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Abstract

This paper aims to accelerate the test-time computation
of deep convolutional neural networks (CNNs). Unlike ex-
isting methods that are designed for approximating linear
filters or linear responses, our method takes the nonlinear
units into account. We minimize the reconstruction error
of the nonlinear responses, subject to a low-rank constraint
which helps to reduce the complexity of filters. We develop
an effective solution to this constrained nonlinear optimiza-
tion problem. An algorithm is also presented for reducing
the accumulated error when multiple layers are approxi-
mated. A whole-model speedup ratio of 4× is demonstrated
on a large network trained for ImageNet, while the top-5 er-
ror rate is only increased by 0.9%. Our accelerated model
has a comparably fast speed as the “AlexNet” [11], but is
4.7% more accurate.

1. Introduction
This paper addresses efficient test-time computation of

deep convolutional neural networks (CNNs) [12, 11]. Since
the success of CNNs [11] for large-scale image classifica-
tion, the accuracy of the newly developed CNNs [24, 17,
8, 18, 19] has been continuously improving. However, the
computational cost of these networks (especially the more
accurate but larger models) also increases significantly. The
expensive test-time evaluation of the models can make them
impractical in real-world systems. For example, a cloud ser-
vice needs to process thousands of new requests per sec-
onds; portable devices such as phones and tablets mostly
have CPUs or low-end GPUs only; some recognition tasks
like object detection [4, 8, 7] are still time-consuming for
processing a single image even on a high-end GPU. For
these reasons and others, it is of practical importance to ac-
celerate the test-time computation of CNNs.

There have been a few studies on approximating deep
CNNs for accelerating test-time evaluation [22, 3, 10]. A
commonly used assumption is that the convolutional filters
are approximately low-rank along certain dimensions. So
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the original filters can be approximately decomposed into
a series of smaller filters, and the complexity is reduced.
These methods have shown promising speedup ratios on a
single [3] or a few layers [10] with some degradation of
accuracy.

The algorithms and approximations in the previous work
are developed for reconstructing linear filters [3, 10] and
linear responses [10]. However, the nonlinearity like the
Rectified Linear Units (ReLU) [14, 11] is not involved in
their optimization. Ignoring the nonlinearity will impact
the quality of the approximated layers. Let us consider a
case that the filters are approximated by reconstructing the
linear responses. Because the ReLU will follow, the model
accuracy is more sensitive to the reconstruction error of the
positive responses than to that of the negative responses.

Moreover, it is a challenging task of accelerating the
whole network (instead of just one or a very few layers).
The errors will be accumulated if several layers are approx-
imated, especially when the model is deep. Actually, in the
recent work [3, 10] the approximations are applied on a sin-
gle layer of large CNN models, such as those trained on
ImageNet [2, 16]. It is insufficient for practical usage to
speedup one or a few layers, especially for the deeper mod-
els which have been shown very accurate [18, 19, 8].

In this paper, a method for accelerating nonlinear con-
volutional networks is proposed. It is based on minimizing
the reconstruction error of nonlinear responses, subject to a
low-rank constraint that can be used to reduce computation.
To solve the challenging constrained optimization problem,
we decompose it into two feasible subproblems and itera-
tively solve them. We further propose to minimize an asym-
metric reconstruction error, which effectively reduces the
accumulated error of multiple approximated layers.

We evaluate our method on a 7-convolutional-layer
model trained on ImageNet. We investigate the cases of
accelerating each single layer and the whole model. Experi-
ments show that our method is more accurate than the recent
method of Jaderberg et al.’s [10] under the same speedup ra-
tios. A whole-model speedup ratio of 4× is demonstrated,
and its degradation is merely 0.9%. When our model is ac-
celerated to have a comparably fast speed as the “AlexNet”
[11], our accuracy is 4.7% higher.
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2. Approaches
2.1. Low-rank Approximation of Responses

Our observation is that the response at a position of a
convolutional feature map approximately lies on a low-rank
subspace. The low-rank decomposition can reduce the com-
plexity. To find the approximate low-rank subspace, we
minimize the reconstruction error of the responses.

More formally, we consider a convolutional layer with a
filter size of k × k × c, where k is the spatial size of the
filter and c is the number of input channels of this layer. To
compute a response, this filter is applied on a k × k × c

volume of the layer input. We use x ∈ Rk2c+1 to denote a
vector that reshapes this volume (appending one as the last
entry for the bias). A response y ∈ Rd at a position of a
feature map is computed as:

y = Wx. (1)

where W is a d-by-(k2c+1) matrix, and d is the number
of filters. Each row of W denotes the reshaped form of a
k × k × c filter (appending the bias as the last entry). We
will address the nonlinear case later.

If the vector y is on a low-rank subspace, we can write
y = M(y − ȳ) + ȳ, where M is a d-by-d matrix of a rank
d′ < d and ȳ is the mean vector of responses. Expanding
this equation, we can compute a response by:

y = MWx + b, (2)

where b = ȳ − Mȳ is a new bias. The rank-d′ matrix
M can be decomposed into two d-by-d′ matrices P and Q
such that M = PQ>. We denote W′ = Q>W as a d′-by-
(k2c+1) matrix, which is essentially a new set of d′ filters.
Then we can compute (2) by:

y = PW′x + b. (3)

The complexity of using Eqn.(3) is O(d′k2c) + O(dd′) ,
while the complexity of using Eqn.(1) is O(dk2c). For
many typical models/layers, we usually have O(dd′) �
O(d′k2c), so the computation in Eqn.(3) will reduce the
complexity to about d′/d.

Fig. 1 illustrates how to use Eqn.(3) in a network. We
replace the original layer (given by W) by two layers (given
by W′ and P). The matrix W′ is actually d′ filters whose
sizes are k × k × c. These filters produce a d′-dimensional
feature map. On this feature map, the d-by-d′ matrix P can
be implemented as d filters whose sizes are 1 × 1 × d′. So
P corresponds to a convolutional layer with a 1×1 spatial
support, which maps the d′-dimensional feature map to a
d-dimensional one. The usage of 1 × 1 spatial filters to
adjust dimensions has been adopted for designing network
architectures [13, 19]. But in those papers, the 1 × 1 filters

𝑐 channels

W′ P
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W

(a)
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Figure 1. Illustration of the approximation. (a) An original layer
with complexity O(dk2c). (b) An approximated layer with com-
plexity reduced to O(d′k2c) +O(dd′).

are used to reduce dimensions, while in our case they restore
dimensions.

Note that the decomposition of M = PQ> can be arbi-
trary. It does not impact the value of y computed in Eqn.(3).
A simple decomposition is the Singular Vector Decomposi-
tion (SVD) [5]: M = Ud′Sd′Vd′>, where Ud′ and Vd′ are
d-by-d′ column-orthogonal matrices and Sd′ is a d′-by-d′

diagonal matrix. Then we can obtain P = Ud′S
1/2
d′ and

Q = Vd′S
1/2
d′ .

In practice the low-rank assumption is an approximation,
and the computation in Eqn.(3) is approximate. To find an
approximate low-rank subspace, we optimize the following
problem:

min
M

∑
i

‖(yi − ȳ)−M(yi − ȳ)‖22, (4)

s.t. rank(M) ≤ d′.

Here yi is a response sampled from the feature maps in the
training set. This problem can be solved by SVD [5] or ac-
tually Principal Component Analysis (PCA): let Y be the d-
by-n matrix concatenating n responses with the mean sub-
tracted, compute the eigen-decomposition of the covariance
matrix YY> = USU> where U is an orthogonal matrix
and S is diagonal, and M = Ud′Ud′> where Ud′ are the
first d′ eigenvectors. With the matrix M computed, we can
find P = Q = Ud′ .

How good is the low-rank assumption of the responses?
We sample the responses from a CNN model (with 7 con-
volutional layers, detailed in Sec. 3) trained on ImageNet
[2]. For the responses of a convolutional layer (from 3,000
randomly sampled training images), we compute the eigen-
values of their covariance matrix and then plot the sum of
the largest eigenvalues (Fig. 2). We see that substantial en-
ergy is in a small portion of the largest eigenvectors. For
example, in the Conv2 layer (d = 256) the first 128 eigen-
vectors contribute over 99.9% energy; in the Conv7 layer
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Figure 2. PCA accumulative energy of the responses in each layer, presented as the sum of largest d′ eigenvalues (relative to the total
energy when d′ = d). Here the filter number d is 96 for Conv1, 256 for Conv2, and 512 for Conv3-7 (detailed in Table 1).

(d = 512), the first 256 eigenvectors contribute over 95%
energy. This indicates that we can use a fraction of the fil-
ters to precisely approximate the original filters.

The low-rank behavior of the responses y is because
of the low-rank behaviors of the filters W and the inputs
x. While the low-rank assumptions of filters have been
adopted in recent work [3, 10], we further adopt the low-
rank assumptions of the filter input x, which is a local vol-
ume and should have correlations. The responses y will
have lower rank than W and x, so the approximation can be
more precise. In our optimization (4), we directly address
the low-rank subspace of y.

2.2. The Nonlinear Case

Next we investigate the case of using nonlinear units.
We use r(·) to denote the nonlinear operator. In this pa-
per we focus on the Rectified Linear Unit (ReLU) [14]:
r(·) = max(·, 0). A nonlinear response is given by r(Wx)
or simply r(y). We minimize the reconstruction error of the
nonlinear responses:

min
M,b

∑
i

‖r(yi)− r(Myi + b)‖22, (5)

s.t. rank(M) ≤ d′.

Here b is a new bias to be optimized, and r(My + b) =
r(MWx + b) is the nonlinear response computed by the
approximated filters.

The above problem is challenging due to the nonlinearity
and the low-rank constraint. To find a feasible solution, we
relax it as:

min
M,b,{zi}

∑
i

‖r(yi)− r(zi)‖22 + λ‖zi − (Myi + b)‖22

s.t. rank(M) ≤ d′. (6)

Here {zi} is a set of auxiliary variables of the same size as
{yi}. λ is a penalty parameter. If λ → ∞, the solution
to (6) will converge to the solution to (5) [23]. We adopt an

alternating solver, fixing {zi} and solving for M, b and vice
versa.

(i) The subproblem of M, b. In this case, {zi} are fixed. It
is easy to show b = z̄−Mȳ where z̄ is the sample mean of
{zi}. Substituting b into the objective function, we obtain
the problem involving M:

min
M

∑
i

‖(zi − z̄)−M(yi − ȳ)‖22, (7)

s.t. rank(M) ≤ d′.

Let Z be the d-by-n matrix concatenating the vectors of
{zi − z̄}. We rewrite the above problem as:

min
M
‖Z−MY‖2F, (8)

s.t. rank(M) ≤ d′.

Here ‖ · ‖F is the Frobenius norm. This optimization prob-
lem is a Reduced Rank Regression problem [6, 21, 20], and
it can be solved by a kind of Generalized Singular Vector
Decomposition (GSVD) [6, 21, 20]. The solution is as fol-
lows. Let M̂ = ZY>(YY>)−1. The GSVD is applied on M̂
as M̂ = USV>, such that U is a d-by-d orthogonal matrix
satisfying U>U = Id where Id is a d-by-d identity matrix,
and V is a d-by-d matrix satisfying V>YY>V = Id (called
generalized orthogonality). Then the solution M to (8) is
given by M = Ud′Sd′Vd′> where Ud′ and Vd′ are the first
d′ columns of U and V and Sd′ are the largest d′ singular
values. We can further show that if Z = Y (so the problem
in (7) becomes (4)), this solution degrades to computing the
eigen-decomposition of YY>.

