
End-to-End Integration of a
Convolutional Network, Deformable Parts Model

and Non-Maximum Suppression

Li Wan David Eigen Rob Fergus
Dept. of Computer Science, Courant Institute, New York University

wanli,deigen,fergus@cs.nyu.edu

Abstract
Deformable Parts Models and Convolutional Networks

each have achieved notable performance in object detec-
tion. Yet these two approaches find their strengths in com-
plementary areas: DPMs are well-versed in object compo-
sition, modeling fine-grained spatial relationships between
parts; likewise, ConvNets are adept at producing power-
ful image features, having been discriminatively trained di-
rectly on the pixels. In this paper, we propose a new model
that combines these two approaches, obtaining the advan-
tages of each. We train this model using a new structured
loss function that considers all bounding boxes within an
image, rather than isolated object instances. This enables
the non-maximal suppression (NMS) operation, previously
treated as a separate post-processing stage, to be integrated
into the model. This allows for discriminative training of
our combined Convnet + DPM + NMS model in end-to-end
fashion. We evaluate our system on PASCAL VOC 2007 and
2011 datasets, achieving competitive results on both bench-
marks.

1. Introduction
Object detection has been addressed using a variety

of approaches, including sliding-window Deformable Parts
Models [5, 19, 6], region proposal with classification [7,
16], and location regression with deep learning [13, 14].
Each of these methods have their own advantages, yet are by
no means mutually exclusive. In particular, structured parts
models capture the composition of individual objects from
component parts, yet often use rudimentary features like
HoG [2] that throw away much of the discriminative infor-
mation in the image. By contrast, deep learning approaches
[9, 18, 13], based on Convolutional Networks [10], extract
strong image features, but do not explicitly model object
composition. Instead, they rely on pooling and large fully
connected layers to combine information from spatially dis-
parate regions; these operations can throw away useful fine-
grained spatial relationships important for detection.

In this paper, we propose a framework (shown in Fig. 1)

Figure 1. An overview of our system: (i) a convolutional network
extracts features from an image pyramid; (ii) a set of deformable
parts models (each capturing a different view) are applied to the
convolutional feature maps; (iii) non-maximal suppression is ap-
plied to the resulting response maps, yielding bounding box pre-
dictions. Training is performed using a new loss function that en-
ables back-propagation through all stages.

that combines these two approaches, fusing together struc-
tured learning and deep learning to obtain the advantages
of each. We use a DPM for detection, but replace the HoG
features with features learned by a convolutional network.
This allows the use of complex image features, but still pre-
serves the spatial relationships between object parts during
inference.

An often overlooked aspect of many detection systems
is the non-maximal suppression stage, used to winnow mul-
tiple high scoring bounding boxes around an object in-
stance down to a single detection. Typically, this is a post-
processing operation applied to the set of bounding boxes
produced by the object detector. As such, it is not part of
the loss function used to train the model and any parame-
ters must be tuned by hand. However, as demonstrated by
Parikh and Zitnick [11], NMS can be a major performance
bottleneck (see Fig. 2). We introduce a new type of image-

1

ar
X

iv
:1

41
1.

53
09

v1
 [

cs
.C

V
]

 1
9

N
ov

 2
01

4

level loss function for training that takes into consideration
of all bounding boxes within an image. This differs with
the losses used in existing frameworks that consider single
cropped object instances. Our new loss function enables the
NMS operation trained as part of the model, jointly with the
Convnet and DPM components.

2. Related Work
Most closely related is the concurrent work of Girshick

et al. [8], who also combine a DPM with ConvNet features
in a model called DeepPyramid DPM (DP-DPM). Their
work, however, is limited to integrating fixed pretrained
ConvNet features with a DPM. We independently corrob-
orate the conclusion that using ConvNet features in place
of HoG greatly boosts the performance of DPMs. Further-
more, we show how using a post-NMS online training loss
improves response ordering and addresses errors from the
NMS stage. We also perform joint end-to-end training of
the entire system.

The basic building blocks of our model architecture
come from the DPMs of Felzenszwalb et al. [5] and Zhu
et al. [19][1], and the ConvNet of Krizhevsky et al. [9]. We
make crucial modifications in their integration that enables
the resulting model to achieve competitive object detection
performance. In particular, we develop ways to transfer the
ConvNet from classification to the detection environment,
as well as changes to the learning procedure to enable joint
training of all parts.

The first system to combine structured learning with a
ConvNet is LeCun et al. [10], who train a ConvNet to clas-
sify individual digits, then train with hand written strings of
digits discriminatively. Very recently, Tompson et al. [15]
trained a model for human pose estimation that combines
body part location estimates into a convolutional network,
in effect integrating an MRF-like model with a ConvNet.
Their system, however, requires annotated body part loca-
tions and is applied to pose estimation, whereas our system
does not require annotated parts and is applied to object de-
tection.

Some recent works have applied ConvNets to object
detection directly: Sermanet et al. [13] train a network
to regress on object bounding box coordinates at differ-
ent strides and scales, then merge predicted boxes across
the image. Szegedy et al. [14] regress to a bitmap with
the bounding box target, which they then apply to strided
windows. Both of these approaches directly regress to the
bounding box from the convolutional network features, po-
tentially ignoring many important spatial relationships. By
contrast, we use the ConvNet features as input to a DPM. In
this way, we can include a model of the spatial relationships
between object parts.

In the R-CNN model, Girshick et al. [7] take a differ-
ent approach in the use of ConvNets. Instead of integrating

!"

"#$%&'()*+#'

, - ."!

!"#
!$#
!%#
!&#! #
!'#
!(#
!)#
!*#
!+#
!,#
!-#

(a) Human-machine hybrid person detectors

!"#$% &$%#$%
!"# $ %"!

'(

)(

*(

++(

,(

-(

.(

/(

(b) Human studies

INRIA PASCAL
0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Im
pr

ov
em

en
t i

n
AP

Parts
Spatial Models
NMS

(c) Results
Figure 2: (a) We replaced each component in the machine pipeline (red) with human subjects
(green). (b) The various tasks performed by human subjects. For instance, in the first task (top)
subjects performed the entire person detection process by looking at an input image, and providing
bounding boxes around people in the image. In the remaining tasks, subjects only perform a part of
the process as denoted by the extent of the green bars. (c) Summary of our findings.

machines to form complete object detectors, as seen in Figure 2 (a). The various human tasks in-
volved are summarized in Figure 2 (b). As before, we conducted these human studies on Amazon
Mechanical Turk.

Our experiments concluded that part detection is the weakest link for challenging person detection
datasets. Non-maximal suppression and context can also significantly boost performance. However,
the use of human or machine spatial models does not significantly or consistently affect detection
accuracy. A summary of the results can be seen in Figure 2 (c). This was the first analysis of its
kind that provided the community valuable and concrete feedback about which specific problem to
focus on to improve overall performance: in this case, classifying local image patches into one of
six person-part categories.

3 Challenges

The key idea behind human-debugging is to replace isolated components of a machine pipe-line with
human subjects. This necessitates designing studies that require humans to perform very specific
tasks; whose input and outputs precisely match those used by the equivalent machine implementa-
tion. This leads to several interesting challenges.

Accessing isolated human-models: It is crucial for the information available to humans to be equiv-
alent to that available to the machine implementation. This often involves providing information in

3

Figure 2. Reproduced from Parikh and Zitnick [11]: an ablation
study of the stages in a DPM model [5] . Their figure shows how
significant performance improvements could be obtained by re-
placing the parts detection and non-maximal suppresssion stages
with human subjects. This suggests that these stages limit perfor-
mance within the model. Our work focuses on improving each of
these, replacing the part detectors with a Convnet and integrating
NMS into the model.

a location regressor into the network, they instead produce
candidate region proposals with a separate mechanism, then
use the ConvNet to classify each region. However, this ex-
plicitly resizes each region to the classifier field of view
(fixed size), performing significant distortions to the input,
and requires the entire network stack to be recomputed for
each region. Instead, our integration runs the features in a
convolutional bottom-up fashion over the whole image, pre-
serving the true aspect ratios and requiring only one com-
putational pass.

End-to-end training of a multi-class detector and post-
processing has also been discussed in Desai et al. [3]. Their
approach reformulates NMS as a contextual relationship be-
tween locations. They replace NMS, which removes du-
plicate detections, with a greedy search that adds detection
results using an object class-pairs context model. Whereas
their system handles interactions between different types of
objects, our system integrates NMS in a way that creates
an ordering of results both of different classes and the same
class but different views. In addition, we further integrate
this into a full end-to-end system including ConvNet feature
generation.

3. Model Architecture

The architecture of our model is shown in Fig. 3. For a
given input image x, we first construct an image pyramid
(a) with five intervals over one octave1 We apply the Con-
vNet (b) at each scale xs to generate feature maps φA(xs).
These are then passed to the DPM (c) for each class; as we
describe in Section 3.2, the DPM may also be formulated
as a series of neural network layers. At training time, the
loss is computed using the final detection output obtained
after NMS (d), and this is then back-propagated end-to-end

1We use as many octaves as required to make the smallest dimension
48 pixels in size.

xs=4 xs=1

max

!A(xs)"

F(xs, y)

wv=1 wv=2 wv=3

Fv=1 Fv=2 Fv=3

xs

2x2 max pool
11x11 convolution

2x2 max pool
5x5 convolution

3x3 convolution
3x3 convolution

Layer 1

Layer 2

Layer 4

3

96

256

384

384

!A(xs)"

384

1

1

(a)

(b.i)

(b.ii)

(b.iii)

(b.iv)

(c.i)

(c.ii)

(c.iii)

(c.iv)

(c.v)

xs=0 xs=2 xs=3

(d)
NMS

responses for each scale

Figure 3. Our model architecture, with Convolutional Network
(left), Deformable Parts Model (right) and non-maximal suppres-
sion (top) components. An input x is first repeatedly downsampled
to create an image pyramid (a). We run the convolutional network
on each scale, by performing four layers of convolution and max-
pooling operations (b.ii - b.iv). This produces a set of appearance
features φA(xs) at each scale, which are used as input to a DPM
(c.i). Each object class model has three views of object templates
(c.ii), each of which is composed of a root filter and nine parts fil-
ters. These produce a response map Fv for each view (c.iii), which
are then combined using a pixel-wise max (c.iv) to form a final ac-
tivation map for the object class, F (xs, y). We then perform NMS
(d) across responses for all scales. To generate bounding boxes, we
trace the activation locations back to their corresponding boxes in
the input.

through the entire system, including NMS, DPM and Con-
vNet.

3.1. Convolutional Network

We generate appearance features φA(x) using the first
five layers of a Convolutional Network pre-trained for the
ImageNet Classification task. We first train an eight layer
classification model, which is composed of five convolu-
tional feature extraction layers, plus three fully-connected
classification layers2. After this network has been trained,

2The fully connected layers have 4096 - 4096 - 1000 output units each,
with dropout applied to the two hidden layers. We use the basic model

we throw away the three fully-connected layers, replacing
them instead with the DPM. The five convolutional layers
are then used to extract appearance features.

Note that for detection, we apply the convolutional layers
to images of arbitrary size (as opposed to ConvNet training,
which uses fixed-size inputs). Each layer of the network is
applied in a bottom-up fashion over the entire spatial extent
of the image, so that the total computation performed is still
proportional to the image size. This stands in contrast to [7],
who apply the ConvNet with a fixed input size to different
image regions, and is more similar to [13].

Applying the ImageNet classification model to PASCAL
detection has two scale-related problems that must be ad-
dressed. The first is that there is a total of 16x subsampling
between the input and the fifth layer; that is, each pixel in
φA corresponds to 16 pixels of input — this is insufficient
for detection, as it effectively constrains detected bounding
boxes to a lie on a 16-pixel grid. The second is that the Im-
ageNet classifier was trained on objects that are fairly large,
taking up much of the 224x224 image area. By contrast,
many target objects in PASCAL are significantly smaller.

To address these, we simply apply the first convolution
layer with a stride of 1 instead of 4 when combining with the
DPM (however, we also perform 2x2 pooling after the top
ConvNet layer due to speed issues in training, making the
net resolution increase only a factor of 2). This addresses
both scale issues simultaneously. The feature resolution is
automatically increased by elimination of the stride. More-
over, the scale of objects presented to the network at layers
2 and above is increased by a factor of 4, better aligning
the PASCAL objects to the ImageNet expected size This is
due to the fact that when the second layer is applied to the
output of the stride-1 maps, their field of view is 4x smaller
compared to stride-4, effectively increasing the size of input
objects.

Note that changing the stride of the first layer is effec-
tively the same as upsampling the input image, but pre-
serves resolution in the convolutional filters (if the filters
were downsampled, these would be equivalent operations;
however we found this to work well without changing the
filter size, as they are already just 11x11).

3.2. Deformable Parts Model

3.2.1 Part Responses

The first step in the DPM formulation is to convolve the ap-
pearance features with the root and parts filters, producing
appearance responses. Each object view has both a root fil-
ter and nine parts filters; the parts are arranged on a 3x3 grid
relative to the root, as illustrated in Fig. 4. (This is similar

from [18], which trains the network using random 224x224 crops from the
center 256x256 region of each training image, rescaled so the shortest side
has length 256. This model achieves a top-5 error rate of 18.1% on the
ILSVRC2012 validation set, voting with 2 flips and 5 translations.

to [19], who find this works as well as the more complex
placements used by [5]). Note that the number of root and
parts filters is the same for all classes, but the size of each
root and part may vary between classes and views.

Given appearance filterswroot
A,y,v for each class y and view

v, and filters wpart
A,y,v,p for each part p, the appearance scores

are:

F root
v (xs, y) = wroot

A,y,v ∗ φA(xs) (1)

F part
v,p (xs, y) = wpart

A,y,v,p ∗ φA(xs) (2)

Part responses are then fed to the deformation layer.

3.2.2 Deformation Layer

The deformation layer finds the optimal part locations, ac-
counting for both apperance and a deformation cost that
models the spatial relation of the part to the root. Given
appearance scores F part

v,p , part location p relative to the root,
and deformation parameters wD,v,p for each part, the de-
formed part responses are the following (input variables
(xs, y) omitted):

F def
v,p = max

δi,δj
F part
v,p [pi+δi, pj+δj]+w

part
D,v,pφD(δi, δj) (3)

where F part
v,p [pi + δi, pj + δj] is the part response map

F part
v,p (xs, y) shifted by spatial offset (pi + δi, pj + δj), and
φD(δi, δj) = [|δi|, |δj |, δ2i , δ2j]T is the shape deformation
feature. wpart

D,y,v ≥ 0 are the deformation weights.
Note the maximum in Eqn. 3 is taken independently at

each output spatial location: i.e. for each output location,
we find the max over possible deformations (δi, δj). In
practice, searching globally is unnecessary, and we con-
strain to search over a window [−s, s] × [−s, s] where s
is the spatial size of the part (in feature space). During
training, we save the optimal (δ̂i, δ̂j) at each output loca-
tion found during forward-propagation to use during back-
propagation.

The deformation layer extends standard max-pooling
over (δi, δj) with (i) a shift offset (pi, pj) accounting for
the part location, and (ii) deformation cost wTDφD(δi, δj).
Setting both of these to zero would result in standard max-
pooling.

3.2.3 AND/OR Layer

Combining the scores of root, parts and object views is done
using an AND-like accumulation over parts to form a score
Fv for each view v, followed by an OR-like maximum over
views to form the final object score F :

Fv(xs, y) = F root
v (xs, y) +

∑
p∈parts

F def
v,p (xs, y) (4)

F (xs, y) = max
v∈views

Fv(xs, y) (5)

8 9 7

6 5

1 2 3

4

8 9 7

6 5

1
2

3

4

384 384

(a) wroot
A,v (b) wpart

A,v (c) wpart
A,v , w

part
D,v

Figure 4. Root and parts filter setup for our DPM. (a) Each view
v has a root filter with a different pre-defined aspect ratio. (b)
Part filters are aligned on a 3x3 grid relative to the root. (c) Parts
may deform relative to the root position at a cost, parameterized
by wpart

D .

F (xs, y) is then the final score map for class y at scale s,
given the image x as shown in Fig. 5(left).

3.3. Bounding Box Prediction

After obtaining activation maps for each class at each
scale of input, we trace the activation locations back to their
corresponding bounding boxes in input space. Detection
locations in F (xs, y) are first projected back to boxes in
φA(xs), using the root and parts filter sizes and inferred
parts offsets. These are then projected back into input
space through the convolutional network. As shown in
Fig. 5(right), each pixel in φA(xs) has a field of view of
35 pixels in the input, and moving by 1 pixel in φA moves
by 8 pixels in the input (due to the 8x subsampling of the
convolutional model). Each bounding box is obtained by
choosing the input region that lies between the field of view
centers of the box’s boundary. This means that 17 pixels on
all sides of the input field of view are treated as context, and
the bounding box is aligned to the interior region.

3.4. Non-Maximal Suppression (NMS)

The procedure above generates a list of label assign-
ments A0 = {(bi, yi, ri)i=1...|B|} for the image, where bi
is a bounding box, and yi and ri are its associated class la-
bel and network response score, i.e. ri is equal to F (x, yi)

...root

AND

part1 part9
Def Def

AND

OR

...
AND

17 17 8(p-1) + 1

8

p
!A(xs)

xs

context context bounding
box

Figure 5. Left: Overview of the top part of our network architec-
ture: (i) the root and part layers are convolution layers with dif-
ferent sizes of filter but same input size; (ii) OR/AND/Def layer
preserve the size of the input to the output; (iii) each AND layer
represents an object view which contains a root and 9 parts.
Right: Aligning a bounding box from DPM prediction through the
convolutional network (see Section 3.3).

at the output location corresponding to box bi. B is the set
of all possible bounding boxes in the search.

The final detection result is a subset of this list, obtained
by applying a modified version of non-maximal suppression
derived from [19]. If we label location bi as object type
yi, some neighbors of bi might also have received a high
scores, where the neighbors of b are defined as neigh(b) =
{b′|overlap(b, b′) ≥ θ}. However, neigh(bi) \ bi should
not be labeled as yi to avoid duplicate detections. Applying
this, we get a subset of A = {(bi, yi, ri)i=1...n} as the final
detection result; usually n� |B|.

When calculating overlap(b, b′), we use a symmetric
form when the bounding boxes are for different classes,
but an asymmetric form when the boxes are both of the
same class. For different-class boxes, overlap(b, b′) =
Area(b∩b′)
Area(b∪b′) , and threshold θ = 0.75. For same-class boxes,
e.g. boxes of different views or locations, overlap(b, b′) =
max

(
Area(b∩b′)
Area(b) , Area(b∩b

′)
Area(b′)

)
and θ = 0.5.

