple strategy to divide a simplex. For a chosen
simplex, the longest edge is bisected. This results in two
sub-simplexes. It has been proved that such a subdivision
scheme leads to a BnB algorithm that converges [10].



5.5. The normal simplicial BnB algorithm

We now describe the algorithm for minimizing E. Dur-
ing initialization, a set of simplexes whose union contains
the feasible region D is computed. Then in each iteration,
the simplex yielding the lowest lower bound among all the
simplexes is further subdivided so as to improve the lower
bound of F for D. Meanwhile, the upper bound is updated
by evaluating F with solutions of the linear programs used
to compute the lower bounds. The pseudo-code of the algo-
rithm is summarized in Algorithm T}

Algorithm 1: The normal simplicial algorithm for min-
imizing F/

1 Initialization
2 Select tolerance error € > 0.
3 Find a collection of simplexes {.5;} such that
U C U;S; according to Sec. Choose A according
to Sec. [5.2]and set H = —diag(Xo). Set
My = N = {S;}, where . denotes the collection
of all rectangles and .41 denotes the collection of
active rectangles.
4 fork=1,2...do
5 For each simplex S € ¥4, solve the linear
program (9} to obtain a basic optimal solution
w(.5) and the optimal value 5(.S). B(S) is the
lower bound of E for region D N S.
6 Let p” equal to the best among all feasible
solutions so far encountered: p*~! and all
w(S), S € M. Delete all simplexes S € .#), such
that 3(S) > E(p*) — €. Let %}, be the remaining
collection of simplexes.
7 If %), = 0, terminate: pk is the global e-minimal
solution. Otherwise, go to the next step.
8 Select the simplex to be divided:
Sk € arg mln{ﬁ(S)|S S %k}
9 Divide S, according to Sec. to get two
sub-simplexes Sg; and Sks.
10 Let </Vk+1 = {Skh Sk2} and
M1 = (B \{Sk}) U Mg

11 end

Our algorithm is an instance of the BnB technique, hence
its worst case time complexity is exponential. Nevertheless,
this problem is much alleviated by the low dimension ¢ + [
of the space of u, to which the BnB algorithm is applied.

5.6. A new efficient lower bounding scheme

Our algorithm is an instance of the BnB technique, and it
consists of three subproblems: branching, finding the upper
bound and finding the lower bound. It’s obvious that the
lower bounding problem (9] costs much more than the other
two subproblems since it is a generic linear program, for

which there is no efficient algorithm. In this subsection,
we propose an alternative lower bounding scheme which is
more efficient to solve while at the same time retaining the
tightness of the original lower bounding problem.

To achieve the above goal, a natural idea is to drop the
inequality constraints «; > 0, V4 in @]), and then there are
only linear equality constraints on «;. Hence «; can be
eliminated via algebraic substitution and we arrive at the
following equivalent problem:

min Es(p) = ([Be(v1), -, Ec(Visd)] = Ec(Viges1)1]4)

(Vi Vi = Vige 15) TN P — Vi)
+ Ec(Viger1) + (1), @ 2")p
st. peD (10)

Problem is a k-cardinality linear assignment problem
which can be very efficiently solved by the combinatorial
optimization algorithms mentioned in Sec. [5.1] Note that
simplex S will not degenerate throughout the BnB iterations
and therefore matrix [v1, ..., Viyt] — Viget1 lat is always
invertible. We have the following proposition.

Proposition 3 The optimal value of problem (10) is a lower
bound of E for region D N S.

Proof Problem is a relaxed version of (9) by dropping
the constraints «; > 0, Vi. Therefore the optimal value of
(TO) will not be greater than that of (@), whereas solving (9)
yields a lower bound of F for region D N S.

What remains is to show that the lower bound computed
via (T0) is tight enough. In iteration %k of our algorithm,
the lowest one among all the lower bounds corresponding
to simplexes in .#}, is chosen as the lower bound of E for
the feasible region D. Hence only the lowest lower bound
determines the quality of a bounding scheme. W.l.o.g, let
us assume that S is the simplex yielding the lowest lower
bound by using (10) to compute the lower bound of E for
region D. It’s apparent that there are two possibilities for
the location of the optimal solution p* of problem (T0):
p* € {p|Es(p) < E(p)} or p* € {p|Es(p) > E(p)}
as illustrated in Fig. 2] Note that the latter case is impos-
sible since in this case, Fs(p*) will be strictly larger than
the minimum value of E over D, violating the assumption
that Fs(p*) is a lower bound of F for region D. Hence it
can only happen that p* € {p|Es(p) < E(p)}. From Fig.
we can see that {p|Es(p) < E(p)} is an ellipse-like re-
gion containing and inscribing the simplex S. Therefore, if
the length of the longest edge of .S shrinks to zero, the lower
bounds computed via (9) and via will be close to each
other. This is the case with our algorithm since the sim-
plex yielding the lowest lower bound is selected to be fur-
ther subdivided in each BnB iteration and thus it becomes
smaller and smaller with the increase of iteration. Hence



problem (I0) can serve as a good candidate for computing
the lower bound of E for D in our algorithm.

AEAGE)

Figure 2. Ellipse-like closed curve {p|Fs(p) = E(p)} separates
the solution space into two disjoint regions. Simplex S is con-
tained in the region {p|FEs(p) < E(p)}.

6. Experimental results

We implement our method under the Matlab 8.1 envi-
ronment and compare it with RPM [6], CPD [17] and MG
[[L1]], whose source codes are freely available. These meth-
ods represent state-of-the-arts, only utilize the point posi-
tion information for matching, and are capable of handling
outliers in both point sets. Affine transformation is used for
RPM. Rigid transformation is used for CPD and MG (other
types of transformations are found to be far less robust for
the types of experiments conducted in this paper). We set
€ = 0.1 for our method (the data point set is assumed to be
unit sized). All the methods are run on a PC with 2.4 GHz
CPU and 8G RAM.

6.1. Estimation of parameter s

The proposed algorithm needs to know s, the number of
matches, in advance. This number, however, is unknown
in practice. We propose the following simple method to
estimate s.

By using some feature descriptor (shape context [2] is
used in this paper), we could get the cost d; ; of matching
two points ¢ € 2 and j € %. We then compute the match-
ing cost for each model point as d;* = min;d; ;. Then,
we use the k-means clustering algorithm to separates the set
{d} into 2 clusters and choose the cluster with smaller
mean value (which more likely corresponds to the inliers in
Z). Let sg be the cardinality of this cluster. By apply-
ing the same procedure to the data point set, we get another
cardinality sg . Finally, we set s = min(sa, s ).

To validate if the proposed estimation method of s is ef-
fective, let’s compare the point matching performance by
using the estimated s and the ground truth s. The experi-
ment settings are described in Sec. [6.2] Fig. [3] shows the
values of the ground truth s and the corresponding values
of estimated s. We can see that the estimated s is in gen-
eral smaller than the ground truth s. In Fig. ] we compare
the matching errors in different experiments by using the

ground truth s and the estimated s. We can see that our
method’s performance does not degrade much (particularly
for similarity transformation) by using the estimated s in
comparison with using the ground truth s.

Occlusion+outlier test

Outlier test
8

80 -~ —<fish, estimated s
N «fish, ground truth s

70 N O > character, estimated s
A | character, ground truth s
» ‘\E'\
70l|=><fish, estimated s s

«fish, ground truth s 5
-character, estimated s
+=J-character, ground truth s 40

0.1 0.3 0.1

0.15 02 0.25 15 0.2 0.25

Outlier to data ratio Occlusion to data ratio
Figure 3. Estimated s and ground truth s for the tests described in
Sec.

Fish (outlier test) Character (outlier test)

=< ours (similarity, estimated s)

1{|{=I-ours (similarity, ground truth s)

gours (affine, estimated s)
-ours (affine, ground truth s)

—<ours (similarity, estimated s)

<=J-ours (similarity, ground truth s)

gcurs (affine, estimated s)
-ours (affine, ground truth s)

AR A A
2 0.4 0.6
Outlier to data ratio
Character (occlusion+outlier test)

2~ 04 — 06 08
Outlier to data ratio

Fish (occlusion+outlier test)

0. ,: 0.7

=< ours (similarity, estimated s) , —<ours (similarity, estimated s) %
+{=J-ours (similarity, ground truth s) --ours (similarity, ground truth s) |
0.6 ‘ 0.6 " n P
¢ gours (affine, estimated s)
( -ours (affine, ground truth s) ’A

: gours affine, estimated s)

ours (affine, ground truth s) /X

w
: . 32 03 A,«”
2 Em AT 02 R
off oA
0 0.15 0.2 0.25 03 0 0.15 0.2 0.25 0.3

Occusion to data ratio Occusion to data ratio
Figure 4. Matching errors by our method with estimated s and

ground truth s for the tests described in Sec. [6.2}

In all our experiments in Sec. [6.2] we use the estimated
s as the input to our algorithm.

6.2. Experiments on benchmark dataset

We use the benchmark Chui-Rangarajan synthesized
datasets [60] to evaluate the 4 competing methods. More ex-
periments on 3D synthetic data can be found in the supple-
mentary materials. Examples of the data and model point
sets are shown in Fig. [5] We consider the 2D similarity

and affine transformations between two point sets. For 2D
:| T

similarity transformation, we let = [91, ...,04|" . Here
[03,04]7 are translation parameters and 6; = 7 cos(¢) and
02 = rsin(¢), where r represents scale and ¢ is rotation an-
1 2

gle. Then we have J(x;) = i% _:r? (1) ﬂ It can be
verified that the rows of By = B([1, 3,4, 11],:) constitute
the nonzero unique rows of B.

For 2D affine transformation, we let @ = [91, .. 796] r
with [0y, ...,0,4]7 being the linear part of the transforma-
tion and [f5,06]7 being the translation. Then we have



2t 22 0 0

J(xi):{’ i 0 0.

0 0 z1 2 It can be verified

1
2.0
K2 3
that the rows of Bo = B([1,2,5,8,11,29],:) constitute the
nonzero unique rows of B.

Two categories of tests are used to evaluate the perfor-
mances of different methods against outliers. 1) Outlier
test. Equal number of normally distributed random outliers
are added to different sides of the prototype shape to gener-
ate the two point sets, respectively, as illustrated in columns
2, 3 of Fig. B} 2) Occlusion + Outlier test. First, equal
degree of occlusions are applied to the prototype shape to
generate the two point sets, respectively. We simulate oc-
clusion by first finding the shortest Hamiltonian circle of
the prototype point set (via solving a traveling salesman
problem) and then retaining a segment of the circle start-
ing at a random point. Then, a fixed number of normally
distributed random outliers (outlier to data ratio is fixed to
0.5) are added to different sides of the two point sets, as il-
lustrated in columns 4, 5 of Fig. [5] For all the above tests,
a moderate amount of nonrigid deformation is applied to
the data point set. Two shapes [6]], a fish and a character, as
shown in the left column of Fig. [5] are used as the prototype
shapes, respectively.

Figure 5. Left column: the prototype shapes. For the rest
columns: examples of model and data point sets in the outlier
(columns 2, 3) and occlusion + outlier (columns 4, 5) tests.

The average matching errors over 100 random trials by
different methods in the 2 categories of tests are shown in
Fig. [6] where error is defined as mean of the Euclidean
distances between the warped ground truth model inliers
and their corresponding data inliers. It can be seen that
our method performs much better than other methods. This
demonstrates our method’s robustness to outliers. Examples
of matching results are shown in Fig.