(ii) The subproblem of {zi}. In this case, M and b are
fixed. Then in this subproblem each element zij of each
vector zi is independent of any other. So we solve a 1-
dimensional optimization problem as follows:

min
zij

(r(yij)− r(zij))2 + λ(zij − y′ij)2, (9)



where y′ij is the j-th entry of Myi + b. We can separately
consider zij ≥ 0 and zij < 0 and remove the ReLU opera-
tor. Then we can derive the solution as follows: let

z
′

ij = min(0, y′ij) (10)

z
′′

ij = max(0,
λ · y′ij + r(yij)

λ+ 1
) (11)

then zij = z
′

ij if z
′

ij gives a smaller value in (9) than z
′′

ij ,
and otherwise zij = z

′′

ij .
Although we focus on the ReLU, our method is appli-

cable for other types of nonlinearities. The subproblem in
(9) is a 1-dimensional nonlinear least squares problem, so
can be solved by gradient descent or simply line search. We
plan to study this issue in the future.

We alternatively solve (i) and (ii). The initialization is
given by the solution to the linear case (4). We warm up the
solver by setting the penalty parameter λ = 0.01 and run
25 iterations. Then we increase the value of λ. In theory, λ
should be gradually increased to infinity [23]. But we find
that it is difficult for the iterative solver to make progress if
λ is too large. So we increase λ to 1, run 25 more iterations,
and use the resulting M as our solution. Then we compute
P and Q by SVD on M.

2.3. Asymmetric Reconstruction for Multi-Layer

To accelerate a whole network, we apply the above
method sequentially on each layer, from the shallow lay-
ers to the deeper ones. If a previous layer is approximated,
its error can be accumulated when the next layer is approx-
imated. We propose an asymmetric reconstruction method
to address this issue.

Let us consider a layer whose input feature map is
not precise due to the approximation of the previous
layer/layers. We denote the approximate input to the cur-
rent layer as x̂. For the training samples, we can still com-
pute its non-approximate responses as y = Wx. So we can
optimize an “asymmetric” version of (5):

min
M,b

∑
i

‖r(Wxi)− r(MWx̂i + b)‖22, (12)

s.t. rank(M) ≤ d′.

Here in the first term xi is the non-approximate input, while
in the second term x̂i is the approximate input due to the
previous layer. We need not use x̂i in the first term, be-
cause r(Wxi) is the real outcome of the original network
and thus is more precise. On the other hand, we do not use
xi in the second term, because r(MWx̂i + b) is the ac-
tual operation of the approximated layer. This asymmetric
version can reduce the accumulative errors when multiple
layers are approximated. The optimization problem in (12)
can be solved using the same algorithm as for (5).
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Figure 3. PCA accumulative energy and the accuracy rates (top-
5). Here the accuracy is evaluated using the linear solution (the
nonlinear solution has a similar trend). Each layer is evaluated
independently, with other layers not approximated. The accuracy
is shown as the difference to no approximation.

2.4. Rank Selection for Whole-Model Acceleration

In the above, the optimization is based on a target d′ of
each layer. d′ is the only parameter that determines the com-
plexity of an accelerated layer. But given a desired speedup
ratio of the whole model, we need to determine the proper
rank d′ used for each layer.

Our strategy is based on an empirical observation that the
PCA energy is related to the classification accuracy after ap-
proximations. To verify this observation, in Fig. 3 we show
the classification accuracy (represented as the difference to
no approximation) vs. the PCA energy. Each point in this
figure is empirically evaluated using a value of d′. 100%
energy means no approximation and thus no degradation of
classification accuracy. Fig. 3 shows that the classification
accuracy is roughly linear on the PCA energy.

To simultaneously determine the rank for each layer, we
further assume that the whole-model classification accuracy
is roughly related to the product of the PCA energy of all
layers. More formally, we consider this objective function:

E =
∏
l

d′
l∑

a=1

σl,a (13)

Here σl,a is the a-th largest eigenvalue of the layer l, and∑d′
l

a=1 σl,a is the PCA energy of the largest d′l eigenvalues
in the layer l. The product

∏
l is over all layers to be ap-

proximated. The objective E is assumed to be related to
the accuracy of the approximated whole network. Then we
optimize this problem:

max
{d′

l}
E , s.t.

