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Abstract

In many learning tasks, the structure of the target space
of a function holds rich information about the relationships
between evaluations of functions on different data points.
Existing approaches attempt to exploit this relationship in-
formation implicitly by enforcing smoothness on function
evaluations only. However, what happens if we explicitly
regularize the relationships between function evaluations?
Inspired by homophily, we regularize based on a smooth re-
lationship function, either defined from the data or with la-
bels. In experiments, we demonstrate that this significantly
improves the performance of state-of-the-art algorithms in
semi-supervised classification and in spectral data embed-
ding for constrained clustering and dimensionality reduc-
tion.

1. Introduction

Regularization attempts to prevent overfitting in ill-
posed problems. It is commonly applied in semi-supervised
learning tasks: Given a sparse labeling on u data points
with s labels {(xi, yi)}si=1, our goal is to learn a function
f which maps from an input space M to a target space N .
The lack of labels is compensated for by exploiting unla-
beled data points to provide additional information, e.g., on
the geometry of and/or probability distribution on M , from
which the data are generated. Regularization tries to mea-
sure and limit the complexity of proposed f solutions by
preferring smaller training errors and placing restrictions on
smoothness. This established approach helps solve a vari-
ety of learning problems, such as image and shape classifi-
cation, tracking, and retrieval (e.g., [21, 19, 5, 17]).

The target spaceN has a structure which may be defined
implicitly or, in some applications, explicitly through pair-
wise similarity or dissimilarity potentials. However, current
regularization methods operate only on the function itself,
and do not explicitly consider the potentially rich informa-
tive structure of N as something which can be used for reg-
ularization. Regularizing the structure — or the relation-
ships — is inspired by homophily, which is actively used
to predict relationships within social networks [13, 1, 9]:

x
1

3

k ( f1
, f3)

k ( f1 , f4 )

k2( f1, f5, f6)

2
x

x

4
x

5
x

6
x

Figure 1. If two data points x1 and x2 are close on the domain M
of f , then conventional regularizers enforce that the correspond-
ing function values f1 and f2 in co-domain N of f are similar
(fi ≡ f(xi)). We assume that relationships between pairs of
function evaluations fi and fj are represented by smooth func-
tions k(fi, fj), e.g., a similarity measure. Our regularizer explic-
itly enforces that k(f1, fj) and k(f2, fj) are similar for any j. For
instance, if k(f1, f3) is large as f1 and f3 are similar, but k(f1, f4)
is small as f1 and f4 are dissimilar (solid arrows), then our algo-
rithm enforces that k(f2, f3) and k(f2, f4) are large and small, re-
spectively (dotted arrows), as x1 and x2 are close in M . The same
principle applies to high-order relationships: if k2(f1, f5, f6) rep-
resents a ternary relationship, e.g., a third-order correlation, the
similarity of k2(f1, f5, f6) and k2(f2, f5, f6) is enforced.

individuals with similar mutual friends, or local structure,
are more likely to influence one another, e.g., if two indi-
viduals A and B are friends then they tend to have mutual
friends, and if A has an enemy C, then B is also likely to
be an enemy of C. We demonstrate that a priori knowledge
of the smoothness of a relationship between entities can be
exploited in inference on the entity itself.

One example that benefits from this principle occurs
when relationship labels are provided. In semi-supervised
or constrained spectral clustering [12, 14, 18], the labels are
provided not on the underlying cluster assignment function
f but on the binary relationships k between the function
evaluations, as must-link or cannot-link labels. These are
exploited by applying conventional regularization on f with
the condition that the constraints are satisfied. However, in
this case, the relationship itself can also be a natural object
to regularize (Fig. 1). Applying homophily, if (x1, x3) must
link, i.e., if they belong to the same cluster, then a relation-
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ship function k on N is defined such that k(f(x1), f(x3))
is positive. For point x2, which is close to x1 in M , we
expect the relationship function k(f(x2), f(x3)) to be pos-
itive also.

In general, the relationship itself is not formally defined
or observed; however, in many applications, certain rela-
tionships are manifested through a smooth function, where
the number of arguments corresponds to the relationship de-
gree, e.g., a distance metric is a function of two arguments.
k can be defined either directly from the data or from labels;
either way, once the relationship is defined, regularization is
independent of the existence of labels and therefore applies
generally to any learning problem.

1.1. Function-only and implicit relationships

We begin with a regularized empirical risk minimization
framework where f : M → N minimizes the energy func-
tional:

E(f) =
∑

i=1,...,s

l(yi, f(xi)) + λR(f), (1)

where λ is a regularization parameter, R : NM → R+ is
the regularization functional that measures the complexity
of the input function, and l : N × N → R+ is the loss
function. For simplicity, we assume thatN = Rn and adopt
the squared loss: l(a, b) = ‖a− b‖2, but our framework can
be easily extended to other convex loss functions. Extension
to non-EuclideanN is also possible as discussed in Sec. 2.2.

While a variety of semi-supervised learning algorithms
can potentially benefit from our approach (see [4] for a
comprehensive survey), we focus on the successful class
of graph Laplacian-based approaches. One of the best-
established classes of regularizers is based on applying dif-
ferential operators to f :

RD(f) =

∫
M

‖[Df ](x)‖2dV (x), (2)

where domain M is the Riemannian manifold as is com-
mon in semi-supervised learning, and dV (x) is the natural
volume element of M . If D is the first-order differential
operator d

dx , thenRD is the familiar harmonic energy func-
tional [2, 16]:

Rh(f) =

∫
M

‖[∇f ](x)‖2T∗x dV (x), (3)

with Riemannian connection ∇ in M , and cotangent space
T ∗x := T ∗x (M) of M at x [11].

