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Abstract

The face is one of the most powerful channel of nonverbal communication. The most commonly 

used taxonomy to describe facial behaviour is the Facial Action Coding System (FACS). FACS 

segments the visible effects of facial muscle activation into 30+ action units (AUs). AUs, which 

may occur alone and in thousands of combinations, can describe nearly all-possible facial 

expressions. Most existing methods for automatic AU detection treat the problem using one-vs-all 

classifiers and fail to exploit dependencies among AU and facial features. We introduce joint-patch 

and multi-label learning (JPML) to address these issues. JPML leverages group sparsity by 

selecting a sparse subset of facial patches while learning a multi-label classifier. In four of five 

comparisons on three diverse datasets, CK+, GFT, and BP4D, JPML produced the highest average 

F1 scores in comparison with state-of-the art.

 1. Introduction

The Facial Action Coding System (FACS) [10] is a comprehensive system for describing 

facial movements. Anatomically-based descriptors, referred to as Action Units (AUs), alone 

and in thousands of combinations can account for nearly all-possible facial expressions. This 

descriptive power is not without cost. Manual FACS coding is labor intensive. Training can 

require a hundred hours or more to reach acceptable competence. Once a FACS coder 

achieves this milestone, annotation (also referred to as coding) can require an hour or more 

for each 30- to 60 seconds of video, and inter-observer reliability must be closely monitored 

to maintain quality. To make possible more efficient use of FACS, computer vision strives 

for automatic AU coding. While significant progress has been made toward this goal 

[1,6,9,22], at least two critical problems remain. These are patch and multi-label learning. 

Patch learning (PL) addresses how to effectively exploit local dependencies between 

features; multi-label learning (ML) seeks to exploit strong correlations among AUs.
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Most current approaches extract features across the entire face and concatenate them for AU 

detection. Within local regions, however, many of these features are correlated. We define 

local regions as patches centered around facial landmarks. By modeling features within local 

patches informed by FACS, it is possible to give greater weights to informative regions of 

interest and to reduce a large number of correlated features to achieve efficient learning. 

Zhong et al. [34] effectively applied patch learning to detect prototypic expressions (e.g., 

happy or sad). We apply patch learning to the more demanding problem of AU detection.

Similarly, just as features within patches have constraints, or correlation, AUs have 

constraints as well. AU 1 (inner-brow raise) increases the likelihood of AU 2 (outer-brow 

raise) and decreases the likelihood of AU 6 (cheek raiser). Multi-label learning builds upon 

this knowledge. Learning related AUs simultaneously improves learning in part by implicitly 

increasing the sample size for each AU. Recent efforts have explored AU relationships using 

Bayesian networks (BN) [25, 26] and dynamic Bayesian networks (DBN) [28]. Some 

developed generic domain knowledge to learn AU models without training data [15].

We address patch and multi-label learning with one stone. By taking both PL and ML into 

account, we model dependencies among both features and AUs. We explore two types of AU 

relations, termed positive correlation and negative competition, by statistically analyzing 

more than 350,000 samples from three varied datasets that include both posed and 

spontaneous facial behavior. The latter includes two- and three-person social contexts and a 

range of emotion inductions. Given such AU relations, we develop joint patch and multi-

label learning (JPML) to simultaneously select a discriminative subset of patches and learn 

multi-AU classifiers. JPML leverages the structure in the classification matrix and AU 

labels, and naturally blends two tasks into one.

Fig. 1 illustrates the main idea. (a) shows a classification matrix in which columns 

correspond to patch indices and rows to individual AU classifiers; (b) shows likely and 

unlikely co-occurring AUs; (c) shows patch indices. (d) illustrates the patches selected by 

JPML, illustrating that JPML is able to finding a discriminative subset of patches to identify 

a target AU, in this case AU12 (oblique lip corner puller). In experiments, we will show that 

the joint processes of JPML are mutually-beneficial due to the complementary 

characteristics in the classification matrix.

 2. Related Work

Automatic facial AU detection has been a vital research domain for objectively describing 

facial action related to emotion. See [1, 6, 9, 22] for comprehensive reviews. Our work 

closely follows recent efforts in patch learning and multi-label learning. Below we review 

each in turn.