∑
l

d′l
dl
Cl ≤ C. (14)



layer filter size # channels # filters stride output size complexity (%) # of zeros
Conv1 7 × 7 3 96 2 109 × 109 3.8 0.49
Pool1 3 × 3 3 37 × 37
Conv2 5 × 5 96 256 1 35 × 35 17.3 0.62
Pool2 2 × 2 2 18 × 18
Conv3 3 × 3 256 512 1 18 × 18 8.8 0.60
Conv4 3 × 3 512 512 1 18 × 18 17.5 0.69
Conv5 3 × 3 512 512 1 18 × 18 17.5 0.69
Conv6 3 × 3 512 512 1 18 × 18 17.5 0.68
Conv7 3 × 3 512 512 1 18 × 18 17.5 0.95

Table 1. The architecture of the model. Each convolutional layer is followed by ReLU. The final convolutional layer is followed by a spatial
pyramid pooling layer [8] that have 4 levels ({6× 6, 3× 3, 2× 2, 1× 1}, totally 50 bins). The resulting 50× 512-d is fed into the 4096-d
fc layer (fc6), followed by another 4096-d fc layer (fc7) and a 1000-way softmax layer. The convolutional complexity is the theoretical
time complexity, shown as relative numbers to the total convolutional complexity. The (relative) number of zeros is the calculated on the
responses of the layer, which shows the “sparsity” of the layer.

Here dl is the original number of filters in the layer l, and
Cl is the original time complexity of the layer l. So d′

l

dl
Cl

is the complexity after the approximation. C is the total
complexity after the approximation, which is given by the
desired speedup ratio. This problem means that we want
to maximize the accumulated accuracy subject to the time
complexity constraint.

The problem in (14) is a combinatorial problem [15].
So we adopt a greedy strategy to solve it. We initialize
d′l as dl, and consider the set {σl,a}. In each step we
remove an eigenvalue σl,d′

l
from this set, chosen from a

certain layer l. The relative reduction of the objective is
4E/E = σl,d′/

∑d′
l

a=1 σl,a, and the reduction of complex-
ity is 4C = 1

dl
Cl. Then we define a measure as 4E/E4C .

The eigenvalue σl,d′
l

that has the smallest value of this mea-
sure is removed. Intuitively, this measure favors a small re-
duction of4E/E and a large reduction of complexity4C.
This step is greedily iterated, until the constraint of the total
complexity is achieved.

2.5. Discussion

In our formulation, we focus on reducing the number of
filters (from d to d′). There are algorithmic advantages of
operating on the “d” dimension. Firstly, this dimension can
be easily controlled by the rank constraint rank(M) ≤ d′.
This constraint enables closed-form solutions, e.g., PCA to
the problem (4) or GSVD to the subproblem (7). Secondly,
the optimized low-rank projection M can be exactly de-
composed into low-dimensional filters (P and Q) by SVD.
These simple and close-form solutions can produce good
results using a very small subset of training images (3,000
out of one million).

3. Experiments
We evaluate on the “SPPnet (Overfeat-7)” model [8],

which is one of the state-of-the-art models for ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) 2014
[16]. This model (detailed in Table 1) has a similar archi-
tecture to the Overfeat model [17], but has 7 convolutional
layers. A spatial pyramid pooling layer [8] is used after the
last convolutional layer, which improves the classification
accuracy. We train the model on the 1000-class dataset of
ImageNet 2012 [2, 16], following the details in [8].

We evaluate the “top-5 error” (or simply termed as “er-
ror”) using single-view testing. The view is the center
224 × 224 region cropped from the resized image whose
shorter side is 256. The single-view error rate of the model
is 12.51% on the ImageNet validation set, and the increased
error rates of the approximated models are all based on this
number. For completeness, we report that this model has
11.1% error using 10-view test and 9.3% using 98-view test.