Roughly, this energy functional applies a differential op-
erator to the input function and measures the corresponding
squared norm. Minimizing this energy functional leads to a
smooth function with smaller first-order magnitudes. When
M is only indirectly observed through data point clouds,Rh

is instantiated based on the graph Laplacian [2], the perfor-
mance of which has been demonstrated in numerous appli-
cations.

Harmonic energy can be regarded as a first-order regu-
larizer since it directly penalizes only variations of f . For
relationships, denoted by double brackets, e.g., JA,BK, this
roughly corresponds to minimizing the pair-wise deviations
between self-relationships Jf(x + dx)K and Jf(x)K, where
JAK is simply as informative as A, with no consideration of
relationships between entities.1

If we apply this first-order operator ∇ twice to f , i.e.,
D = ∇2, we minimize the resulting second-order en-
ergy and penalize the deviations of the two pair-wise de-
viations Jf(x + dx), f(x)K and Jf(x − dx), f(x)K. This
can be regarded as an example of a second-order relation-
ship regularizer, with the relationship defined as the differ-
ence between two entities. Higher-order relationship reg-
ularizers then enforce smoothness on relationships involv-
ing more than two entities by increasing the order of D.
For instance, the state-of-the-art p-iterated Laplacian semi-
norm [20] measures smoothness of (p − 1)-th order rela-
tionships.

Rp(f) =

∫
M

f(x)[∆pf ](x)dV (x). (4)

However, existing differential operator-based regularizers
focus only on local relationships. By construction, Df(x)
is defined for an arbitrarily small open set containing x, and
so it does not explicitly enforce smoothness over any pair
Jf(x), f(x′)K and Jf(x′′), f(x′′′)K of relationships when all
four input points x,x′,x′′,x′′′ do not lie within a small neigh-
borhood — even when x and x′′ are close. This property is
shared by established regularizers in Euclidean space (i.e.,
M is Euclidean): For instance, the well-known Gaussian
kernel regularizer corresponds to Eq. 2 withD being a com-
bination of powers of the Laplacian operator [15].

Implicitly, any existing regularization functional regular-
izes any high-order relationships, as smoothness on f im-
plies smoothness on pairs Jf(x), f(x′)K. While apparently
redundant, we will show experimentally that adding ex-
plicit control over relationship regularization increases util-
ity over existing function-only regularizers.

The success of local high-order derivative-based regular-
izers supports this claim: In 1D space, minimizing the first-
order derivative norm as a regularizer implicitly minimizes
all high-order derivative norms, as the only null space of the
first-order derivative operator is the space of constant func-
tions (as these have zero high-order derivatives). Never-
theless, the use of high-order derivative-based regularizers,
e.g., thin plate spline and Gaussian regularizers, is strongly
supported by their empirical performances.

1A mathematically-precise relationship definition is obtained by equat-
ing the relationship with a set function F : 2M → R. We do not adopt
this definition since we focus on specific relationships instantiated through
smooth kernels as defined in Sec. 2.1. In this sense, JAK can be identified
with a set function defined on singletons, equivalent to a regular function
on M .
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That high-order derivative-based regularizers can be
considered as local high-order relationship regularizers,
coupled with the success of these approaches over first-
order (or non-relationship) regularizers, leads us to investi-
gate the potential of ‘longer-range’ relationship regulariza-
tion. Among this various set of apparently-redundant reg-
ularizers, which leads to improved performance? We ex-
plore this potential and empirically validate that explicitly
exploiting rich structural information on non-local relation-
ships improves existing regularization algorithms.

2. Relationship regularization
To begin, we focus on a specific class of relationships

and discuss the ideal case where we know M exactly. In
Section 2.3, we present a practical algorithm for when M
is indirectly represented as a sampled point cloud X =
{x1, . . . , xu}.

2.1. Class of relationships

In many problems,N has relationship structure that is ei-
ther canonically specified by the problem or is given implic-
itly. In classification, the target space is the discrete space
of class memberships. In this case, the natural relationship
Jf(x), f(x′)K is binary: either same class or different class.
In matching, Jf(x), f(x′)K is either match or no match.2 In
Markov random fields (MRF),N can be explicitly provided
with a pair-wise potential p : N ×N → R, or an n-ary po-
tential q : Nn → R [10]. In many cases, these relationships
represent similarity between pairs or n-tuples of entities; in
general, any non-metric relationship can be defined, e.g.,
left of or on top of for generating topographic maps.

These relationships can be represented by an n-th order
relationship function k defined on Nn, where n is applica-
tion specific. In principle, any relationship function can be
regularized; for numerical optimization, we focus on k that
is smooth wrt. the input arguments (i.e., k ∈ C∞(Nn)).
Specifically, for semi-supervised learning, we use a Gaus-
sian relationship function k:

k(f(x), f(x′)) = exp

(
− (f(x)− f(x′))2

σ2
f

)
(5)

where σ2
f > 0. We assume that f ∈ C∞(M), which we

regularize as aided by relationships. We obtain the final
class membership {−1, 1} by thresholding the output space.

2.2. Regularization on relations

Our proposed regularizer assumes the general cases
where N is a Riemannian manifold (though many exam-
ples, including our demonstrations, are Euclidean in N ).
First, we discuss a straightforward approach which is not

2f may not be explicitly defined as the primary object in the relation-
ship.

computationally practical for large problems. Then, we de-
velop this intuition further to arrive at a computationally-
affordable solution.

We construct the regularizer of f based on the regular-
ization of relationship k on the evaluations of f . First, we
construct the pullback function [11] f∗k of k based on f :

f∗k(x, x′) := k(f(x), f(x′)). (6)

This operation casts k, originally defined on N2, into a
function defined on M2 so that it can be regularized based
on the differential structure onM2: Since f∗k ∈ C∞(M2),
we can immediately extend the harmonic energyRh and the
p-iterated Laplacian semi-norm Rp as defined now on M2

by noting that f∗k can be regarded as a single-argument
function on the product manifold M2: 1) The tangent space
for the point (x, x′) is defined based on the direct sum:
T(x,x′) := Tx ⊕ Tx′ ; 2) The Riemannian metric is defined
by gM2(x1 +x2, x

′
1 +x′2) := gM (x1 +x2)+gM (x′1 +x′2),

which fixes the natural volume element dV (x, x′); 3) Based
on 1) and 2), the differential structure ∇M2 follows natu-
rally from ∇M .

The resulting new energy is in the same form as Rh

(Eq. 3) except that its domain is now M2 instead of M :

Rprod
k (f∗k) =

∫
M2

‖[∇f∗k](x, x′)‖2T∗
(x,x′)

dV (x, x′). (7)

The biggest obstacle to apply this straightforward con-
struction to semi-supervised learning is its high computa-
tional complexity. When approximating Rh and Rp based
on a sampled point cloud of size u, the corresponding
approximations are calculated based on u × u matrices
(Sec. 2.3). For the product manifold M2, the approxima-
tions now require building regularization matrices of size
u2 × u2, which become infeasible even for moderate u.

Our approach is to make the roles of x and x′ asymmet-
ric in the regularization. For a given pair-wise relationship
function k, we construct an auxiliary single-argument func-
tion h and the corresponding pullback function f∗h as:

hy′(y) := k(y, y′) ∈ C∞(N), (8)
f∗hx′(x) := hf(x′)(f(x)) ∈ C∞(M). (9)

Now, we define new extensions of harmonic energy
functional and p-th iterated Laplacian energy functional as:

Rh
k(f) =

∫
M

∫
M

‖∇f∗hx′(x)‖2T∗x dV (x)dV (x′), (10)

Rp
k(f) =

∫
M

∫
M

hx′(x)[∆pf∗hx′(x)]dV (x)dV (x′).

(11)

For each fixed x′ in the function, f∗hx′(x) encodes the
relationship between f(x) and f(x′), and since f∗hx′(x) is
a function of a single variable x ∈ M , ∇f∗hx′(x) lies in
T ∗x (M). This makes the interpretation of Eqs. 10 and 11
also straightforward: the inner integral measures the varia-
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tion of f∗hx′(x) that corresponds to pair-wise relations be-
tween the fixed x′ and each value of x. In particular, when
k(a, b) measures the Euclidean distance between a and b,
the inner integral is zero only when the distances between
each pair Jf(x), f(x′)K are identical for all x ∈ M . This
does not require that k is zero. Then, the outer integral av-
erages x′ over the entire M .

For an n-th order relationship function q, the correspond-
ing Rq’s can be defined similarly through an n-times iter-
ated integration: For each case, a pull-back function similar
to f∗hx′(x) is defined as a C∞ function on M . An impor-
tant advantage of this asymmetrization is that now the cor-
responding approximate regularization matrices retain the
sizes of u × u (see Sec. 2.3) and accordingly they afford
practical applications.

It should also be noted that currently, our regularizer
does not exploit the potential differential structure of the
target manifold N . While the differential structure of N
is irrelevant in most applications we foresee, for interested
readers, we note that in principle, our regularizer can take
this structure into account by pulling it back to M , i.e., to
use the pullback connection f∗∇N [16].

2.3. Approximating Rk from a sampled point cloud

In many practical applications, M is not directly ob-
served but indirectly represented as a sampled point cloud
X = {x1, . . . , xu} and accordingly, we approximate Rk
based on evaluations of f on X . For a given relationship
function k, our approximate regularization functional toRh

k

is defined as:

R̃h
k(f) = tr[K>LK], (12)

where tr[·] is the trace, Kij := k(f(xi), f(xj)), and L(u×
u) is the graph Laplacian:

L = D −W, (13)

where Wij = exp
(
−‖xi−xj‖σ2

x

)
when xi, xj are k-nearest

neighbors and 0 when not, σ2
x is a hyper-parameter, and

D is a diagonal matrix containing the column sums of W .
For exposition, we use the unnormalized graph Laplacian.
However, our results straightforwardly extend to normal-
ized graph Laplacian cases, which we use for all experi-
ments (Sec. 4.3).

By noting that the i-th column K[:,i] of K corresponds
to a discrete approximation of f∗hxi(·), the convergence
of R̃h

k to Rk can be easily established based on the con-
vergence results of the graph Laplacian to the Laplace-
Beltrami operator [2, 6].
Proposition 1. Let M be a connected, compact subman-
ifold of RM without boundary and Xu = {x1, . . . , xu}
be sampled from a uniform distribution on M . Then, for
f ∈ C∞(M) and k ∈ C∞(N×N) and σ2

x(u) = u−
1

m+2+α

with α > 0,

lim
u→∞

R̃h
k(f)

u3(σ2
x(u))m/2+1

=
Rh
k(f)

V (M)2
, (14)

in probability, where V (M) is the volume of M .
Proof. The proof is similar to that of Theorem 4 by Zhou
and Belkin [20]. Since f ∈ C∞(M) and k ∈ C∞(N ×N),
f∗hx′ ∈ C∞(M). Then, applying the convergence result of
graph Laplacian to f∗hxi for a fixed xi [2], we have ∀xj ∈
X in probability,

lim
u→∞

[LK[:,i]]j

u(σ2
x(u))m/2+1

= ∆f∗hxi(xj). (15)

For Eq. 14, we apply the law of large numbers and
then Green’s identity [11] for a compact manifold without
boundary to Eq. 15:∫

M

f∆gdV (x) = −
∫
M

〈∇f,∇g〉T∗x dV (x). �

(16)

For simplicity, we assume a uniform sample distribution
on M . However, this result extends to non-uniform under-
lying probability distributions P on M via Hein et al. [6].
In this case, the integrand in Eq. 10 is weighted by the cor-
responding density.

Similarly to Rh
k, the approximate regularization func-

tional toRp
k is defined as:

R̃p
k(f) = tr[K>LpK]. (17)

Given Prop. 2.3 conditions, the convergence of R̃p
k to Rp

k

follows from Eq. 16 and the fact that ∆f ∈ C∞(M) for
f ∈ C∞(M).

3. Semi-supervised learning

Given the two regularizers R and Rk (Eqs. 3 and 10 or
Eqs. 4 and 11) and the loss function (l; Eq. 1), we state our
semi-supervised learning algorithm:

Ek(f) = (f − t)>H(f − t) + λ1f
>Gf + λ2tr[K

>GK]

≈
∑

i=1,...,s

l(yi, f(xi)) + λ1Rh(f) + λ2Rh
k(f),

(18)

where f = [f(x1), . . . , f(xu)]>, H is a diagonal matrix,
Hii = 1 if i-th data point is labeled (0 otherwise), λ1 and
λ2 are regularization hyper-parameters, and G is L or Lp.
For t, if the i-th data point is labeled, ti is the corresponding
label yi, or otherwise 0.

While the first two summands in Ek are convex with re-
spect to f , the third term is non-convex. We minimize Ek
based on conjugate gradient (CG) descent. We set the ini-
tial solution f0 as the minimizer of Ek with λ2 held fixed
at 0, which can be analytically computed. Hence, the entire
optimization process is deterministic.
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With the Gaussian relationship function (Eq. 5), the gra-
dient of each summand for the t-th function evaluation is:

∂(f − t)>H(f − t)

∂f
= 2H(f − t) (19)

∂f>Gf

∂f
= 2Gf (20)

∂tr[K>GK]

∂ft
= 2tr[K>G

∂K

∂ft
], (21)

where f = [f(x1), . . . , f(xu)]> and

∂Kij

∂ft
=

 −
2(fi−fj)
σ2
f

Kij if i = t

− 2(fj−fi)
σ2
f

Kij else if j = t.
(22)

For (binary) classification problems, yi ∈ {−1, 1}. In
Sec. 3.2, we discuss the dimensionality reduction problem
where the output dimensionality n is larger than 1 and ac-
cordingly f(x) is a vector.

3.1. Sparsity

Our empirical explicit relationship regularizer enforces
smoothness across every possible pairwise evaluation of the
function f . This leads to a dense matrix K in Eq. 18. For
large-scale problems, we can construct a sparse version of
the regularizer by discarding the smoothness enforcement
over the relationships that are evaluated for distant points,
and focus only on local neighborhoods (not to be confused
with the locality of the regularizer, i.e., neighborhood for
graph Laplacian):

EkS(f) = λ2
∑
i

∑
jk

(Kij −Kik)2Wjkgijgik, (23)

where gij = 1 if xi and xj are in a specified neighborhood
NK and gij = 0, otherwise. When the neighborhood size
is infinite (i.e., g = 1), EkS is the same as the original regu-
larizer in Eq. 18. Otherwise, EkS enforces smoothness only
for relationships that are defined for function evaluations of
close input points.

3.2. Relationship labels and spectral embedding

For some applications, the relationships K themselves
are natural variables of interest, and so training labels can
be user provided. For instance, in spectral embedding such
as for clustering and dimensionality reduction, e.g., in sci-
entific visualization, where f(x) ∈ Rn with n being the
desired dimensionality, the absolute value of the function f
may be irrelevant while the relative spread of the data are
important. The user might provide expert rules to define
which data points should be close to each other (must-link)
or not (cannot-link). We can exploit this by penalizing the
deviation of K from the given relationship label T :

EkQ(f) = ‖(K − T ).Q‖2F , (24)

where Qij = 1 if the label Tij is provided for a pair (i, j),
and Qij = 0 otherwise. Tij = 1 when f(xi) and f(xj)
should be close to each other in the embedding space, and
Tij = 0 otherwise. A.B is element-wise multiplication of
two matrices A and B, and ‖A‖F is the Frobenius norm of
A. In this case, our new energy functional is constructed as
follows:

Ek(f) = ‖f − t‖2 + λ2tr[K
>GK] + λ3EkQ(f), (25)

where we set the label t and the initial search solution f0

of the optimization as the results of standard spectral em-
bedding obtained from a graph Laplacian-based algorithm:
f0 = [e2, . . . , en] with ei being the i-th eigenvector of L.
Since each output f(x) is a vector, our relationship function
is adapted accordingly:

k(f(x), f(x′)) = exp

(
−‖f(x)− f(x′)‖2

σ2
f

)
. (26)

Minimizing Eq. 24 over f is different from independently
minimizing it for each output dimension since the outputs
are tied across the dimensions through the relationship la-
bels (Eq. 25), and the regularizer (Eq. 12) is truly vector
valued.

4. Experiments
We compare the performance of our explicit relationship

regularization (ERR, Eqs. 10 and 11) by adapting two ex-
isting implicit relationship regularizations (IRR, Eqs. 3 and
4): classic graph Laplacian [2] and state-of-the-art iterated
graph Laplacian [20]. To our knowledge, no algorithms
exist which attempt to explicitly regularize relationships,
even though they may implicitly attempt to do so (Sec. 1.1).
The purpose of our experiments is to show the improve-
ment that can come from explicit relationship regulariza-
tion, using standard and state-of-the-art approaches as evi-
dence. As such, we conducted a semi-supervised learning
experiment for pattern classification with a set of standard
machine learning databases. Code will be made available
on the web.

4.1. Semi-supervised classification

We use seven standard binary classification datasets for
semi-supervised learning covering image digits (USPS),
EEG signals (BCI), newsgroup categories (Text, Pcmac,
Real-sim) and news reports (CCAT, GCAT) [4, 20]. We
randomly divide each dataset into three subsets: 50 la-
beled data points, 50 data points for validation for hyper-
parameter selection, and the remaining unlabeled data
points are used for evaluation. We average error rates for
10 experiments with different sets of labeled examples. To
demonstrate sparsity for large datasets (Sec. 3.1), we use
the 60,000 point large MNIST dataset, with binary labels
obtained in the same way as for the USPS dataset [4]. Here,
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|NK | = 200, while the number of labeled and validation
data points were fixed at 300 each. Due to the large size
of the problem, the iterated graph Laplacian was not appli-
cable for neither IRR nor ERR since taking the power of a
sparse (Laplacian) matrix tends to produce a denser matrix.

Binary classification allows direct comparison of regu-
larization performance and disregards multi-class combina-
tion method effects. However, to gain an insight into multi-
class classification performance, we performed experiments
with a 10-class dataset of 2,000 data points sampled from
MNIST. For training and validation, we used 50 labels for
each class. To facilitate representing the multi-class out-
puts, we learn a vector-valued function f and the corre-
sponding relationship function k as defined in Eq. 26.

For IRR, there are three parameters: σ2
x, kN , the k-

nearest neighborhood size for the graph Laplacian construc-
tion (Eq. 13), and regularization parameter λ1. For ERR
(Eq. 10), there are two more to be tuned: σ2

f for the Gaus-
sian similarity relationship function k (Eq. 5), and regular-
ization parameters λ2. We first find bounds for σ2

x, kN , and
λ1 around the optimal for IRR; then, we optimize σ2

f and
λ2 for ERR. This resulted in the total number of parameter
evaluations for ERR being only slightly larger than that of
IRR. ForRp

k (Eq. 11) there is an additional hyper-parameter
p that we fix at 2 throughout the entire set of experiments.

Performance For all but one dataset, the error rate of
ERR was lower than that of IRR when parameters were au-
tomatically chosen (Table 1). This demonstrates the possi-
ble improvement of ERR over IRR and supports our claim
that explicitly exploiting relationship information is useful.
However, automatically optimizing the parameters with a
limited number of labeled points can lead to overfitting (as
observed in worse performance for ERR on BCI). Auto-
matic tuning of hyper-parameters is still an open problem
in semi-supervised learning where only a limited number of
labeled examples are provided.

We also report the performance of both algorithms when
best-case (BC) hyper-parameters are provided (odd row
blocks), and the performance difference between ERR and
IRR is more pronounced. This indicates that ERR can po-
tentially lead to larger improvements over IRR when the pa-
rameters are tuned properly (e.g., through user interaction).
If the error rate surface with respect to the hyper-parameters
is smooth, then the user could decide the next search point
based on the information gathered thus far. Our preliminary
experiments showed that the error rate surface with respect
to hyper-parameter is smooth. Accordingly, the active sam-
pling strategy can indeed be exercised (Table 1).

4.2. Spectral embedding

Our algorithm is a general regularizer for Riemannian
manifolds, and also supports explicit relationship labels.

Figure 2. Clustering performance (error rate) of the proposed
algorithm on USPS dataset with hyper-parameters σ2

f and λ2 (λ′
2∗

SR) that vary in multiplicative intervals 2 and 3, respectively.

We use dimensionality reduction and clustering applica-
tions to show this with MNIST, full USPS, and standard
UCI clustering datasets (Diabetes, Iris, Wine, Breast Cancer
Wisconsin (BCW), and Pendigits). Must-link and cannot-
link labels are based on ground truths for selected pairs.
Note that relationship labels are weak in that having a posi-
tive or negative label Tij for a pair fi and fj does not reveal
the corresponding class information for either yi or yj .

In general, for unsupervised learning such as clustering
and dimensionality reduction, automatic tuning of hyper-
parameters is infeasible as there is no ground-truth infor-
mation. Following experimental convention [3], we set
kN = 10 and σ2

x adaptively based on the average Euclidean
distance of a point to its kN neighbors. In practice, the re-
maining hyper-parameters should be user tuned. To facili-
tate this process, we reduce the number of hyper-parameters
to two, by first setting λ1 = 0 (see Eq. 25) and tying λ2 and
λ3 by a new parameter λ′2: We set the weight λ3 of relation-
ship labels at a relatively large value 10 as these user labels
should be regarded as quasi-hard constraints. The overall
contribution of the sR relation labels is controlled by λ′2,
replacing λ2 by λ2/sR. Figure 2 shows that parameter tun-
ing is feasible as performance varies smoothly with respect
to the parameter space.

Again, while the hyper-parameters might be tuned based
on user inspection in practice, to facilitate numerical eval-
uation for each dataset we randomly selected sR = 250
labels and optimized σ2

f and λ′2 based on their respective
ground-truth error measures (Sec. 4.2.1). These parame-
ter values are fixed across all sR values. For each value
of sR, we randomly sampled half the number of must-link
and cannot-link labels, averaging error rates across 10 ex-
periments. For comparison, we tuned the hyper-parameters
of all competing algorithms (as described shortly) for each
dataset and for each value of sR, based on the ground-truth
error rate, which is an advantage over our fixed parameters
across sR values.
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Table 1. Classification performance as error rate for implicit and explicit relationship regularization (IRR and ERR), versus both graph
Laplacian (R̃h

k) and iterated graph Laplacian (R̃p
k) regularizers, with added best-case parameters (BC; Sec. 4.1). Bold marks the best

results. The performance improvement of ERR over IRR is calculated as the reduction of error rate (RER) in %.
USPS Text BCI Pcmac Real-sim CCAT GCAT MNIST MNIST

(multi-
class)

Graph
Laplacian
R̃h
k

IRR 10.81 43.13 42.98 14.97 15.48 26.08 12.61 10.43 8.72
ERR 6.76 35.13 43.38 11.62 12.71 25.92 12.16 5.24 7.03
RER (%) 37.46 18.55 -0.93 22.38 17.89 0.06 3.57 49.79 19.38

IRR (BC) 9.59 37.91 40.03 13.61 14.32 20.80 8.90 8.68 7.04
ERR (BC) 4.44 22.39 38.95 8.90 10.23 19.63 8.39 4.90 6.14
RER (%) 53.70 40.94 2.70 34.61 28.56 5.63 5.73 43.58 12.78

Iterated
Graph

Laplacian
R̃p
k

IRR 4.80 29.05 41.74 11.95 12.36 24.20 10.97
N/A as
matrix

too
dense

7.46
ERR 3.71 23.84 42.35 10.38 11.52 21.31 9.48 6.74
RER (%) 22.71 17.94 -1.46 13.14 6.80 11.94 9.75 9.72

IRR (BC) 3.77 24.40 38.18 10.07 11.35 18.94 7.99 6.79
ERR (BC) 2.33 22.21 37.58 7.51 9.68 16.70 7.26 6.14
RER (%) 38.20 8.98 1.57 25.42 14.71 11.83 9.14 9.65

4.2.1 Clustering

From the optimized f∗, the final cluster label is assigned to
each data point by applying k-means clustering on f∗. Since
k-means optimization is non-convex, we run it ten times
with random initialization and choose the result that mini-
mizes the normalized cut (NCut) [3] as it can be calculated
without requiring any labels. We compare with the origi-
nal spectral clustering, and three state-of-the-art algorithms
which exploit explicit relationship labels: Constrained
Clustering via Spectral Regularization (CCSR) [12] and
Flexible Constrained Spectral Clustering (CSP) [18] both
optimize spectral energy (R) but under hard and soft
constraints respectively (must-link and cannot-link), while
Constrained 1-Spectral Clustering (COSC) [14] minimizes
a continuous (L1) relaxation of the NCut under the same
constraints. These algorithms significantly outperform ex-
isting (relationship-) constrained approaches, as well as un-
constrained clustering algorithms [12, 14, 18].

One major difference between those algorithms and ours
is that they regularize f with constraints, while our algo-
rithm explicitly regularizes relationships. We also compare
with the more classical Spectral Learning algorithm (SL)
that encodes the constraints into the weight matrix in build-
ing the graph Laplacian [7]. For CCSR and CSP, we used
the code provided by the authors on their websites. Since
CSP is designed for binary clustering, we only report the
corresponding results of binary datasets (Diabetes, BCW).
The clustering error is defined by summing the occurrences
of errors for each cluster: a data points is counted as an error
if its label is different from the dominant label of the cluster
to which it belongs.

Performance All algorithms that exploit relationship la-
bels significantly improved over original spectral cluster-

ing (Table 2). The CSP and CCSR were especially good
for BCW when the number of labels sR is small. How-
ever, they failed to show steady performance increases as
sR increases. Further, for Diabetes, both algorithms showed
much higher error rates than other algorithms. On average,
SL showed better performance over CSP and CCSR. How-
ever, for some datasets, it showed significant error rate in-
creases when sR is too large, which shows application lim-
itation. Overall, COSC and our algorithm (ERR) demon-
strated steady decreases of error rates as sR increases.
However, except for one case (BCW for sR = 500), our
algorithm outperformed COSC by a large margin. For
USPS, the error rates of COSC stayed high even when
sR = 1, 000: in the original spectral clustering result, mul-
tiple classes are merged into a single cluster, which leads
to a single class dominating in multiple clusters. Classes
1 and 4 dominated in two clusters, respectively, and ac-
cordingly, classes 6 and 10 are absorbed. While ERR re-
stored all classes when sR = 500, COSC failed even when
sR = 1, 000.

4.2.2 Dimensionality reduction

The target dimensionality n was set at 2 for all experiments,
e.g., for visualization applications, though any dimensional-
ity is possible. We measured the error rate based on leave-
one-out 1-nearest neighbor classification: For each point,
we find its nearest neighbor and use the corresponding re-
trieved class label as the predicted label and measured the
error rate. For comparison, we show the results of CCSR
and SL. While both CCSR and SL were originally devel-
oped for clustering, they first perform spectral embedding
to a given target dimension and then apply conventional
clustering therein. Their embedding parts can be used for
dimensionality reduction by choosing the target dimension
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Table 2. Clustering performance as error rate for different constrained clustering algorithms.
# labels (sR) Diabetes BCW USPS MNIST Iris Wine Pendigits

Original 23.25 33.02 34.77 13.05 29.71 34.96 29.89

50

CSP 30.21 3.25 N/A — CSP is binary only
SL 34.80 34.99 18.96 30.72 1.80 32.64 15.69
CCSR 30.99 2.75 47.55 59.20 2.27 29.49 18.78
COSC 33.58 9.59 18.01 24.04 5.27 36.57 19.67
ERR 33.50 6.34 13.27 19.88 1.53 21.52 12.28

100

CSP 31.08 5.24 N/A — CSP is binary only
SL 34.01 32.11 18.11 29.16 1.47 23.65 14.23
CCSR 29.26 2.77 37.78 47.19 2.07 29.04 17.41
COSC 32.15 5.39 18.32 25.91 1.67 29.61 13.75
ERR 27.85 3.95 12.40 17.85 0.87 9.89 8.60

250

CSP 29.91 2.99 N/A — CSP is binary only
SL 28.26 12.91 5.17 17.39 0.13 2.42 6.37
CCSR 29.05 2.78 20.84 34.69 2.00 28.65 13.52
COSC 12.38 0.92 18.12 19.60 0.13 4.27 3.13
ERR 12.36 0.64 10.17 15.20 0.00 0.45 1.65

500

CSP 28.19 3.05 N/A — CSP is binary only
SL 17.77 6.25 8.24 12.98 0.00 0.00 5.81
CCSR 28.98 2.87 16.16 28.86 2.07 27.87 12.79
COSC 2.84 0.13 17.30 13.49 0.00 0.06 1.12
ERR 1.86 0.15 5.14 12.83 0.00 0.00 1.09

1,000

CSP 26.43 2.80 N/A — CSP is binary only
SL 1.54 0.44 15.40 24.67 0.00 0.00 28.24
CCSR 29.34 2.97 11.69 23.96 1.93 27.02 12.29
COSC 0.39 0.00 10.63 9.79 0.00 0.00 0.76
ERR 0.04 0.00 3.45 7.67 0.00 0.00 0.67

Table 3. Leave-one-out classification performance as error rate for different dimensionality reduction algorithms.
# labels (sR) Diabetes BCW USPS MNIST Iris Wine Pendigits

Original 46.35 9.37 29.29 34.48 4.67 28.09 15.92

50
SL 39.40 6.50 28.68 33.29 3.60 31.35 12.88
CCSR 36.59 3.91 42.62 33.70 2.73 34.55 9.04
ERR 33.95 4.77 5.34 23.29 3.07 24.49 2.80

100
SL 37.49 7.13 27.93 33.15 3.67 30.28 13.04
CCSR 37.21 4.04 38.39 34.98 2.80 33.60 8.81
ERR 30.63 4.10 5.35 22.41 2.33 16.74 3.07

250
SL 36.93 7.10 25.85 31.05 1.87 20.34 11.45
CCSR 37.38 4.09 29.24 37.43 3.33 33.09 8.92
ERR 24.92 3.41 5.30 10.43 0.93 9.38 2.60

500
SL 24.88 3.63 22.48 27.02 0.60 2.58 10.82
CCSR 37.72 4.07 32.27 46.42 3.33 31.57 9.02
ERR 16.39 1.65 5.11 6.62 0.27 0.90 2.58

1,000
SL 11.78 1.39 17.25 22.68 0.00 0.11 10.03
CCSR 38.06 4.04 36.93 47.25 3.33 31.35 9.53
ERR 9.53 0.79 4.90 6.31 0.00 0.00 2.20

accordingly.

Performance All algorithms improve over the original
spectral dimensionality reduction (Table 3), demonstrating
the utility of relationship labels. CCSR was especially good
for BCW, but it did not show noticeable improvement as sR
increases. ERR and SL both showed steady error rate de-
creases while ERR significantly outperformed SL, demon-
strating the utility of explicit relationship regularization.
Figure 3 shows an example embedding.

4.3. Complexity

For all experiments, following conventions, the graph
Laplacians are normalized. We set the number of conju-
gate gradient (CG) steps to 50. This provides a moderate
trade-off between the performance and accuracy: While we
observed a steady increase in accuracy as the number of
CG steps increased for pattern classification experiments,
the rate of increase dropped significantly past 50. As indi-
cated by the form of the energy functional (Eq. 12), when
sparsity in relationships is not enforced (see Eq. 23), the
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Figure 3. Embedding results for full 10-class USPS dataset (sR = 100); plots show only 2,000 data points for better visibility. Left:
Spectral embedding (t in Eq. 25). Middle: Minimizing 1) deviation from t; 2) training error for relationship labels (Eq. 24), and 3)
conventional graph Laplacian regularization energy (EkM andR: Eqs. 24 and 18 with λ2 = 0). Right: Our proposal (EkM andRk: Eq. 25).
Error rates (left to right): 28.30, 27.53, and 0.63.

Table 4. Performance vs. sparsity (|NK |) for MNIST subsets (s =
100, u = 2, 000). GPU optimization negates the need for sparsity
for these problem sizes.

|NK | 25 50 100 200 full ERR IRR

Error (%) 9.76 9.08 8.64 8.02 7.82 10.10
Time CPU (sec.) 3 10 21 38 35 1
Time GPU (sec.) - 3 -

time complexity of each gradient step is cubic in the number
of data points. For pattern classification experiments with
the USPS dataset (with 1500 data points), it took approxi-
mately 1.6 seconds for 50 CG step on NVIDIA GeForce 680
GPU, and 25 seconds on Intel Xeon 3.6GHz CPU; while the
IRR took approximately 0.3 seconds on the same CPU: IRR
can be solved analytically, while ERR must be solved itera-
tively.

4.4. Sparsity

To gain an insight into the sparsity/performance trade-
off, we performed experiments on a small subset (u =
2, 000) of the MNIST dataset such that direct performance
comparison with dense regularization is possible (Table 4).
Performance degrades gracefully as |NK | decreases. For
this small dataset, the processing time of the sparse sys-
tem when |NK | = 200 is longer than the full ERR due to
the sparsification overhead. However, the complexity grows
roughly linearly with respect to u, and thus sparsity makes
ERR applicable to large-scale datasets. In Table 1, we show
the results of the full MNIST dataset with |NK | = 200.

5. Discussion

We have only evaluated the binary relationship function
k with the single parameter σ2

f , and different potential rela-
tionship function types could be explored. Further, we have
only investigated binary relationship functions, and n-ary

relationship functions are possible. In this case, the K ma-
trix in Eq. 18 is replaced by a tensor, and the problem com-
plexity increases, though it may still be possible to handle
these cases by enforcing sparsity (Sec. 3.1).