 Patch learning

Existing AU detection methods often perform feature learning to select a representative 

subset of raw features. Examples include AdaBoost [16], Gentle-Boost [27], and linear SVM 

[18]. However, as described in FACS [10], AUs relate to specific regions of human faces, 
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i.e., some facial regions are more important than others for recognizing specific AUs. If one 

seeks to detect brow raise (AUs 1 and 2), the eye and forehead regions are likely to be more 

informative than the jaw. Using domain knowledge, feature selection is sampled within 

subregions, or patches, of the face. Following this intuition, patch learning was proposed to 

model the region specificity to improve the performance of AU detection. Zhong et al. [34] 

divided a facial image into uniform patches, and then categorized these patches into 

common ones and specific ones according to basic expressions. Following a similar idea, 

Liu et al. [17] proposed to select common and specific patches corresponding to an 

expression pair (e.g., happy-sadness). However, these patches were modeled implicitly and 

do not directly capture regional importance for certain AUs. Recently, Taheri et al. [24] used 

two-layer group sparse coding to encode AUs on predefined regions, and recovered facial 

expressions using sparsity in AU composition rules.

These patch learning approaches have been proved effective on posed expressions. However, 

the patch locations are pre-defined on a normalized template, and hence could fail to 

precisely capture the specificity of patches due to non-rigidity of human faces. Besides, it is 

unclear how AUs relations can be incorporated in these studies.

 Multi-label learning

Existing research suggest the existence of strong AU correlations [15, 28]. For instance, AUs 

6 and 12 are known co-occur in expressions of enjoyment and embarrassment. We can use 

such AU correlations to improve AU detection (e.g., [5, 13, 18, 27]). To this end, Bayesian 

Networks (BN) [25, 26] and dynamic BN [28] have been used to exploit AU correlations. 

Other approaches exist, as well. Using generic domain knowledge, AU correlations can be 

modeled as a directional graph without training data [15]. In addition, a sparse multi-task 

model can be employed, assuming tasks are similar [32]. Without further research, it is 

unclear how these methods can best identify a discriminative subset of patches to improve 

AU detection. We propose a joint patch and multi-label learning (JPML) framework that 

simultaneously addresses patch- and multi-label learning for AU detection. These tasks 

prove mutually beneficial.

 3. Joint Patch and Multi-label Learning (JPML)

 3.1. Formulation

Let  be the training set with N instances and L AUs, where xi ∈ ℝD is a 

feature vector from a facial image, and yi ∈ {+1, −1}L is an L × 1 label vector which 

indicates a presence of the ℓ-th AU if the ℓ-th element yiℓ = +1, and an absence of the ℓ-th 

AU if yiℓ = −1 (see notation1). For notational convenience, we denote X = [x1, …, xN] ∈ 

ℝD×N as a data matrix, and Iℓ = {i∣yiℓ = +1} as an index set of instances that contain the ℓ-th 

AU. Our goal is to learn L linear classifiers in the matrix form W = [w1, …, wL] ∈ ℝD×L 

1Bold capital letters denote a matrix X; bold lower-case letters denote a column vector x. xi the i-th column of the matrix X. All non-
bold letters represent scalars. Xij denotes the scalar in the (i, j)-th entry of the matrix X. xj denotes the scalar in the jth element of x. 
1m ∈ ℝm is a vector of ones. 0m×n ∈ ℝm×n are matrices of zeros. I(x) is an indicator function that returns 1 if the statement x is true, 
and 0 otherwise.
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that enforces group-wise sparse feature selection (corresponding to the rows of W) and label 

relations (corresponding to the columns of W). We formulate JPML as an unconstrained 

optimization problem:

(1)

where  is the logistic loss, Ω(W) is the 

patch regularizer that enforces sparse rows of W as groups, and Ψ (W, X) is a relational 
regularizer that constrains predictions on X with AU relations. Tuning parameters are α for 

Ω(·) and (β1, β2) included in Ψ(·, ·). Problem (1) involves two tasks: identify a discriminative 

subset of patches for each AU (patch learning), and incorporate AU relations into model 

learning (multi-label learning). Below we detail each task in turn.

 3.2. Patch learning

The first task addresses patch learning. According to FACS [10], AUs are defined according 

to appearance changes at particular facial regions. Unlike standard feature learning methods 

that treats features separately [16, 19], patch learning constrains local dependencies in facial 

patches and gains better interpretation. Existing work select patches on uniformly distributed 

grid [17,24,34], while this paper exploits landmark patches that are centered at facial 

landmarks (as depicted in Fig. 1(c)). These landmark patches adapt better in real-world 

facial expression recognition scenario because of the non-rigidity of faces. In particular, we 

describe each patch using a 128-D SIFT descriptor. Each facial image is then represented as 

a 6272-D feature vector by concatenating SIFT descriptors of all landmarks.

To address the regional appearance changes on AUs, we define a group-wise sparsity on the 

classification matrix W. Group sparsity learning aims to split variables into groups and then 

to select groups in sparsity. It has been shown to effectively recover joint sparsity across 

input dimensions, and successfully applied to computer vision (e.g., [14, 31]). Given the 

structural nature of our problem, within each column of W, we split every 128 values into 

non-overlapping groups, where each group corresponds to the SIFT features extracted from 

a particular patch. This grouping encourages a sparse selection of patches by jointly setting a 

group of rows to zero. In particular, Problem (1) reduces to:

(2)

where  is the patch regularizer, and  is the p-th group for the 

ℓ-th AU, i.e., rows of wℓ grouped by the patch p.

 Patch importance—To validate the ability of maintaining the specificity of patches, we 

compare standard feature learning2 (treat each feature independently) and our patch learning 

(treat features as groups), using the defined patch importance . As shown in Fig. 2, 
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patch learning offers a better interpretation of important patches corresponding to three AU 

examples. For instance, patches around inner eyebrow contain higher importance for AU1; 

for AU24, patches around mouth (especially upper lips) are shown more important. 

Moreover, compared to previous work that manually defines a fixed region for AU12 (e.g., 

[24,29]), our patch learning for AU12 automatically emphasizes not only upper lips (not 

lower lips), but also the patches around lower nose and slightly minor importance on the 

lower eyelid (corresponding to AU6). It can be seen that patch learning facilitates the 

specificity of relevant facial patches. Similar results could be obtained on other AUs and 

basic emotions.

 #Patches versus performance—A natural question to ask is how the number of 

patches influences performance on AU detection. Intuitively, more patches should improve 

performance because more information is provided. To answer this question, we performed 

an experiment on AU12 using the CK+ dataset. Patches are selected in a descending order 

with respect to the patch importance. As shown in Fig. 3, the performance increases quickly 

until it hits the best performance with 18 patches, which associate with the zygomatic major 

in AU12 (upper lips and lower nose). When #patches become 25, patches on lower eyelid 

(associated with AU6) are included, showing that patches associated with AU6 are related to 

AU12. However, the performance drops slightly because not all patches carry useful 

information for a particular AU, coinciding with the findings [34]. Introducing more patches 

potentially include more noises that fluctuate the performance. Observing similar 

performance between #patches=18 and #patches=42, one can justify the importance of patch 

specificity, i.e., only a subset of patches are discriminative for AU detection.

 3.3. Multi-label learning

The next task is to exploit label relations for AU detection. Learning multiple related labels 

effectively increases the sample size for each class, and improves the prediction performance 

(e.g., [3,30]). Despite the AU relations derived from prior knowledge [15, 28], this section 

explores statistically the AU co-occurrence among more than 350,000 frames. Below we 

describe how we discover these relations, and how they can be incorporated into JPML.

 Discover AU relations—We seek AU relations by statistically analyzing three datasets, 

CK+ [18], GFT [23] and BP4D [33], which contains 214 subjects and more than 350,000 

valid frames with AU labels. The most frequently occurring AUs are used throughout this 

paper. Here, our goal is to discover likely and rarely co-occurring AUs.

Fig. 4 shows the relation matrix studied on the datasets. The (i, j)-th entry of the upper right 

matrix was computed as the coefficient correlation between the i-th and the j-th AU using 

ground truth labels; an entry of the lower left matrix was computed on the labels containing 

at least either the i-th or the j-th AU. One could interpret the upper matrix in Fig. 4 as a 

mutual relation of concurring AU pairs, and the lower matrix as an exclusive relation that 

one AU competes against another. After investigating this matrix with the FACS [10] and 

2ℓ1-regularized linear SVM [11] was used as feature learning.
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related studies [15, 28], we derive two types of AU relations, positive correlation and 
negative competition, as summarized in Table 1.