We use this model due to the following reasons. First,
its architecture is similar to many existing models [11, 24,
17, 1] (such as the first/second layers and the cascade us-
age of 3×3 filters), so we believe most observations should
be valid on other models. Second, on the other hand, this
model is deep (7-conv.) and the computation is more uni-
formly distributed among the layers (see “complexity” in
Table 1). A similar behavior exhibits on the compelling
VGG-16/19 models [18]. The uniformly distributed com-
putation indicates that most layers should be accelerated for
an overall speedup.

For the training of the approximations as in (4), (6), and
(12), we randomly sample 3,000 images from the ImageNet
training set and use their responses as the training samples.

3.1. Single-Layer: Linear vs. Nonlinear

In this subsection we evaluate the single-layer perfor-
mance. When evaluating a single approximated layer, the
rest layers are unchanged and not approximated. The
speedup ratio (involving that single layer only) is shown as
the theoretical ratio computed by the complexity.

In Fig. 4 we compare the performance of our linear so-
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Figure 4. Linear vs. Nonlinear: single-layer performance of accelerating Conv1 to Conv7. The speedup ratios are computed by the
theoretical complexity, but is nearly the same as the actual speedup ratios in our CPU/GPU implementation. The error rates are top-5
single-view, and shown as the increase of error rates compared with no approximation (smaller is better).
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lution (4) and nonlinear solution (6). The performance is
displayed as increase of error rates (decrease of accuracy)
vs. the speedup ratio of that layer. Fig. 4 shows that the
nonlinear solution consistently performs better than the lin-
ear solution. In Table 1, we show the sparsity (the portion
of zero activations after ReLU) of each layer. A zero acti-
vation is due to the truncation of ReLU. The sparsity is over
60% for Conv2-7, indicating that the ReLU takes effect on a
substantial portion of activations. This explains the discrep-
ancy between the linear and nonlinear solutions. Especially,
the Conv7 layer has a sparsity of 95%, so the advantage of
the nonlinear solution is more obvious.

Fig. 4 also shows that when accelerating only a single
layer by 2×, the increased error rates of our solutions are
rather marginal or ignorable. For the Conv2 layer, the error
rate is increased by < 0.1%; for the Conv3-7 layers, the

error rate is increased by < 0.2%.
We also notice that for Conv1, the degradation is ig-

norable on or below 2× speedup (1.8× corresponds to
d′ = 32). This can be explained by Fig. 2(a): the PCA
energy has almost no loss when d′ ≥ 32. But the degrada-
tion can grow quickly for larger speedup ratios, because in
this layer the channel number c = 3 is small and d′ needs
to be reduced drastically to achieve the speedup ratio. So in
the following, we will use d′ = 32 for Conv1.

3.2. Multi-Layer: Symmetric vs. Asymmetric

Next we evaluate the performance of asymmetric recon-
struction as in the problem (12). We demonstrate approxi-
mating 2 layers or 3 layers. In the case of 2 layers, we show
the results of approximating Conv6 and 7; and in the case
of 3 layers, we show the results of approximating Conv5-7



speedup rank sel. Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 err. ↑ %
2× no 32 110 199 219 219 219 219 1.18
2× yes 32 83 182 211 239 237 253 0.93

2.4× no 32 96 174 191 191 191 191 1.77
2.4× yes 32 74 162 187 207 205 219 1.35
3× no 32 77 139 153 153 153 153 2.56
3× yes 32 62 138 149 166 162 167 2.34
4× no 32 57 104 115 115 115 115 4.32
4× yes 32 50 112 114 122 117 119 4.20
5× no 32 46 83 92 92 92 92 6.53
5× yes 32 41 94 93 98 92 90 6.47

Table 2. Whole-model acceleration with/without rank selection. The speedup ratios shown here involve all convolutional layers (Conv1-
Conv7). We fix d′ = 32 in Conv1. In the case of no rank selection, the speedup ratio of each other layer is the same. The solver is the
asymmetric version. Each column of Conv1-7 shows the rank d′ used, which is the number of filters after approximation. The error rates
are top-5 single-view, and shown as the increase of error rates compared with no approximation (smaller is better).

or Conv2-4. The comparisons are consistently observed for
other cases of multi-layer.