For the specific case of binary relationship functions reg-
ularized by the graph Laplacian (which corresponds to pair-
wise regularization), our regularization energy functional
(Eq. 23) can be regarded as a construction of a ternary re-
lationship function: One can define a ternary clique as a
summand of Eq. 23:

q(fi, fj , fk) = (Kij −Kik)2Wjkgijgik. (27)

In this way, our algorithm can be viewed as a special case of
an MRF. While, in general, the optimization with a ternary
relationship function is computationally very demanding,
the asymmetric roles of three arguments in our clique (see
the last paragraph of Sec. 2.2) leads to a computationally
affordable algorithm. In this respect, one of our main con-
tributions is a method to construct a high-order clique from
low-order cliques and the corresponding practical algorithm
for semi-supervised learning.

In our semi-supervised learning experiments, we chose
hyper-parameters based on separate validation sets. Heuris-
tics can help set some hyper-parameters, e.g., for spectral
embedding, we set σ2

x based on the average Euclidean dis-
tance of a point to its kN neighbors (Sec. 4.2). For USPS,
the corresponding average clustering error rate was around
20% higher than when varying and manually selecting σ2

x.
This suggests that the heuristic can trade accuracy with
hyper-parameter optimization time.

6. Conclusion

We have investigated explicit relationship regulariza-
tion, which, in addition to regularizing the function in
semi-supervised learning, now regularizes the relationships
between function evaluations through smooth relationship
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functions. This approach improves performance by a large
margin in semi-supervised classification and in constrained
spectral clustering applications, and facilitates a related al-
gorithm in semi-supervised dimensionality reduction. We
believe semi-supervised learning and constrained clustering
algorithms will increase in importance in vision, e.g., re-
cent works in pose estimation [17], and video segmentation
[8]. Future work should consider what role our explicit re-
lationship regularization plays on the effect of the statistical
model, e.g., error bound.

Acknowledgements
Kwang In Kim thanks EPSRC EP/M00533X/1 and

EP/M006255/1, James Tompkin and Hanspeter Pfister
thank NSF CGV-1110955, and James Tompkin and Chris-
tian Theobalt thank the Intel Visual Computing Institute.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and

R. Szeliski. Building Rome in a day. In Proc. ICCV,
2009. 1

[2] M. Belkin and P. Niyogi. Towards a theoretical foun-
dation for Laplacian-based manifold methods. Journal
of Computer and System Sciences, 74(8):1289–1308,
2005. 2, 4, 5

[3] T. Bühler and M. Hein. Spectral clustering based on
the graph p-Laplacian. In Proc. ICML, pages 81–88,
2009. 6, 7

[4] O. Chapelle, B. Schölkopf, and A. Zien. Semi-
Supervised Learning. MIT Press, Cambridge, MA,
2006. 2, 5

[5] S. Ebert, D. Larlus, and B. Schiele. Extracting struc-
tures in image collections for object recognition. In
Proc. ECCV, pages 720–733, 2010. 1

[6] M. Hein, J.-Y. Audibert, and U. von Luxburg. From
graphs to manifolds - weak and strong pointwise con-
sistency of graph Laplacians. In Proc. COLT, pages
470–485, 2005. 4

[7] S. D. Kamvar, D. Klein, and C. D. Manning. Spectral
learning. In Proc. IJCAI, pages 561–566, 2003. 7

[8] A. Khoreva, F. Galasso, M. Hein, and B. Schiele.
Learning must-link constraints for video segmentation
based on spectral clustering. In Proc. GCPR, pages
701–712, 2014. 10

[9] K. I. Kim, J. Tompkin, M. Theobald, J. Kautz, and
C. Theobalt. Match graph construction for large image
databases. In Proc. ECCV, pages 272–285, 2012. 1

[10] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: probabilistic models for segmenting
and labeling sequence data. In Proc. ICML, pages
282–289, 2001. 3

[11] J. M. Lee. Riemannian Manifolds- An Introduction to
Curvature. Springer, New York, 1997. 2, 3, 4

[12] Z. Li, J. Liu, and X. Tang. Constrained clustering via
spectral regularization. In Proc. CVPR, pages 421–
428, 2009. 1, 7

[13] M. McPherson, L. Smith-Lovin, , and J. M. Cook.
Birds of a feather: Homophily in social networks. An-
nual Review of Sociology, 27:415–444, 2001. 1

[14] S. Rangapuram and M. Hein. Constrained 1-spectral
clustering. JMLR W&CP (Proc. AISTATS), 22:1143–
1151, 2012. 1, 7

[15] B. Schölkopf and A. Smola. Learning with Kernels.
MIT Press, Cambridge, MA, 2002. 2

[16] F. Steinke, M. Hein, and B. Schölkopf. Nonpara-
metric regression between general Riemannian man-
ifolds. SIAM Journal on Imaging Sciences, 3(3):527–
563, 2010. 2, 4

[17] D. Tang, T.-H. Yu, and T.-K. Kim. Real-time ar-
ticulated hand pose estimation using semi-supervised
transductive regression rorests. In Proc. ICCV, pages
3224–3231, 2013. 1, 10

[18] X. Wang and I. Davidson. Flexible constrained spec-
tral clustering. In Proc. SIGKDD, pages 563–572,
2010. 1, 7

[19] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf. Learning with local and global consis-
tency. In NIPS, pages 1330–328, 04. 1

[20] X. Zhou and M. Belkin. Semi-supervised learning by
higher order regularization. JMLR W&CP (Proc. AIS-
TATS), pages 892–900, 2011. 2, 4, 5

[21] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-
supervised learning using Gaussian fields and har-
monic functions. In Proc. ICML, pages 912–919,
2003. 1

Accepted version of paper published at CVPR 2015, http://dx.doi.org/10.1109/CVPR.2015.7298831


