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Abstract

We present a novel vanishing point (VP) detection and
tracking algorithm for calibrated monocular image se-
quences. Previous VP detection and tracking methods usu-
ally assume known camera poses for all frames or detect
and track separately. We advance the state-of-the-art by
combining VP extraction on a Gaussian sphere with re-
cent advances in multi-target tracking on probabilistic oc-
cupancy fields. The solution is obtained by solving a Linear
Program (LP). This enables the joint detection and track-
ing of multiple VPs over sequences. Unlike existing works
we do not need known camera poses, and at the same time
avoid detecting and tracking in separate steps. We also pro-
pose an extension to enforce VP orthogonality. We augment
an existing video dataset consisting of 48 monocular videos
with multiple annotated VPs in 14448 frames for evalua-
tion. Although the method is designed for unknown camera
poses, it is also helpful in scenarios with known poses, since
a multi-frame approach in VP detection helps to regularize
in frames with weak VP line support.

1. Introduction
A vanishing point (VP) is the point of convergence of a

set of parallel lines in the imaged scene under a projective
transformation. Man-made structures often consist of geo-
metric primitives, such as multiple sets of parallel or orthog-
onal planes and lines in the scene. Because of this, the de-
tection of projected VPs in images provides strong cues for
the extraction of knowledge about the unknown 3D world
structure. VPs can often be further constrained to mutual
orthogonality, due to the preference of right angles in man-
made structures. Detected VPs have been used as a low-
level input to many higher-level computer vision tasks, such
as 3D reconstruction [9, 14], autonomous navigation [23],
camera calibration [12, 33] and pose estimation [15, 22].

Many applications, which take video sequences or un-
ordered image sets as input, require VP estimates in ev-
ery frame and VP identities across views or frames. Usu-

Figure 1: Tracked vanishing directions are shown together with
associated imaged line segments in three frames of a sequence.
This and the subsequent figures are best viewed in color.

ally, when this is needed, the camera pose is assumed to be
known for every frame [1, 13], thereby rendering the VP
association across images simple, or separate steps for VP
detection and tracking (particle filters [23, 25], greedy as-
signment [11]) are used. Since pose knowledge can only
be obtained through expensive odometry or external mo-
tion measurements, it will often not be available. Separate
VP detection and tracking often results in missed detections
or loss and re-initialization of VP tracks due to weak line
support in some frames. Even in the case of known poses,
joint detection over multiple frames benefits from integrat-
ing image evidence of many frames. Joint reasoning over
sequences is particularly useful if long-term VP identities
are required, and re-initializations are expensive.

To the best of our knowledge, no method exists that
jointly extracts multiple VPs in all frames of a video with
unknown camera motion. Our contributions are twofold:

1. Method. We propose the first algorithm for the joint
VP extraction over all images of a sequence with unknown
camera poses. We borrow from recent advances in multi-
target tracking [6, 35] and model the problem as a variant
of a network-flow tracking problem. We compute line seg-
ments in each frame and discretize the set of possible VPs
on a probabilistic spherical occupancy grid. Line-VP as-
sociation probabilities and VP transition probabilities are
converted into an acyclic graph for joint VP extraction and
tracking. VPs are extracted by Linear Programming (LP).

2. Dataset. As the field lacks a dataset for the evaluation

1



of VP extraction in videos, we augmented the Street-View
video dataset of [17] with annotated VPs, which will be
publicly available. We evaluate our approach on this dataset
using established multi-object tracking metrics [7, 19] for
unknown camera poses. We chose this dataset because cam-
era poses are available for all frames, which enables one
additional experiment: We evaluate the improvement of our
algorithm when camera pose information is incorporated.
Since our method also works for single frames and orthog-
onal VPs, we compare to a recent method[29] for VP detec-
tion in Manhattan Scenes on the York Urban Dataset [10].

The paper is organized as follows: §2 introduces our VP
parametrization. §3 describes the method, with LP formu-
lation in §3.1, and score modeling in §3.2. We evaluate in
§4 and conclude in §5 with a discussion of future work.

Related Work

VP extraction has been studied extensively in Computer
Vision. The most relevant recent works can be categorized
according to several algorithmic design choices:

Input: While some approaches start directly from con-
tinuous image gradients or texture [23, 25, 27] and thresh-
olded edges images [30], most works rely on short line seg-
ments [2, 3, 12, 13, 21, 26, 29, 33], or full lines [8, 11]. If the
3D geometry is known, surface normals can be used [28].

Accumulator Space: Intersections of imaged lines can
be computed in the original (unbounded) image space [2,
11, 26, 27, 29, 34] or on a (bounded) Gaussian unit sphere,
first proposed in [3] and used in [1, 5, 12, 13, 15, 20, 21,
22, 24, 28]. We use the latter approach, explained in §2. It
allows for easy discretization [3, 20, 21]. [18] proposes a
line parametrization in parallel coordinates to extract VPs.

Line-VP Consistency and VP Refinement: Consis-
tency between an estimated VP and image lines can be
computed directly by measuring line endpoint distances in
the image [2, 5, 13, 18, 29], angular differences in the im-
age [10, 26], with explicit probabilistic modeling of the line
endpoint errors [34], or with angles between normals of in-
terpretation planes in the Gaussian sphere, used by us and
[20, 21, 24]. VP computation or refinement with given as-
sociated lines is done via Hough voting and non-maximum
suppression [20, 21, 23, 31, 24], solving a quadratic pro-
gram [2], implicitly in an EM setting [1, 27, 29, 34], or by
linear least-squares, as in this paper and [15].

Solution: Several different methods exist for combining
input, accumulator space and line-VP consistency measures
into a final extraction solution. If no discretization of the
accumulator space is attempted, solutions are found with
efficient search [10, 26], direct clustering [18, 29], multi-
line RANSAC [5, 33], EM procedures [1, 13, 15, 27, 34],
or MCMC inference [28]. With a discretized accumulator
space solutions are found by voting schemes [20, 21, 23, 24]
or inference in graphical models [2, 30].

Figure 2: Imaged line segments l1,l2 of scene parallel lines l̂1,
l̂2 form a VP V2D on the image plane π. The same VP can be
parametrized as the vector V3D pointing towards the intersection
of interpretation planes P1, P2 of lines l1, l2 and the unit sphere.

Camera Calibration and VP Orthogonality: Some VP
extraction methods assume known internal camera calibra-
tion [11, 13, 20, 23, 24, 25]. Others do not need calibra-
tion [2, 15, 21, 26, 34]. Internal parameters can be esti-
mated from extracted VPs [8, 12, 33]. VPs have also been
used for estimation of external camera parameters: orienta-
tion of camera to scene [4, 15], 3D shape to camera [3], and
as additional constraints for full camera poses [22]. Often,
further scene-dependent VP constraints are included: mu-
tual VP orthogonality (Manhattan World) [10, 11, 13, 33],
sets of mutually orthogonal VPs [28, 16], with a shared ver-
tical VP (Atlanta World) [2, 27].

Multi-View Extraction and VP Tracking: [1] solves
multi-view VP extraction by Hough voting with EM re-
finement, but requires known camera poses. [13] extracts
orthogonal VPs independently in multiple views, and inte-
grates information across views by using SfM (Structure-
from-Motion) camera pose estimates. [11, 16] explicitly
track orthogonal VPs in videos. [11] extracts VPs sepa-
rately in each frame, and greedily links VPs across frames.
[16] uses a multi-target tracking approach to link multiple
hypothesized sets of mutually orthogonal VPs, but, in con-
trast to this work, requires pre-processing to extract can-
didates. [23, 25] track VPs for road direction finding. One
finite horizontal VP, corresponding to the heading direction,
is extracted in each frame and tracked using particle filters.

In contrast to these approaches, in our method we find
a jointly optimal solution without any knowledge about the
camera pose, or number or relative directions of the VPs.

2. VP Representation
A 2D VP is the intersection of (the unbounded continua-

tion of) two 2D line segments, imaged from two 3D scene-
parallel lines. In Fig. 2 imaged line segments l1, l2 of scene
parallel lines l̂1, l̂2 form a VP V2D on the image plane π.
The 2D VP may lie inside or outside the image frustum of
π, or at infinity, in cases when imaged lines remain parallel.

An alternative parametrization, proposed in [3], models
VP locations on the unit sphere. A point x̃ in homoge-
neous image coordinates is normalized by x = K−1x̃, with
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Figure 3: Combined figure for § 2.1 and § 3. For § 2.1: interpreta-
tion planes on a discretized sphere for a rotating cube. For visual-
ization purposes only four planes belonging to one horizontal VP
are drawn. For § 3: directed acyclic graph with, 1) arcs between
VP bin and Start and T erminal node (blue,cyan), 2) transition
arcs from each VP bin to all bins in following frame (green), 3)
line association arcs from each VP bin to all line segments at time
t (magenta). For visualization only a subset of all arcs is drawn.

K the camera calibration matrix. A plane P is spanned
by the center of projection at [0, 0, 0]T , and the endpoints
x1, x2 in normalized homogeneous image coordinates of
an imaged line segment l. The plane is computed as P =
x1×x2/(‖x1‖ ‖x2‖), and is called interpretation plane. For
line segments l1, l2, interpretation planes P1, P2 are shown
as intersection circles of the planes and the unit sphere in
Fig. 2. The VP is given as their intersection on the sphere:
V3D = ±P1×P2. In the following we use vanishing direc-
tion and vanishing point interchangeably. If more than two
planes are detected, the VP is given by the least-squares so-
lution to a system of incidence equations:∑

i
< Pi, V3D >= 0 . (1)

2.1. VP Discretization

In order to use the proposed parametrization for tracking
we need to discretize the solution space of possible VPs.
Fig. 3 illustrates the chosen discretization: a simple trian-
gular tessellation of the sphere by iterative subdivisions of
the faces of an icosahedron. Three frames of a sequence of
a rotating cube are shown (top row). For visualization pur-
poses four line segments belonging to one horizontal VP
are drawn in red. With known internal camera calibration
K, four interpretation planes are computed and plotted to-
gether with the discretized unit sphere (bottom row). The
red color strength illustrates the likelihood of a VP in each
cell of the spherical grid. This is determined by summing
up all line-VP consistency scores as described later in Eq.
(14). Since the cube is rotating around a vertical axis, the
horizontal VP rotates accordingly, which can be seen by the
change in VP likelihoods on the spherical grid. Note that the

Frame 3Frame 1 Frame 2

Figure 4: Illustration why aggregated occupancy probabilities are
insufficient. Same example as in Fig. 1. Top: contribution to VP
bins from all interpretation planes regardless of VP association.
Color strength indicates increasing VP likelihood. Note the wide
(but incorrect) peak within the image frustum outlined in blue.
Bottom: after optimization we know the correct VPs, and color
all plane contributions following their association to the red, green
and blue VP. The misleading peak in the image frustum (top row)
originates from overlapping interpretation planes of the true VPs.

spherical grid itself does not rotate, only the planes and their
intersections on the sphere follow the cube’s rotation. While
in this example correct VP-line associations have been se-
lected manually, our proposed method will have to extract
multiple VP tracks and VP-line associations jointly.

3. Proposed Algorithm
The proposed VP representation and discretization can

now be used in a directed acyclic graph, similar to flow net-
works in multi-target tracking-by-detection. Such graphs
for probabilistic multi-target tracking were first proposed in
[35], where object detections are linked across time through
pairwise object transition arcs. Transition probabilities in-
dicate which detections at different times capture the same
object. This technique has been very successful in multi-
target tracking, since it allows association of detection evi-
dence jointly in time and space. [6] extends this by lifting
the need for object hypotheses, and operates on a discretized
ground plane with occupancy probabilities in each grid cell.
Instead of object transitions, grid transitions are encoded
in the graph. The task is solved by k-shortest path search
through the graph with Dynamic or Linear Programming.

In order to avoid a separate VP detection step we follow
the second approach, and consider the discretized sphere as
an occupancy sphere, where probabilistic evidence in each
bin indicates the likelihood for a VP. However, in contrast to
[6], we cannot simply aggregate all occupancy evidence for
a VP bin, since one interpretation plane could give its evi-
dence to several, mutually contradictory bins along a great
circle on the sphere. In general, there will usually be a
greater number of line intersections within the image frus-
tum than outside of it. Because of this VPs can be hallu-



cinated in the image frustum if each line is allowed to vote
for all bins along the intersection of interpretation plane and
sphere. This is illustrated in Fig. 4 (top row), where evi-
dence (Eq. 14) from all interpretation planes for multiple
VPs is aggregated, similar to Fig. 3 for one VP. Line seg-
ments to horizontal (red, blue) and vertical (green) VPs join
in a wide, but incorrect, peak in the occupancy probability
within the image frustum. Weaker, but sharper and tem-
porally more stable peaks, corresponding to true VPs, are
often lost in this noise. Fig. 4 (bottom row) visualizes this:
we colored the interpretation plane contributions according
to their (correct) VP association. It can be seen that the peak
within the image frustum for aggregated occupancy proba-
bilities does not correspond to any real VP.

Therefore, we do not want to aggregate occupancy prob-
abilities, but need to enforce that each line segment and in-
terpretation plane is assigned to maximally one VP bin. To
achieve this, we keep the association between VP bins and
interpretation planes as free variable in the joint VP extrac-
tion and tracking framework. This approach is related to
the Uncapacitated Facility Location problem for VP extrac-
tion [2]. However, [2] focuses on single-frame extraction of
multiple sets of orthogonal VPs, while we apply this idea
to joint detection and tracking over time, and add optional
constraints to enforce orthogonality in VP locations.

3.1. Linear Program Formulation

Overview: Solving this tasks requires deciding, firstly,
which VP bins are active, secondly, which line segments
are uniquely assigned to each VP, and, thirdly, where active
VP bins are continued over time. Since these decisions are
interdependent, we map this problem into a graph, a vari-
ant of flow-cost networks [35], as visualized in Fig. 3, to
enable a joint solution. In this graph arcs between nodes
define binary decision variables, which are activated or de-
activated depending on whether associations between VP
bins over time and VPs to line segments are made or not.
The graph is structured such that each VP track starts at the
starting node, traverses smoothly connected VP bins over
time, collects uniquely assigned line evidence in each tra-
versed frame, and ends at the terminal node. Tracks are
constrained not to overlap, and to enclose a constant angle
to each other active VP, with optional perpendicularity.

LP Formulation: For an image sequence of T frames,
with It line segments at time t, we denote the interpretation
plane for line segment i at time t as Pi,t. Vj,t denotes the
unit normal of VP bin j out of J possible bins at time t.

The graph is constructed as follows (See Fig. 3): for each
bin Vj,t we have an arc from the starting node S and an
arc to the terminal node T with associated cost Cs(j, t),
Ce(j, t), respectively. For each bin Vj,t we have transition
arcs to all bins Vj′,t+1,∀j′ ∈ J in the following frame, with
associated cost Ct(j, t, j′). For each bin Vj,t we define a

unary cost Cu(j, t). For each bin Vj,t we have line associ-
ation arcs to every interpretation plane Pi,t, with associated
score Sl(j, i, t). The solution to our problem is then given
by the set of shortest paths (i.e. with lowest aggregate scores
plus costs) from nodes S to T . Inspired by [35], we model
the problem such that only image evidence (i.e. line seg-
ments) encourages active VP tracks with scores Sl while all
other terms Cs, Ce, Cu, Ct inhibit them as costs.

We sum all scores and costs for the objective function f :

f(λ) =

T∑
t

J∑
j

[(
It∑
i

λl(j, i, t) · Sl(j, i, t)

)
+ J∑

j′

λt(j, t, j
′) · Ct(j, t, j′)

+ λb(j, t) · Cu(j, t)+

λs(j, t) · Cs(j, t) + λe(j, t) · Ce(j, t)

]
, (2)

where λ = [λl, λt, λb, λs, λe] are binary variables, indi-
cating active ([l]ine, [t]ransition, [b]in activation, [s]tart,
[e]xit) arcs. Since a VP bin can only be active with an ac-
tive outgoing transition or exit arc we replace λb(j, t) =
λe(j, t) +

∑
j′ λt(j, t, j

′) in the optimization.
The LP solution is given by:

λ∗ = argmin λ f(λ) , (3)

subject to constraints enforcing the graph structure:
C1. Flow conservation. Every VP bin can maximally

be traversed by one track:

∀j, t : λs(j, t) +
∑

j′∈J
λt(j

′, t− 1, j) =

λe(j, t) +
∑

j′∈J
λt(j, t, j

′) ≤ 1 . (4)

C2. Line-VP association. Only active VP bins can sup-
port line-VP arcs. A line can at most be linked to one VP:

∀j, t : λb(j, t) · It −
∑It

i
λl(j, i, t) ≥ 0 , (5)

∀i, t :
∑

j′∈J
λl(j, i, t) ≤ 1 . (6)

Additionally, we discovered that it is helpful to directly
constrain which VP bins can be active together.

C3. Non-Maximum Suppression. For an active VP bin,
we suppress other active VP bins in neighborhood Ns:

∀j, t : λb(j, t) · |Ns|+
∑

j′∈Ns(j)
λb(j

′, t) ≤ |Ns| . (7)

C4. Angle preservation. For two active VP bins
Vj,t,Vj′,t linked to active Vk,t+1,Vk′,t+1, respectively, we
require constancy of the enclosed angle. This follows from
the fact that vanishing directions are constant over time.

| arccos〈Vj,t, Vj′,t〉| − | arccos〈Vk,t+1, Vk′,t+1〉| < εa (8)



C5. Orthogonality (optional). Similar to [11, 13, 33]
we can optionally enforce that all tracked VPs have to be
mutually orthogonal at all times:

∀j, j′, t|j 6= j : λb(j, t) λb(j
′, t) |〈Vj,t, Vj′,t〉| < εa . (9)

C1 and C2 are essential to enforce the graph structure
as visualized in Fig. 3. We found experimentally that C3
is only needed for strong noise in line endpoints, and C4
for horizontal VPs near infinity. If a Manhattan world is as-
sumed, C5 can be used. Because of a lack of an appropriate
dataset, we only evaluate inclusion of C5 for single frames.

Integer Linear Programming is NP-hard in general.
However, using branch-and-bound, implemented in many
solvers such as CPLEX1, our problem is optimally2 solved.

The solution λ∗ gives a set of n VP tracks V =
{V1, . . . ,Vn}, where a VP track Vi = {Vk,ta , . . . , Vk′,tb}
consists of list of VP bins from time ta to tb. Furthermore,
for each active VP bin Vk,t in track Vi at time t we obtain
all interpretation planes assigned to that VP at that time.

3.2. Score and Cost Modeling

We derive the scores and costs probabilistically and con-
vert them into values for the objective function f in (2).
We set all unary, start and exit probabilities for all bins j at
times t uniformly to Pu = Ps = Pe = 1/J . This leads to
decreased sensitivity of the method for finer discretization
(higher J), and offsets the effect of stronger influence of
line segment noise. It is easy to add further domain knowl-
edge at this point: non-uniform Pu over all spherical bins
can encode e.g. higher probabilities for horizontal VPs, if
the gravity direction is approximately known. Non-uniform
Ps, Pe over time can give a bias for known start and end
times of VP tracks, e.g. from initial labeling.

Between bins j and j′ we assign a transition probability
based on the enclosed angle α = | arccos〈Vj,t, Vj′,t+1〉|:

Pt(j, j
′) = (1 + e γ1·(α−γ2))−1 . (10)

This sigmoid function yields a smooth fall-off at α = γ2,
with decay rate controlled by γ1. Since bin locations are
fixed, Pt(j, j′) is independent of time t.

Out of the many line-VP consistency measures used in
related works, we select a simple angular distance between
plane normal and VP bin. The plane Pi,t exactly inter-
sects the sphere on a greater circle through Vj,t iff the angle
β = | arcsin〈Vj,t, Pi,t 〉 | = 0, i.e. iff plane normal and
VP are exactly orthogonal. We set the linking probability:

Pl(j, i, t) = (1 + eγ3·(β−γ4))−1 . (11)

1www.ibm.com/software/commerce/optimization/
cplex-optimizer/

2In practice we terminate the search early for a small optimality gap for
efficiency reasons with no measurable performance loss.

This sigmoid function yields a smooth fall-off at β = γ4,
with decay rate controlled by γ3.

Probabilities Pu, Ps, Pe, Pt, Pl are converted into costs
and scores as in [35]. Let costs for bins j, j′ at time t be

Cu = Cs = Ce = −log Pu = −log Ps = −log Pe , (12)
Ct(j, t, j

′) = −log Pt(j, j′) . (13)

Scores for bin j at time t and line segment i are given as:

Sl(j, i, t) = log
1− Pl(j, i, t)
Pl(j, i, t)

. (14)

Scores can be negative and encourage active tracks, while
costs are strictly positive and penalize active tracks.

4. Experiments
For all experiments we use the same implementation and

parameters, detailed in § 4.1. We will evaluate our approach
for three scenarios: joint VP detection and tracking on our
new dataset in § 4.2, VP detection and tracking when cam-
era poses are known § 4.3, and single-frame orthogonal VP
detection on the York Urban Dataset (YUD) [10] in § 4.4.

4.1. Implementation Details

The neighborhoodNs for a VP bin j is selected such that
no other VP is expected withinNs. For our experiments we
conservatively assume this to be the case for σ = 5 degrees:
Ns(j) = {Vj′,t : | arccos〈Vj′,t, Vj,t〉| < σ, j′ 6= j} .

We set εa = cos(1). Values γ1 = 10, γ3 = 5, γ2 = γ4 =
2 are set empirically after visual inspection of the dataset.
Optimal γ1,2 depend on the rate of change of orientation,
γ3,4 on line endpoint noise. While Fig. 3, Fig. 4 show a
coarse 80-bin discretization, we chose a fine discretization
of 5120 spherical bins for evaluation. This discretization is
an empirically chosen trade-off between high VP accuracy
(finer discretization) and short run-times (coarser discretiza-
tion). Since solving large LPs may become computationally
expensive, we propose five LP pruning strategies:

1. Grouping of Line Segments. We start by extracting
LSD line segments [32], but reduce the number of lines,
using the Hough transform, into maximally It = 100 lines.

2. Limiting Line-VP Association. We threshold and
cut all line-VP bin associations with Pl(j, i, t) < 0.5.

3. Removal of VP Bins. We threshold and cut from the
LP all VP bins j at time t for which

∑It
i Sl(j, i, t) > 0.

Furthermore, since all VP evidence is antipodal on the
Gaussian sphere, we only use VP bins on one hemisphere.

4. Pruning of Transitions. We cut all transition arcs
between Vj,t and Vj′,t+1, if Pt(j, j′) < 0.2 .

5. Batch Processing. We solve the LP in batches of
maximally 30 frames using branch-and-bound in CPLEX.
After the solution λ∗ is found, we refine each VP in each

www.ibm.com/software/commerce/optimization/cplex-optimizer/
www.ibm.com/software/commerce/optimization/cplex-optimizer/
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Figure 5: Cumulative MOTA and ID switches over 48 sequences for the Street-View evaluation in § 4.2. The result for the proposed method
(LPMF) is colored in red. For MOTA our approach outperforms all baselines for 58 percent of the dataset, and is on par with the best
baselines for the rest. For ID switches our method outperforms all baselines significantly over the whole dataset.

frame via least-squares optimization using Eq. (1). Batches
are greedily merged, as explained for our baselines in § 4.2.

Experimentally we found that these pruning steps do not
change the solution of the LP, but are helpful (esp. steps 1
and 3) to keep the computation to a few seconds per frame.

4.2. Evaluation on the Street-View Dataset

Dataset: As the field lacks a dataset for the evaluation
of joint VP detection and tracking we augmented a dataset
for video registration to SfM models [17] with our own
VP annotations. Multiple vanishing directions and identi-
ties across frames were annotated semi-automatically in all
frames, by using the known global camera pose and a super-
vised interpretation plane clustering. We provide more in-
formation about the annotation procedure in the supplemen-
tary material. The annotations will be publicly available.
The dataset consists of 48 sequences of 301 frames (at 10
fps) of street-view video from van-mounted cameras, yield-
ing a total of 14448 annotated frames with between zero
and three VPs. Due to the non-orthogonal street-layout, the
Manhattan world assumption is generally not valid for this
dataset. The videos are of varying difficulty for VP extrac-
tion, and contain easy city scenes, as well as challenging
scenes dominated by vegetation and street furniture.

Baselines: Since this is the first work for joint VP ex-
traction and tracking, we construct our own baseline based
on [29]. We compare our method to two types of baselines.

The first baseline, LPSF (Linear Program, Single-
Frame), corresponds to VP detection with our proposed
method, where every frame is treated separately. Following
the frame-wise VP extraction, we greedily grow VP tracks.
Initially, the set of VP tracks is empty. For a new frame
we merge VPs to existing VP tracks if the angular differ-
ence is smaller then 5 degrees. The remaining VPs of this

new frame start new tracks. Finally, we remove VP tracks
shorter than 3 frames. The second baseline, in several vari-
ants, called TNO, for Tardif, Non-Orthogonal, correspond-
ing to a recent single-frame VP extraction method [29],
where we ignore the extension for orthogonal VPs. Since
the VP detection sensitivity of [29] is strongly linked to
the image resolution, we downscale the image by factors
{0.3, 0.4, 0.5, 0.6} to obtain better scores for this baseline.
VP tracks are grown greedily as for LPSF. VP tracks shorter
than 3 frames are removed for the variants marked with f.

Results: We evaluate with two metrics commonly
used in tracking: multi-object tracking accuracy (MOTA,
higher=better) [7], and ID switches (IDS,lower=better) [19].
The result is visualized in Fig. 5. The VP matching thresh-
old was set to an angle of 2 degrees. Our method is denoted
as LPMF (Linear Program, Multi-Frame). For MOTA the
best baseline results are generally obtained with LPSF and
TNO 0.4 f. The MOTA scores of TNO 0.4 f and TNO 0.5 f
are very similar, but TNO 0.4 f has significantly fewer ID
switches. Stronger downscaling (≤ 0.3) leads to an in-
crease in missed detections, and weaker downscaling (≥
0.6) to many false positive detections. Removing short (< 3
frames) VP tracks always increases MOTA and decreases
ID switches. Stronger filtering leads to a loss in MOTA.

Greedy VP track linking in all baselines often fails, be-
cause of the lack of temporal smoothness constraints in the
VP detection. This leads to frequent loss and reinitializa-
tion of VP tracks, yielding many ID switches. Our method
significantly outperforms all baselines in ID switches: in 75
percent of the dataset no ground truth track is split. The best
baseline on IDS, TNO 0.3 f, achieves this only for 41 percent
of the dataset, with significantly worse MOTA. In MOTA
our approach outperforms all baselines for 58 percent of the
dataset, and is on par with the best baselines for MOTA> 0.
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Figure 6: Cumulative MOTA for the evaluation in § 4.3. If pose
knowledge is incorporated our method (LPMF kp) still outper-
forms the best baseline (TNO 0.4 f kp) for most sequences.

For a MOTA threshold of 0.5, our method, and the two best
baselines LPSF and TNO 0.4 f, have 42, 29 and 13 percent,
respectively, of all sequences above this score. MOTA in
all methods drops significantly for the most difficult 20 per-
cent of all sequences. For all methods the strongest negative
influence on MOTA comes from missed VPs due to weak
line support. In MOTP (multi-object tracking precision) all
methods offer very similar performance. We provide a de-
tailed quantitative evaluation (MOTA, MOTP, IDS) for all
48 videos in the supplementary material.

Our unoptimized single-core Matlab implementation
(using CPLEX) requires 2.8 seconds per frame on average
on a Intel Core i7 CPU. One second is needed for prepro-
cessing (line extraction, Hough grouping) and the rest for
solving the LP. The best baseline TNO 0.4 f runs for 0.7
seconds per frame including line extraction. Recent related
works report runtimes from ’a few seconds’ [34] to half
a minute [30, 18] per frame for similar image resolutions,
but without the need for finding temporal correspondences.
The extra time required for our approach in comparison to
the TNO 0.4 f baseline is spent well on joint temporal data
association, since our method leads to significantly fewer
failure cases. This is demonstrated by two important exper-
imental results: Firstly, our approach creates significantly
fewer false positive tracks, as reflected in the MOTA score.
Secondly, our approach rarely splits a ground truth track: in
75 percent of the dataset our approach does not have any
ID switch, while this is only the case for 21 percent of all
sequences for TNO 0.4 f. Low IDS is especially crucial for
long-term operations, in which continuous VP identity in-
formation is needed and re-initializations are costly.

Some qualitative results are shown in Fig. 7. Lines which
were associated to the same VP track are drawn in the same
color. Examples for challenging scenes with failure cases

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Allowed VP error in degrees

P
er

ce
nt

 o
f V

P
s 

w
ith

 e
rr

or
 <

= 
X

Single Frame VP Accuracy

TO_1.0
LPSF

Figure 8: Single Frame VP Accuracy in § 4.4 for Manhattan
scenes. Both methods were applied to extract orthogonal VPs only.

are shown as well. In these examples only short and noisy
line segments are available, due to high-frequency texture
on the ground (cobble stone) and dominance of vegetation.

4.3. Inclusion of Known Camera Orientation

Introduction. If the camera orientation is known for ev-
ery frame (e.g. from odometry or 3D reconstruction) the
problem of finding VPs over time can be simplified: 3D
vanishing directions in the world reference frame are con-
stant in time. Because of this, knowing the camera orienta-
tion in the world reference frame is equivalent to having the
tracking component of our joint problem partially solved.
We want to evaluate how much our method and the base-
lines improve when taking advantage of this knowledge.

Benchmark. In practice we can easily incorporate the
known camera orientation for our method by rotating all
VP evidence (i.e. 3D interpretation planes for all line seg-
ments) into the common world coordinate system for every
frame. For our baselines we incorporate the known orien-
tation after VP extraction, and apply the rotation to the ex-
tracted VPs. All other components of the methods remain
unchanged. Since the Street-View dataset [17] provides pre-
cise camera poses for all frames, we can evaluate the behav-
ior of our method when including pose knowledge on this
dataset. The dataset generally does not have strong orienta-
tion changes. Because of this we subsampled the sequences
to 1 fps, i.e. every 10th frame, for evaluation with strong
frame-wise orientation changes. In Fig. 6 we show the cu-
mulative MOTA score for our original method and the best
performing baseline without (LPMF, TNO 0.4 f ) and with
(LPMF kp, TNO 0.4 f kp) inclusion of known poses.

Results. We observe that the separate VP extraction and
greedy tracking in TNO 0.4 f kp improves strongly with
known camera orientations. While our approach, LPMF kp,
still outperforms both baselines the improvement is smaller
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Figure 7: VP detection and tracking examples. Line segments are colored according to their association to a VP. Top 2 rows: in each
example three VPs are visible, correctly extracted and tracked. Bottom 2 rows: two examples for challenging scenarios. Short line
segments are a problem in both cases. 3rd row: The vertical VP (red) is only weakly supported by noisy vertical line segments on
vegetation. Some line segments for a horizontal VP (blue) are incorrectly associated. 4th row: The vertical VP (green, red, cyan, magenta)
is not reliably tracked and has multiple ID switches.

than for TNO 0.4 f kp. This is explained by the smooth tran-
sition probability (10) which recovers the VP motion quite
well. However, using the pose we could achieve a speed-up
by increasing the sensitivity of (10) (i.e. setting γ2 small
and γ1 large), which reduces the search space for the LP
solution. The remaining gap in MOTA between our method
and TNO 0.4 f kp is explained by the fact that our method
supports VP tracks through multiple frames where line sup-
port is weak, while frame-wise extraction and greedy track-
ing in TNO 0.4 f kp will often lose tracks in those cases.

4.4. Evaluation on the York Urban Dataset (YUD)

Because the proposed method can also be applied to
single-frame VP extraction, we evaluated our approach on
the established York Urban Dataset (YUD) [10] for Manhat-
tan world VP extraction. We compare again to [29], labeled
in the figure as TO, for Tardif, Orthogonal, where we in-
clude an EM step to refine the set of orthogonal VPs. We
run our method on single frames, using constraint C5 (9)
to enforce orthogonality. As can be seen in Fig. 8, our ap-
proach is on par with [29] for VP estimation accuracy.

5. Conclusion
Vanishing points encode low-level information of the

scene structure and are used in many applications from

scene understanding to 3D reconstruction. Many of these
applications operate on video input and can benefit from
knowledge about VP continuation over time. In this work
we presented an approach for jointly extracting and tracking
VPs from video with known internal camera calibration.

We are the first to propose a method for this problem
and provide a new dataset for evaluation. We showed that
our method significantly outperforms various iterative de-
tection and tracking approaches. We showed that even in
cases where poses are known, a multi-frame approach is
helpful as a temporal regularizer.

We focused on scenarios where no prior knowledge
about the scene is available, and tested with simple cost and
score models. As extensions, the method can be easily com-
bined with many more powerful subsystems, as mentioned
in §1: line-VP consistency in image space, priors from par-
tially or approximately known orientations, non-uniform
spherical discretization, and VP refinement steps. Since the
extracted VPs are constant in the world reference frame, our
method can also be used to compute the change in camera
orientation over time. Our method can also be adapted to
other VP representations for which a non-parametric prob-
ability density over VP locations is available.
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