We sequentially approximate the layers involved, from
a shallower one to a deeper one. In the asymmetric ver-
sion (12), x̂ is from the output of the previous approxi-
mated layer (if any), and x is from the output of the pre-
vious non-approximate layer. In the symmetric version (5),
the response y = Mx where x is from the output of the
previous non-approximate layer. We have also tried another
symmetric version of y = Mx̂ where x̂ is from the output
of the previous approximated layer (if any), and found this
symmetric version is even worse.

Fig. 5 shows the comparisons between the symmetric
and asymmetric versions. The asymmetric solution has sig-
nificant improvement over the symmetric solution. For ex-
ample, when only 3 layers are approximated simultaneously
(like Fig. 5 (c)), the improvement is over 1.0% when the
speedup is 4×. This indicates that the accumulative error
rate due to multi-layer approximation can be effectively re-
duced by the asymmetric version.

When more and all layers are approximated simultane-
ously (as below), if without the asymmetric solution, the
error rates will increase more drastically.

3.3. Whole-Model: with/without Rank Selection

In Table 2 we show the results of whole-model acceler-
ation. The solver is the asymmetric version. For Conv1,
we fix d′ = 32. For other layers, when the rank selection is
not used, we adopt the same speedup ratio on each layer and
determine its desired rank d′ accordingly. When the rank se-
lection is used, we apply it to select d′ for Conv2-7. Table 2
shows that the rank selection consistently outperforms the
counterpart without rank selection. The advantage of rank
selection is observed in both linear and nonlinear solutions.

In Table 2 we notice that the rank selection often chooses
a higher rank d′ (than the no rank selection) in Conv5-7.

For example, when the speedup is 3×, the rank selection
assigns d′ = 167 to Conv7, while this layer only requires
d′ = 153 to achieve 3× single-layer speedup of itself. This
can be explained by Fig. 2(c). The energy of Conv5-7 is less
concentrated, so these layers require higher ranks to achieve
good approximations.

3.4. Comparisons with Previous Work

We compare with Jaderberg et al.’s method [10], which
is a recent state-of-the-art solution to efficient evaluation.
This method mainly operates on the spatial domain. It de-
composes a k×k spatial support into a cascade of k×1 and
1×k spatial supports. This method focuses on the linear re-
construction error. The SGD solver is adopted for optimiza-
tion. In the paper of [10], their method is only evaluated on
a single layer of a model trained for ImageNet.

Our comparisons are based on our re-implementation of
[10]. We use the Scheme 2 decomposition in [10] and its
filter reconstruction version, which is the one used for Im-
ageNet as in [10]. Our re-implementation of [10] gives a
2× single-layer speedup on Conv2 and < 0.2% increase
of error. As a comparison, in [10] it reports 0.5% increase
of error on Conv2 under a 2× single-layer speedup, eval-
uated on another Overfeat model [17]. For whole-model
speedup, we adopt this method sequentially on Conv2-7 us-
ing the same speedup ratio. We do not apply this method on
Conv1, because this layer has a small fraction of complexity
while the spatial decomposition leads to considerable error
on this layer if using a speedup ratio similar to other layers.

In Fig. 6 we compare our method with Jaderberg et
al.’s [10] for whole-model speedup. The speedup ratios
are the theoretical complexity ratios involving all convolu-
tional layers. Our method is the asymmetric version and
with rank selection (denoted as “our asymmetric”). Fig. 6
shows that when the speedup ratios are large (4× and 5×),
our method outperforms Jaderberg et al.’s method signif-
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Figure 6. Comparisons with Jaderberg et al.’s spatial decomposi-
tion method [10]. The error rates are top-5 single-view, and shown
as the increase of error rates compared with no approximation
(smaller is better).

icantly. For example, when the speedup ratio is 4×, the
increased error rate of our method is 4.2%, while Jaderberg
et al.’s is 6.0%. Jaderberg et al.’s result degrades quickly
when the speedup ratio is getting large, while ours degrades
more slowly. This is indicates the effects of our method for
reducing accumulative error. In our CPU implementation,
both methods have similar actual speedup ratios for a given
theoretical speedup, for example, 3.55× actual for 4× theo-
retical speedup. It is because the overhead for both methods
mainly comes from the fully-connected and other layers.