4. Final Prediction Loss

4.1. Motivation

Our second main contribution is the use of a final-
prediction loss that takes into account the NMS step used
in inference. In contrast to bootstrapping with a hard nega-
tive pool, such as in [19] [5], we consider each image indi-
vidually when determining positive and negative examples,
accounting for NMS and the views present in the image it-
self. Consider the example in Fig. 6: A person detector
may fire on three object views: red, green, and blue. The
blue (largest in this example) is closest to the ground truth,
while green and red are incorrect predictions. However, we
cannot simply add the green or red boxes to a set negative
examples, since they are indeed present in other images as
occluded people. This leads to a situation where the red
view has a higher inference score than blue or green, i.e.
r(red) > r(blue) and r(red) > r(green), because red is
never labeled as negative in the bootstrapping process. Af-
ter NMS, blue response will be suppressed by red, causing
a NMS error. Such an error can only be avoided when we
have a global view on each image: if r(blue) > r(red),
then we would have a correct final prediction.

4.2. Loss Function

Recall that the NMS stage produces a set of assignments
predicted by the model A = {(bi, yi, ri)i=1...n} from the
set B of all possible assignments. We compose the loss us-
ing two terms, C(A) and C(A′). The first, C(A), measures
the cost incurred by the assignment currently predicted by
the model, while C(A′) measures the cost incurred by an
assignment close to the ground truth. The current predic-
tion cost C(A) is:

Figure 6. Three possible
bounding boxes: blue,
green and red (blue clos-
est to the ground truth).
However, green and red
should not be considered
negative instances (since
they may be positive
in other images where
the person is occluded).
Thus, we want
r(blue) > r(red)
r(blue) > r(green)

C(A) =
∑

(bi,yi,ri)∈A

H(ri, yi)︸ ︷︷ ︸
CP (A)

+
∑

(bj ,yj ,rj)∈S(A)

H(rj , 0)︸ ︷︷ ︸
CN (A)

(6)

where H(r, y) = I(y > 0)max(0, 1 − r)2 + I(y =
0)max(0, r + 1) i.e. a squared hinge error. 3 S(A) is
the set of all bounding boxes predicted to be in the back-
ground (y = 0): S(A) = B \ neigh(A) with neigh(A) =⋃

(bi,yi,ri)∈A neigh(bi). CP (A) and CN (A) are the set of
positive predicted labels and the set of background labels,
respectively.

The second term in the loss, C(A′), measures the cost
incurred by the ground truth bounding boxes under the
model. Let the ground truth bounding box set be Agt =
{(bgti , y

gt
i)i=1...m}. We construct a constrained inference

assignmentA′ close toAgt by choosing for each bgti the box
(b′i, y

′
i, r
′
i) = argmax(b,y,r) r, where the argmax is taken

over all overlap(b, bgti) ≥ θ′; that is, the box with high-
est response out of those with sufficient overlap with the
ground truth. (θ′ = 0.7 in our experiments.) Similarly to
before, the cost C(A′) is:

C(A′) =
∑

(b′i,y
′
i,r

′
i)∈A′

H(r′i, y
′
i) +

∑
(b′j ,y

′
j ,r

′
j)∈S(A′)

H(r′j , 0) (7)

Thus we measure two costs: that of the current model
prediction, and that of an assignment close to the ground
truth. The final discriminative training loss is difference be-
tween these two:

L(A,A′) = C(A′)− C(A) ≥ 0 (8)

Note this loss is always greater than 0 because the con-
strained assignment always has cost at least as large as
the unconstrained one, and L(A,A′) = 0 when A = A′,
i.e. when we produce detection results which are consistent
with the ground truth Agt.

3 where I is an indicator function that equals 1 iff the condition holds

Combining Equations 6 and 7 leads to

L(A,A′) = LP (A,A′) + LN (A,A′) (9)

LP (A,A′) =
∑

(b′,y′,r′)∈A′

H(r′, y′)−
∑

(b,y,r)∈A

H(r, y)

LN (A,A′) =
∑

(b′,y′,r′)∈S(A′)

H(r′, 0)−
∑

(b,y,r)∈S(A)

H(r, 0)

=
∑

(b,y,r)∈N\N ′

H(r, 0)−
∑

(b′,y′,r′)∈N ′\N

H(r′, 0)

where N = neigh(A) and N ′ = neigh(A′). The last line
comes from the fact that most of the boxes included in S(A)
and S(A′) are shared, and cancel out (see Fig. 7); thus we
can compute the loss looking only at these neighborhood
sets.

Figure 7. Illustration of ground-truth-constrained assignment A′

and unconstrained assignments A from the model, along with as-
sociated neighborhoods. Note neighborhoods are actually dense,
and we show only a few boxes for illustration.

4.3. Interpretation and Effect on NMS Ordering

As mentioned earlier, a key benefit to training on the fi-
nal predictions as we describe is that our loss accounts for
the NMS inference step. In our example in Fig. 6, if the
response r(red) > r(blue), then red ∈ A and blue ∈ A′.
Thus LP (A,A′) will decrease r(red) and increase r(blue).
This ensures the responses r are in an appropriate order
when NMS is applied. Once r(blue) > r(red), the mis-
take will be fixed.

The term LN in the loss is akin to an online version of
hard negative mining, ensuring that the background is not
detected as a positive example.

4.4. Soft Positive Assignments

When training jointly with the ConvNet, it is insufficient
to measure the cost using only single positive instances, as
the network can easily overfit to the individual examples.
We address this using soft positive assignments in place of
hard assignments; that is, we replace the definition of CP

in Eqn. 6 used above with one using a weighted average of
neighbors for each box in the assignment list:

CP (A) =
∑
bi∈A

∑
bj∈neigh(bi) αijH(rj , yj)∑

j αij

where αij = 2(Area(bi ∩ bj)/Area(bi))− 1, and similarly
for CP (A′).

Note a similar strategy has been tried in the case of HoG
features before, but was not found to be beneficial [5]. By
contrast, we found this to be important for integrating the
ConvNet. We believe this is because the ConvNet has many
more parameters than can easily overfit, whereas HoG is
more constrained.

5. Training
Our model is trained in online fashion with SGD, with

each image being forward propagated through the model
and then the resulting error backpropagated to update the
parameters. During the fprop, the position of the parts in
the DPM are computed and then used for the subsequent
bprop. Training in standard DPM models [5] differs in two
respects: (i) a fixed negative set is mined periodically (we
have no such set, instead processing each image in turn) and
(ii) part positions on this negative set are fixed for many
subsequent parameter updates.

We first pretrain the DPM root and parts filters without
any deformation, using a fixed set of 20K random negative
examples for each class. Note that during this stage, the
ConvNet weights are fixed to their initialization from Ima-
geNet. Following this, we perform end-to-end joint training
of the entire system, including ConvNet, DPM and NMS
(via the final prediction loss). During joint training, we use
inferred part locations in the deformation layer.

The joint training phase is outlined in Algorithm 1. For
each training image sample, we build an image pyramid,
and fprop each scale of the pyramid through the ConvNet
and DPM to generate the assignment list A0. Note A0 is
represented using the output response maps. We then apply
NMS to get the final assignmentsA, as well as construct the
ground-truth constrained assignments A′. Using the final
prediction loss L(A,A′) from Eqn. 9, we find the gradient
and backpropagate through the network to update the model
weights. We repeat this for 15 epochs through the training
set with a learning rate η = 10−3, then another 15 using
η = 10−4.

At test time, we simply forward-propagate the input
pyramid through the network (ConvNet and DPM) and ap-
ply NMS.

6. Experiments
We apply our model to the PASCAL VOC 2007 and

VOC 2011/2012 object detection tasks [4]. Table 1 shows

Algorithm 1 Training algorithm for each image
1: Input: Image X with ground truth assignment Agt

2: Build image pyramid X → X1, X2, . . . , Xs

3: A0 = {}
4: for Xi ∈ X1, X2, . . . Xs do
5: A0 = A0 ∪ assignments from responses F (Xi;w)
6: end for
7: find A = NMS(A0)
8: find A′ using A0 and Agt

9: for Xi ∈ X1, X2, . . . Xs do
10: find gradient at scale i: gi =

∂L(A,A′)
∂F (Xi;w)

∂F (Xi;w)
∂w

11: end for
12: w ← w + η

∑
i gi

how each component in our system improves performance
on the PASCAL 2007 dataset. Our baseline implementation
of HoG DPM with bootstrap training achieves 30.7 mAP.
Switching HoG for a fixed pretrained ConvNet results in
a large 32% relative performance gain to 40.8 mAP, cor-
roborating the finding of [8] that such features greatly im-
prove performance. On top of this, training using our on-
line post-NMS procedure improves substantially improves
performance to 43.3 mAP, and jointly training all compo-
nents (ConvNet + DPM + NMS) further improves to 46.5
mAP. In addition, we can train different models to produce
detections for each class, or train all classes at once using
a single model with shared ConvNet feature extractor (but
different DPM components). Training all classes together
further boosts performance to 46.9% mAP. Note that this
allows the post-NMS loss to account for objects of different
classes as well as locations and views within classes, and
also makes inference faster due to the shared features. We
call this model “conv-dpm+FT-all”, and the separate-class
set of models “conv-dpm+FT”.