To discover these relations, we derive explicit rules as follows. AUs with over moderate 

positive correlations, i.e., correlation coefficient ≥0.40, are assigned as positive correlations, 

e.g., AUs (6, 12) co-occur frequently to describe a Duchenne smile. AUs with large negative 

correlations, i.e., correlation coefficient ≤0.60, are selected as negative competitions, 

implying these AUs compete against each other and thus avoid occurring at the same time, 

e.g., AUs (12, 15) have negative influences on each other (coincide with the findings in 

[15]). Note that, for the lower matrix, we exclude the consideration of relations between 

upper face and lower face AUs, because their facial muscles function separately and thus do 

not compete against each other. In addition, one can observe that the absolute values of 

lower matrix are much larger than the upper ones, providing another evidence that out of 

thousands of AU combinations, most rarely co-occur, coinciding with [24].

 Incorporate AU relations into JPML—Denote the set of AU pairs with positive 

correlations and with negative competitions as P and N, respectively. For instance, (1,2) and 

(6,12) are in P; (15,23), (15,24), and (23,24) are in N. To incorporate the AU relations 

discovered above, we introduce the relational regularizer as:

(3)

where β1 and β2 are tradeoff coefficients. PC(W, X, P) captures the AU relations of positive 

correlations:

(4)

where γij is a pre-defined similarity score that determines how similar two predictions 

 and  are. The larger γij is, the more similar predictions are for the i-th and the 

j-th AUs in P (γij = 2000 in our experiments). The intuition behind this regularizer is that 

positively correlated AUs implies similar predictions. NC(W, X, N) is defined in analogy to 

exclusive lasso [35]: , where Ni 

indicates the i-th element in N, and |N| = 14 in our case (as shown in Table 1). For example, 

N1 is the AU pair (1,6) with negative competition. Because the ℓ1 norm tends to achieve a 

sparse solution, if one classifier predicts AU1 in the group N1, the AU6 classifier tends to 

generate small prediction values. In this way, we are able to introduce competitions among 

the predictions within the same negative group. As a result, we solve for the multi-label 

learning task of JPML:

Zhao et al. Page 6

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2016 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

We detail our algorithm to solve JPML as follows.

 3.4. Algorithm

Because Ω(W) and Ψ(W, X) constrain on W differently, Problem (1) cannot be solved 

directly. We rewrite Problem (1) by introducing auxiliary variables W1, W2., and then 

jointly optimize W1 and W2 using ADMM [2]:

(6)

Algorithm 1 Patch learning (PL)

Input: Training data , ML matrix W2, Lagrange multiplier of ADMM ρ and U, learning rate η1, 
and penalty parameter α.

Output: PL matrix W1 ∈ ℝD×L with sparse groups of rows.

1: for ℓ = 1, … , L do

2:

  ; // Initialization

3:  while not convergence do

4:

   ;

5:   for p = 1, … , 49 do

6:

    ;

   //  is the p-th patch within the ℓ-th column of W1

7:   end for

8:

   ;

9:

   ;

10:   t = t + 1;

11:  end while

12: end for
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The augmented Lagrangian can be written as:

(7)

ADMM consists of three updates:

(8)

(9)

(10)

Solving (8) involves the patch regularizer Ω(W1) and the augmented terms in Lp. Because 

solving for W1 with L2,1 norm is a non-smooth problem, here we use the accelerated 

gradient method [4] to decompose L2,1 norm into 49 sub-problems. Algo. 1 summarizes the 

detailed procedure. The convergence condition in the algorithm is ∥w(t +1) − w(t)∥2 ≤ δ (δ = 

10−5 in our case).

Algorithm 2 Multi-label learning (ML)

Input: Training data , PL matrix W1, Lagrange multiplier of ADMM ρ and U, learning rate η2, 
penalty parameter β2, and accuracy control parameter μ.

Output: ML matrix W2 ∈ ℝD×L.

1:

; // Init.

2: while not convergence do

3:

  ;

4:  Hμ = 0L×D;

5:  for i = 1, … , N do

6:

   ;

7:

   ;
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8:

   ;

9:  end for

10:

  ;

11:

  ;

12:

  ;

13:  t = t + 1;

14: end while

Fig. 5 illustrates the convergence process of PL on AU12. While the number of iteration 

increases, PL converges to a subset of patches that preserves better specificity. On iteration 

#1, many patches are selected and thus remain an ambiguous representation. From iteration 

#10 to #30, patches associated with AU12 are strengthen but still involve unrelated regions 

such as eyes. PL converges at it#60, revealing the discriminative patches around lower 

nostril wing and upper mouth, the regions that zygomaticus major muscle triggers for AU12.

Solving (9) involves the relational regularizer Ψ(W2, X) and the augmented terms in Lp. For 

Ψ(·, ·), the positive correlation PC(W2, X, P) is smooth in W2, but the negative competition 

NC(W2, X, N) is not. Here we adopt Nesterov’s approximation [21] to smooth the objective. 

Given a training sample xi and its negative relation Ni, we denote WNi as a D × |Ni| matrix 

where each column contains wj and j ∈ Ni. Let , we can write 

its dual norm as , and smooth NC(W2, X, N) following 

[21]. See Algo. 2.

JPML is optimized by iterating patch learning (Algo. 1) and multi-label learning (Algo. 2). 

Because the ADMM form in (7) is bi-convex, it is guaranteed to converge to a critical point. 

Fig. 6 shows the convergence process of JPML. In training, the maximum iteration is set as 

30, while JPML typically converges within 5 iterations. As can be seen in (a), for each 

iteration of PL and ML, JPML manages to keep the averaged error between  and 

as low as 10−5. By adding positive correlations and negative competitions into patch 

learning, much more accurate correlations closed to ground truth can be learned. In 

quantities, the distance between predictions and ground truth decreased 3.4 times, as shown 

in Fig. 6(d) and (e). Note that the entry of AUs (1,2) in Fig. 6(c)~(e) is empty because in CK

+ AUs (1,2) always co-occur, leading to a zero variance during the computation of 

correlation coefficient.
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 4. Experiments

 4.1. Settings

 Datasets—We evaluated the effectiveness of JPML in three datasets that include both 

posed and spontaneous facial behavior in varied contexts. Each database had been FACS 

coded by well-experienced coders. Inter-observer agreement in each was quantified using 

coefficient kappa, which control for chance agreement between coders, and it was 

maintained at a kappa of 0.80 or higher, which represents high inter-observer agreement.

1. CK+ [18] is a leading testbed for facial expression analysis. It consists of 593 

sequences of posed facial actions from 123 subjects. The first and the last 

frames of each sequence were selected as negative and positive samples, 

respectively. In all, 593 images with 10 AUs were used.

2. GFT [23] consists of 720 participants recorded during group-formation tasks. 

Previously unacquainted participants sat together in groups of 3 at a round 

table for 30 minutes while getting to know each other. We used 2 minutes of 

video from 50 participants. For each participant, we randomly sampled 100 

positive frames and 200 negative frames for training purposes.

3. BP4D [33] contains 2D/3D videos of spontaneous facial expressions in young 

adults during various emotion inductions while interacting with an 

experimenter. We used 328 2D videos from 41 participants. For each video, we 

randomly sampled 50 positive frames and 100 negative frames for training 

purpose.

Because severely skewed base rates attenuate estimates of classifier performance, only AU 

occurring more than 3% to 5% of the time were included for analysis. Across datasets, 10 to 

11 AU met this criterion. Even though AU with very low base rates were omitted, skew 

nevertheless varied considerably. To control for the effects of skew on AU detection, test 

statistics were normalized for skew using the procedure of [12]. By normalizing for skew we 

were able to reliably compare results within and between datasets. Table 2 summarizes the 

skew factor defined as the ratio of the number of negative samples to the number of positive 

ones.

 Pre-processing—IntraFace [7] was used to track 49 facial landmarks. Tracked 

landmarks were registered to a reference face using similarity transform. Appearance 

features were extracted using SIFT descriptor [36] at frame level, resulting in 49×128-D 

features for each image. To take full advantage of the datasets, we divided GFT and BP4D 

into 10 splits of independent participants. Because CK+ only contains 593 images, 5 splits 

were adopted.

 Evaluation metrics—To report objective results, we used two metrics to compare 

performance, F1-Norm (frame-based) and F1-Event (segment-based). F1-Norm [12] is 

computed as the normalized F1 score with a skew factor: , where R is 

recall, P is precision, and s is the skew factor. F1-Norm skew-normalizes the standard F1 
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metric and enables comparison both within and between datasets. On the other hand, F1-

Event [8] serves as a segment-based metric defined as the harmonic mean between event-

based recall ER and event-based precision EP: . For each method, 

we computed the averaged metric over all AUs (denoted as AA.), and averaged over only the 

AUs with relationships (denoted as AR.).

 Comparative methods—To investigate the benefits of JPML, we compared it with 

methods that omit patch- and multi-label learning and with approaches that use patch- or 

multi-label learning but not an integration of both.

For baseline without PL or ML, we trained Linear SVMs (LSVM) [11] on individual AU. 

As a baseline for feature learning, we used L1-regularized logistic regression (LL1) [11]. All 

use features without considering patches.

For PL, we used several patch selection methods. These were self-defined patches (similar to 

[5, 36]) with binary SVMs, termed as SP-SVM, in comparison to our automatic patch 

selection. Patches were defined according to FACS and patch indexes in Fig. 1(c): landmarks 

#1~#10 are assigned to AUs 1, 2, and 7; #11~#30 for AU6; #11~#19 for AUs 11 and 14, 

#32~#49 for all AUs around lips. Patches on eyebrows were selected for training classifiers 

on AUs 1, 2 and 7; patches on eyes and nose for AU 6; patches around nose for AUs 11 and 

14; patches around lips for all AUs around mouth. In addition, we compared two state-of-

the-art patch learning methods, Structure Preserving Sparse Decomposition (SPSD) [24] and 

Active Patch Learning (APL) [34]. For SPSD, because GFT and BP4D do not contain 

expressions labels, we used one layer to learn AU dictionary, and K-SVD [20] to learn AU 

atoms on fixed patches. Note that the original APL [34] was defined on emotion bases using 

uniform segmentation on face images. In our experiments, we implemented APL using 

patches centered at landmarks and algorithm in Algo. 1.

For ML, we compare with MT-MKL [32] using RBF and polynomial kernels with the 

implementation provided by the authors. Because MT-MKL involves computing multiple 

kernel matrices, it is computationally prohibitive for large datasets such as GFT and BP4D, 

and was carried out only on CK+. Following [32], we employed 3 AU groups overlapped 

with this study: AUs (1,2), (6,12), and (15,17). According to parameters in Algos. 1 and 2, α 

is cross-validated within {10−3, 10−4, 10−5}, η1 = 10−4, γ = 2000, μ = 10−4, η2 = 2000, β1 = 

10−3, and β2 = 10−4.

 4.2. Results

Tables 3~5 show the results on CK+, GFT, and BP4D, respectively. AUs without 
relationships are underlined. We excluded these AUs for ML and JPML and denoted theirs 

results as “–”. For CK+, because each video starts from a neutral face to a particular peak 

expression, we evaluated with only F1-Norm. For GFT and BP4D consisting of spontaneous 

videos, we used both F1-Norm and F1-Event to capture the imbalance nature of AU 

detection and the ability to preserve temporal consistency. Below we discuss the results from 
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three perspectives: patch Learning, multi-label learning and the proposed joint framework 

JPML.

 Patch learning—This paragraph attempts to answer the question: does APL help 

improve performance compared to standard feature learning and patch learning methods? 

Out of three datasets, we evaluated 32 AUs with F1-Norm, and 22 AUs with F1-event. In 

general, APL outperforms features learning (LL1 and LSVM) in 26/32 AUs for F1-Norm, 

and 14/22 AUs for F1-event. Compared to patch learning approaches (SP-SVM and SPSD) 

that use uniformly distributed patches, APL outperforms in 30/32 AUs with F1-Norm and 

17/22 in F1-event. One explanation is that our APL uses patches around facial landmarks, 

and thus better adapts to appearance changes on spontaneous expressions. In particular, as 

can be seen in Tables 3~5, APL performs more effectively when applied to lower face AUs, 

which typically involves larger motions on mouth regions. In summary, we justify that APL 

is more reasonable than standard feature learning and patch learning with fixed patches.

 Multi-label learning—This paragraph discusses the benefits of considering relations 

between AU labels using multi-label learning. Closest to our work is MT-MKL that assumes 

classifiers within the same AU group behave similarly. On the contrary, our ML (Sec. 3.3) 

considers positive correlation as well as negative competition on labels (instead of 

classifiers), and thus more naturally fits the problem in hand. In Table 3, averaging F1-Norm 

over the 6 AUs we implemented for MT-MKL, ML outperforms against MT-MKL by 8.8%. 

In Tables 4 and 5, we have seen that ML consistently outperforms standard binary classifiers 

(LL1, LSVM, SPSD and SP-SVM), showing that relations between AU labels are essential 

to assist AU detection.

 JPML—APL and ML alone have shown good performance over three datasets. This 

paragraph focuses on the discussion of JPML that jointly considers patch selection and AU 

relations. In all, JPML achieves the best or second best for 22/27 AUs in F1-Norm and for 

12/18 AUs for F1-event. In Table 3, JPML performs the best for AUs (1,2,12,15), and 

improves about 1.3% and 5.0% than APL and ML respectively for F1-norm. It improves 

more than 7.3% and 7.8% for F1-Norm, and 13% and 67% for F1-event than APL and ML 

respectively. In Tables 4 and 5, as more spontaneous expression are involved, the 

improvement becomes more obvious. Since the ratio of training and test samples in BP4D is 

a little small in this paper and samples in BP4D is much more complex than GFT, the results 

in Table 5 is smaller than ones in Table 4 in average. In all, JPML method achieved the 

highest overall scores in five comparisons on three datasets. In BP4D, APL is slightly higher 

than JPML. In no cases, the other approaches match or exceed APL and JPML. This 

suggests that our patch-based approach is more powerful, and further boost the performance 

with additional ML. In addition, there are some interesting observations in our results. JPML 

yields better improvement in AUs with larger skew (e.g., AU1 and AU2 in GFT and BP4D), 

as shown in Table 2. To summarize, JPML validates the effectiveness of jointly learning the 

patches and AU relations, showing that iterating the ML and the APL process is beneficial.
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 5. Conclusion

This paper proposes a joint patch and multi-label learning (JPML) for facial AU detection. 

Active patches for each AU are selected more specificity by group sparsity learning. Jointly 

with patch learning, positive correlations and negative competitions among AUs are 

introduced to model a discriminative multi-label classifier. Compared with patch learning 

based and multi-label learning based algorithms separately, JPML obtained the best 

predictions across three datasets. According to the conclusion of results in experiments, 

imbalance data learning and video-based learning algorithm should be studied in the future 

work.
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Figure 1. 
Joint patch and multi-label learning (JPML): (a) the learned classification matrix with 

consideration of positive and negative AU relations, (b) likely and rarely co-occurring AUs, 

(c) patch indexes, and (d) automatically selected patches for AU12.
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Figure 2. 
Patch importance between standard feature learning and our patch learning for AU1, 12 and 

24 on CK+ dataset. Weights on each patch are computed as the norm of their classification 

vectors, and then normalized to [0,1].
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Figure 3. 
F1-Norm with respect to different #patches for AU12 on CK+ dataset. Three marked faces 

indicate the 18, 26 and 42 selected patches, which are depicted as light yellow circles.
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Figure 4. 
The relation matrix studies on more than 350,000 valid frames with AU labels. Red solid 

and dashed yellow rectangles, respectively, indicate the relations of positive correlations and 

negative competitions studied in this work.
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Figure 5. 
Illustration of convergence curve on learning active patches on AU12 with algorithm PL. 

While the iterations proceed, PL identifies the regions for AU12 (lip corner puller) with 

better specificity.
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Figure 6. 

Illustration of JPML on the CK+ dataset: (a)  v.s. #iteration, (b) 

objective value in (7) v.s. #iteration, (c) ground truth relation matrix (correlation coefficients 

between ground truth AU labels), (d) relation matrix at the initialization step (with patch 

learning only), and (e) relation matrix computed by predictions of JPML. The difference of 

correlation coefficient between (c) and (d) is 0.51, and that between (c) and (e) is 0.15, 

showing that JPML helps preserve the relations between AUs.
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Table 1

AU relations discovered and used in this study

AU relations AU groups

Positive correlation (1,2), (6,7), (6,10), (7,10), (6,12), (7,12), (10,12), (17,24)

Negative competition (1,6), (1,7), (2,6), (2,7), (10,17), (10,23), (10,24), (12,15), (12,17), (12,23), (12,24), (15,23), (15,24), (23,24)
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