Because our asymmetric solution can effectively reduce
the accumulated error, we can approximate a layer by the
two methods simultaneously, and the asymmetric recon-
struction of the next layer can reduce the error accumulated
by the two methods. As discussed in Sec. 2.5, our method
is based on the channel dimension (d), while Jaderberg et
al.’s method mainly exploits the decomposition of the two
spatial dimensions. These two mechanisms are complemen-
tary, so we conduct the following sequential strategy. The
Conv1 layer is approximated using our model only. Then
for the Conv2 layer, we first apply our method. The approx-
imated layer has d′ filters whose sizes are k×k×c followed
by 1 × 1 filters (as in Fig. 1(b)). Next we apply Jaderberg
et al.’s method to decompose the spatial support into a cas-
cade of k× 1 and 1× k filters (Scheme 2 [10]). This gives a
3-dimensional approximation of Conv2. Then we apply our
method on Conv3. Now the asymmetric solver will take
the responses approximated by the two mechanisms as the
input, while the reconstruction target is still the responses
of the original network. So while Conv2 has been approxi-
mated twice, the asymmetric solver of Conv3 can partially
reduce the accumulated error. This process is sequentially
adopted in the layers that follow.

In Fig. 6 we show the results of this 3-dimensional de-
composition strategy (denoted as “our asymmetric (3d)”).

model speedup
solution

top-5 err.
(1-view)

top-5 err.
(10-view)

time
(ms)

AlexNet [11] - 18.8 16.0 273

SPPnet
(Overfeat-7)

[10], 4× 18.5 15.6 278
our asym., 4× 16.7 14.4 271

our asym. (3d), 4× 14.1 12.0 267

Table 3. Comparisons of network performance. The top-5 error is
absolute values (not the increased number). The running time is
per view on a CPU (single thread, with SSE).

We set the speedup ratios of both mechanisms to be equal:
e.g., if the speedup ratio of the whole model is r×, then we
use
√
r× for both. Fig. 6 shows that this strategy leads to

significantly smaller increase of error. For example, when
the speedup is 5×, the error is increased by only 2.5%. This
is because the speedup ratio is accounted by all three dimen-
sions, and the reduction of each dimension is lower. Our
asymmetric solver effectively controls the accumulative er-
ror even if the multiple layers are decomposed extensively.

Finally, we compare the accelerated whole model with
the well-known “AlexNet” [11]. The comparison is based
on our re-implementation of AlexNet. The architecture is
the same as in [11] except that the GPU splitting is ignored.
Besides the standard strategies used in [11], we train this
model using the 224×224 views cropped from resized im-
ages whose shorter edge is 256 [9]. Our re-implementation
of this model has top-5 single-view error rate as 18.8% (10-
view top-5 16.0% and top-1 37.6%). This is better than the
one reported in [11]1.

Table 3 shows the comparisons on the accelerated mod-
els and AlexNet. The error rates in this table are the absolute
value (not the increased number). The time is the actual run-
ning time per view, on a C++ implementation and Intel i7
CPU (2.9GHz). The model accelerated by our asymmetric
solver (channel-only) has 16.7% error, and by our asymmet-
ric solver (3d) has 14.1% error. This means that the accel-
erated model is 4.7% more accurate than AlexNet, while its
speed is nearly the same as AlexNet.

As a common practice [11], we also evaluate the 10-view
score of the models. Our accelerated model achieves 12.0%
error, which means only 0.9% increase of error with 4×
speedup (the original one has 11.1% 10-view error).

4. Conclusion and Future Work

On the core of our algorithm is the low-rank constraint.
While this constraint is designed for speedup in this work,
it can be considered as a regularizer on the convolutional
filters. We plan to investigate this topic in the future.

1In [11] the 10-view error is top-5 18.2% and top-1 40.7%.
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