Comparisons with other systems are shown in Tables 2
(VOC 2007) and 3 (VOC 2011/2012). For VOC 2007 (Ta-
ble 2), our results are very competitive, beating all other
methods except the latest version of R-CNN trained on fc7
(“R-CNN(v4)FT fc7”). Notably, we outperform the DP-
DPM method (45.2% vs. our 46.9%), due to our integrated
joint training and online NMS loss. In addition, our final
model achieves comparible performance to R-CNN [7] with
a similar feature extractor using pool5 features (46.9% vs.
47.3%). Recent version of R-CNN achieve a better per-
formance 54.2% using a more complex network which in-
cludes fully connected layers (fc7); extending our model to
use deeper networks may also provide similar gains from
better feature representations.

Table 3 shows our system performance on VOC2011.
Here our system outperforms comparison methods, and in
particular DP-DPM, achieving 43.7% mAP versus 29.6%
for HoG-DPM [5] and 41.6% for DP-DPM [8].

Bootstrap NMS loss NMS loss+FT
HoG-root 22.8 23.9 N/A

HoG-root+part 30.7 33.2 N/A
conv-root 38.7 40.3 43.1

conv-root+part 40.8 43.3 46.5

Table 1. A performance breakdown of our approach. Columns
show different training methods and loss functions. Rows show
different feature extractors and DPM with/without parts. Note:
(i) conv features give a significant boost; (ii) our new NMS loss
consistently improves performance, irrespective of features/model
used and (iii) fine-tuning (FT) of the entire model gives further
gains.

Finally, we provide examples of detections from our
model in Figures 8, 9 and 10. Detection results are either
show in green or red with ground truth bounding box in
blue. Figure 10 illustrates training with our new loss func-
tion helps model fix problem for both inter-class and intra-
class NMS. Our loss allows the larger view of the train to
be selected in (b), rather than the more limited view that ap-
pears in more images. However, the gains are not limited
to selecting larger views: In (d), we see a cat correctly se-
lected at a smaller scale. Finally, there are also examples of
inter-class correction in (g), e.g. “train” being selected over
“bus”.

Figure 8 shows the effect of using a DPM with parts over
just the root-only model. Figures 9 shows correct and incor-
rect detection examples.

Figure 8. Examples of detections using root filter only (left half
of each example; red) and the DPM with both root and part filters
(right halves; green+orange).

7. Discussion
We have described an object detection system that inte-

grates a Convolutional Network, Deformable Parts model
and NMS loss in an end-to-end fashion. This fuses to-
gether aspects from both structured learning and deep learn-
ing: object structures are modeled by a composition of parts
and views, while discriminative features are leveraged for
appearance comparisons. Our evaluations show that our
model achieves competitive performance on PASCAL VOC
2007 and 2011 datasets, and achieves substantial gains from
integrating both ConvNet features as well as NMS, and
training all parts jointly.

VOC2007 aero bike bird boat botl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv mAP
DetectorNet [14] 29.2 35.2 19.4 16.7 3.7 53.2 50.2 27.2 10.2 34.8 30.2 28.2 46.6 41.7 26.2 10.3 32.8 26.8 39.8 47.0 30.5
HoG-dpm(v5) [5] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
HSC-dpm [12] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3
Regionlets [17] 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7
DP-DPM [8] 44.6 65.3 32.7 24.7 35.1 54.3 56.5 40.4 26.3 49.4 43.2 41.0 61.0 55.7 53.7 25.5 47.0 39.8 47.9 59.2 45.2
R-CNN [7]fc7 56.1 58.8 34.4 29.6 22.6 50.4 58.0 52.5 18.3 40.1 41.3 46.8 49.5 53.5 39.7 23.0 46.4 36.4 50.8 59.0 43.4
R-CNN(v1)FT pool5 55.6 57.5 31.5 23.1 23.2 46.3 59.0 49.2 16.5 43.1 37.8 39.7 51.5 55.4 40.4 23.9 46.3 37.9 49.7 54.1 42.1
R-CNN(v4)FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3
R-CNN(v1)FT fc7 60.3 62.5 41.4 37.9 29.0 52.6 61.6 56.3 24.9 52.3 41.9 48.1 54.3 57.0 45.0 26.9 51.8 38.1 56.6 62.2 48.0
R-CNN(v4)FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2
HoG 29.3 55.5 9.3 13.3 25.2 43.1 53 20.4 18.5 25.1 23.3 10.3 55.4 44.2 40.8 10.5 19.8 34.3 43.3 39.5 30.7
HoG+ 32.8 58.5 10.3 16.0 27.1 46.1 56.9 21.9 20.6 27.2 26.4 13.0 57.8 47.5 44.2 11.0 22.7 36.5 45.8 42.1 33.2
conv-root 38.1 60.9 21.9 17.8 29.3 51.4 58.5 26.7 16.5 31.1 33.2 24.2 65.0 58.0 44.4 21.7 35.4 36.8 49.5 54.1 38.7
conv-dpm 45.3 64.5 21.1 21.0 34.2 54.4 59.0 32.6 20.0 31.0 34.5 25.3 63.8 60.1 45.0 23.2 36.0 38.4 51.5 56.2 40.8
conv-dpm+ 48.9 67.3 25.3 25.1 35.7 58.3 60.1 35.3 22.7 36.4 37.1 26.9 64.9 62.0 47.0 24.1 37.5 40.2 54.1 57.0 43.3
conv-dpm+ FT 50.9 68.3 31.9 28.2 38.1 61.0 61.3 39.8 25.4 46.5 47.3 29.6 67.5 63.4 46.1 25.2 39.1 45.4 57.0 57.9 46.5
conv-dpm+ FT-all 49.3 69.5 31.9 28.7 40.4 61.5 61.5 41.5 25.5 44.5 47.8 32.0 67.5 61.8 46.7 25.9 40.5 46.0 57.1 58.2 46.9

Table 2. Mean AP on PASCAL VOC 2007

VOC2011/2012 aero bike bird boat botl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv mAP
HoG-DPM [5] 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6
conv-root 56.0 45.4 20.6 12.7 29.5 49.2 38.6 38.1 16.4 28.2 22.9 28.8 48.3 52.1 47.7 17.0 39.1 29.6 41.2 48.6 35.5
conv-dpm 56.9 53.2 26.6 17.6 29.9 51.4 42.5 42.4 16.5 31.6 25.0 37.7 52.7 56.7 49.9 16.5 41.0 30.9 44.4 49.7 38.4
conv-dpm+ 59.6 56.6 29.8 20 31.1 55.8 42.8 43.3 18.3 35.6 28.5 39.7 56.3 59.7 51.1 19.6 42.1 33.1 49.1 50.3 41.1
conv-dpm+FT-all 63.3 60.2 33.4 24.4 33.6 60 44.7 49.3 19.4 36.6 30.2 40.7 57.7 61.4 52.3 21.2 44.4 37.9 51.1 52.2 43.7

Table 3. Mean AP on PASCAL VOC 2011

Figure 9. Examples of correct (green) and incorrect (red) detections found by our model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Examples of model with (green) and without (red) NMS loss (parts location are ommited)

References
[1] Y. Chen, L. Zhu, and A. L. Yuille. Active mask hier-

archies for object detection. In ECCV 2010, volume
6315 of Lecture Notes in Computer Science, pages 43–
56. Springer, 2010. 2

[2] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In CVPR, 2005. 1

[3] C. Desai, D. Ramanan, and C. Fowlkes. Discrimi-
native models for multi-class object layout. Interna-
tional Journal of Computer Vision, 2011. 2

[4] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The PASCAL Visual Ob-
ject Classes Challenge 2012 (VOC2012) Results. 6

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan. Object detection with discriminatively
trained part-based models. IEEE Trans. Pattern Anal.
Mach. Intell., 32(9):1627–1645, Sept. 2010. 1, 2, 4, 5,
6, 7, 8

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan. Object detection with discriminatively
trained part based models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 32(9):1627–
1645, 2010. 1

[7] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik.
Rich feature hierarchies for accurate object detection
and semantic segmentation. CoRR, abs/1311.2524,
2013. 1, 2, 3, 7, 8

[8] R. B. Girshick, F. N. Iandola, T. Darrell, and J. Ma-
lik. Deformable part models are convolutional neural
networks. CoRR, abs/1409.5403, 2014. 2, 7, 8

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. pages 1106–1114, 2012. 1, 2

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278 –2324,
nov 1998. 1, 2

[11] D. Parikh and C. L. Zitnick. Human-debugging of ma-
chines. In In NIPS WCSSWC, 2011. 1, 2

[12] X. Ren and D. Ramanan. Histograms of sparse codes
for object detection. 2013 IEEE Conference on Com-
puter Vision and Pattern Recognition, 0:3246–3253,
2013. 8

[13] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-
gus, and Y. LeCun. Overfeat: Integrated recogni-
tion, localization and detection using convolutional
networks. CoRR, abs/1312.6229, 2013. 1, 2, 3

[14] C. Szegedy, A. Toshev, and D. Erhan. Deep neural
networks for object detection. NIPS, 2013. 1, 2, 8

[15] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint
training of a convolutional network and a graph-
ical model for human pose estimation. CoRR,
abs/1406.2984, 2014. 2

[16] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders.
Selective search for object recognition. International
Journal of Computer Vision, 104(2):154–171, 2013. 1

[17] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets
for generic object detection. IEEE 14th International
Conf. on Computer Vision, 2013. 8

[18] M. D. Zeiler and R. Fergus. Visualizing and
understanding convolutional networks. CoRR,
abs/1311.2901, 2013. 1, 3

[19] L. L. Zhu, Y. Chen, A. Yuille, and W. Freeman. La-
tent hierarchical structural learning for object detec-
tion. 2010 IEEE Conference on Computer Vision and
Pattern Recognition, 0:1062–1069, 2010. 1, 2, 4, 5