The average running times of different methods are listed
in Table[I} It is not surprising that our method has longer
running time than other methods since our method is global
optimal, while others are heuristics based. Our method runs
much faster in the case of similarity transformation than
affine transformation. This is because affine transformation
has more parameters, thus requiring more time to converge.

7. Conclusion

We proposed a globally optimal point matching algo-
rithm capable of handling outliers in both point sets. This

Fish (outlier test)

Character (outlier test)

1.2
1.2 > ours (similarity) —~¢ours (similarity)
“=rours (affine) 1 “=rours (affine)
1 RPM
0.8ll&cPD
0.8 [
5 5 MG
11 06 5 06
0.4 0.4
0.2 0.
0.4 0.6 0.4 06 08
Outlier to data ratio Outlier to data ratio
Fish (occlusion+outlier test) Character (occlusion+outlier test)
1.2 ><ours (similarity) 43~ ours (similarity)
“—rours (affine) 1{| <> ours (affine)
1 RPM RPM
4-CPD _,/E”’E' 0 4A:CPD E'/E——‘E
§ o. =MG § =MG
= =
iy Woe
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0.4 : 04
0.1 0.15 0.25 0.3 A 0.15 0.2 0.25 0.3

Occusion to data ratio Occusion to data ratio

Figure 6. Average matching errors over 100 random trials by
different methods for the 2 categories of tests.

(©) (@ (e)

(@ (b)
Figure 7. Examples of matching results by different methods in
the outlier (top 2 rows) and occlusion + outlier (bottom 2 rows)
tests. (a) Ours (similarity); (b) ours (affine); (c) RPM; (d) CPD;
and (e) MG.

Table 1. Average running times of different methods (in seconds)

Outliers Occlusion+Outliers
ours (similarity) 3.0564 2.0102
ours (affine) 34.2416 18.1863
RPM 1.1405 0.9588
CPD 0.0963 0.0924
MG 0.2265 0.1982

algorithm is a non-trival extension of the concave optimiza-
tion approach in [14] by relaxing the condition that each
model point has a counterpart in data point set. We also
proposed a novel lower bounding scheme to make our algo-
rithm efficient. Our experimental results showed that the
proposed method outperforms state-of-the-art methods in
robustness to outliers with competitive time efficiency.



A. Proof of Proposition I]

Since f(p)?TG(p)~'f(p) is a smooth function of p, to
prove it’s convex, it suffices to show that its Hessian matrix
is positive semidefinite.

By taking its partial derivative w.r.t. p, we get the Jaco-
bian vector of f(p)? G(p) ~f(p) as

Joe = [QfTG_l —(fTG_1 ® fTG_l)G]
dp

df
dp
dvech(G)

where the operator "vech’ denotes converting the upper or
lower portion (including the diagonal line) of a symmetric
matrix into a vector [§]]. The constant matrix G 2 2¥(&)

dvech(G) "
Matrices % dvedcih(G) are constant matrices since the

and
)

entries of f(p) and G(p) are affine functions of p.
By taking the partial derivative of J,. w.r.t. p, we get

the Hessian matrix of f(p)” G (p)~'f(p) as

Heo =2 |(45)7 (L7

[ G! —-(frcte e hHa
|-GT(GE G GT(G'®#TG Y oG NG
df
dve%l?(G)
dp

1

If G = 0, then we have G~! = 0and G~! = G 3G %.
Substituting this result into H.,, we get

_o [(df\T dvech(G)\T G=1/2
Hes =2 [(71)) (T) } [GT(G1f®G1/2)

df
(G2 (TG @ GTY?)E) lrle%f(@]

dp

i.e., H.s can be factored as the product of a matrix and its
transpose. Therefore we have H., > 0. This implies that
f(p)TG(p)~f(p) is convex.
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