Abstract:
Multi-View-Stereo (MVS) methods aim for the highest detail possible, however, such detail is often not required. In this work, we propose a novel surface reconstruction m...Show MoreMetadata
Abstract:
Multi-View-Stereo (MVS) methods aim for the highest detail possible, however, such detail is often not required. In this work, we propose a novel surface reconstruction method based on image edges, superpixels and second-order smoothness constraints, producing meshes comparable to classic MVS surfaces in quality but orders of magnitudes faster. Our method performs per-view dense depth optimization directly over sparse 3D Ground Control Points (GCPs), hence, removing the need for view pairing, image rectification, and stereo depth estimation, and allowing for full per-image parallelization. We use Structure-from-Motion (SfM) points as GCPs, but the method is not specific to these, e.g. LiDAR or RGB-D can also be used. The resulting meshes are compact and inherently edge-aligned with image gradients, enabling good-quality lightweight per-face flat renderings. Our experiments demonstrate on a variety of 3D datasets the superiority in speed and competitive surface quality.
Date of Conference: 07-12 June 2015
Date Added to IEEE Xplore: 15 October 2015
ISBN Information: