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Abstract usually sensitive to noise. The camera location estimation
problem can be formulated as a specific case {fet 3)
3D structure recovery from a collection @D images  Of the inverse problem of estimatinglocationst,, ..., t,

requires the estimation of the camera locations and orien- in R from a subset of (potentially noisy) measurements of
tations, i.e. the camera motion. For large, irregular catle  the pairwise directions;;, given by

tions of images, existing methods for the location estiomati A

part, which can be formulated as the inverse problem of Yij = ——— (1)
estimatingn locationst, to, . . . , t,, in R3 from noisy mea- [t; — 5

surements of a subset of the pairwise directiﬁ)ﬁjﬁﬁ, are  (see Figurel for a noiseless instance of the problem). In
sensitive to outliers in direction measurements. In this pa terms of this formulation, misidentified point correspon-
per, we firstly provide a complete characterization of well- dences may manifest themselves (§8eas direction mea-
posed instances of the location estimation problem, by pre-surements with large errors.€, outlier directions), and
senting its relation to the existing theory of parallel dy. hence, may induce instability in location estimation.

For robust estimation of camera locations, we introduce a
two-step approach, comprised of a pairwise direction esti-
mation method robust to outliers in point correspondences
between image pairs, and a convex program to maintain ro-
bustness to outlier directions. In the presence of pastiall V12
corrupted measurements, we empirically demonstrate that - —=="f~—
our convex formulation can even recover the locations ex-
actly. Lastly, we demonstrate the utility of our formulato Va6 i
through experiments on Internet photo collections.

Pairwise Directions Locations

V45

Figure 1. A (noiseless) instance of the location estimatiailem
in R3, with n = 6 locations andn = 8 pairwise directions.
1. Introduction o o
Existing methods for SfM can roughly be classified into
Structure from motion (SfM) is the problem of recov- two main categories; incremental approacleeg (1, 6, 11,
ering a3D (stationary) structure by estimating the camera 16, 31, 32, 44]), that integrate images to the estimation pro-
motion corresponding to a collection 8D images of the  cess one by one (or in small groups) and global methods,
same structure. Classically, SfM involves three stgps: that aim to estimate the camera motion (and sometimes also
Estimation of point correspondences between pairs of im-the 3D structure) jointly for all images. Incremental meth-
ages, and relative pose estimation of camera pairs basedds are prone to accumulation of estimation errors at each
on corresponding point®) Estimation of camera motion, step. On the other hand, for the global methods, since si-
i.e. global camera orientations and locations, from relative multaneous estimation of motion ag® structure is com-
poses(3) 3D structure recovery based on the estimated putationally expensive, a usual procedure is to estimate mo
motion by reprojection error minimizatioreg, using the  tion and structure separately. Given an accurate motion es-
bundle adjustment algorithm of§]). Although there ex-  timate, a single instance of reprojection error minimizati
ist accurate and efficient algorithms for the first and the is usually enough to obtain high quality structure estirmate
third steps, existing methods for camera motion estimation  Since orientation estimation is a relatively well-posed
and specifically for the camera location estimation pag, ar problem, with several efficient and stable existing meth-
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ods €.9 [2, 7, 13, 14, 25, 27]), it is customary to estimate  highly accurate location recovery performance compared to
the locations separately (based on the orientation estgpat  existing methods, and even exact location recovery in the
The works of P, 5, 17], formulate the problem as findinga presence of partially corrupted measurements (with suffi-
least squares solution to a linear system of equations de-ciently many noiseless directions). We also provide exper-
rived from pairwise direction measurements (we refer to imental results using real images, that present the acgurac
this method as the “least squares” (LS) solver). However, and efficiency of our methods.

empirical observations (as it []) have pointed out the in-  Notation: We denote vectors iR?, d > 2, in boldface. For
stability of the LS solver, in the form of a tendency to pro- x ¢ R?, ||x| denotes its Euclidean nornt? and SQd)

duce spurious solutions clustering around a few locations.denote the (Euclidean) sphere{+! and the special or-
The multistage linear method of(] attempts to eliminate  thogonal group of rotations acting @, respectively. We

the clustering solutions by estimating the relative scals  yse the hat accent, to denote estimates of our variables, as
tween cameras. The Lie algebraic averaging method®f[ in X is the estimate of{. We use star to denote solutions

is an efficient alternative, but may suffer from convergence of optimization problems, as i *. Lastly, we use the let-

to local minima. P9 formulates a quasi-convex method  tersy andm to denote the number of locatiotig| and the

(based on iterative optimization of a functional of thg number of edgefF; | of graphsG; = (V;, E;) that encode
norm). However, since thé,, norm is prone to outlier  the pairwise direction information.

directions, this method usually fails to produce accurate
estimates (sees.g, [27]). A relatively accurate method, 2. | ocation Estimation
closely related to our formulation, is studied ia4] 35]. o ) o o )
Based on minimizing thé, norm of the error in direction The en_tlre information of pairwise directions is repre-
measurements (linearizedtiris), this method also employs ~ Sented using a measurement graph= (V;, E;), where
constraints to eliminate clustering solutions (hence, eve r theithnodeinVi = {1,2,...,n} corresponds to the loca-
fer to this method as the “constrained least squares” (CLS)!ion t: and each edgg, j) € E: is endowed with the direc-
solver). However, in the presence of outlier directions, th tion 7i;. Provided with the sefyi; } (i ek, Of (noiseless)
accuracy of the CLS solver is degraded (see Figjré\n- directions onG, = (V;, E;), we first study the problem of
other method closely related to our formulation, minimggin  Unique realizabilityof the locations. We will then introduce
the/... norm of the error in direction measurements, is stud- OUr robust formulation for location estimation from noisy
ied in [26]. The accuracy of this method is affected by the Pairwise directions.
sensitiv_ity of thel norm to outlier _direction_s. In]{9]3 a 2.1. Paralld Rigidity
global linear method, which uses triplets of images instead
of pairwise directions, is studied. In the recent wotK][ a The unique realizability of locations from (noise-
preprocessing step (named 1DSfM, and designed to removéess) pairwise directions was previously studied un-
outlier directions), followed by a non-convex optimizatio der the general title ofparallel rigidity theory (see,
method is introduced. Another recently introduced alterna ©-9, [9, 10, 20, 21, 28, 38, 39 and references therein).
tive is the “semidefinite relaxation” (SDR) solver df7. In the context of SfM, the implications of the parallel
Formulated as an abstract problem to estimate locationgigidity theory for the camera location estimation part ever
from pairwise “lines” (.., from measurements of~;;, recognized in{7]*. Here, we present a brief summary of
where the sign is unknown), this method aims to resolve fundamental results in parallel rigidity theory.
the instability of the LS method by introducing extra non- ~ Provided with the noiseless pairwise directions
convex constraints in the LS problem, and then relaxing {ij} ez, S S " (termed a “formation”), we first
them. However, semidefinite programming is computation- consider the following fundamental questions: Can we
ally expensive for large data sets, and its accuracy is de-uniquely realize{t; };cv;, of course, up to a global transla-
graded in the presence of outlier lines (see Figire tion and scalei(e. can we obtain a set of point®ngruent

In this paper, we characterize well-posed instances of thet0 {t:}icv;)? Is unique realizability a generic property of
camera location estimation problem, by presenting its rela the measurement graphi; (i.e. is it independent of the
tion to the existing results of parallel rigidity theory. Fo  Particular realization of the points, assuming they are in
robust estimation of camera locations, we introduce a two- 9eneric position) and can it be decided efficiently?
step formulation: robust estimation of pairwise direction  Certifying unique realizability of locations is more
(in the presence of outliers in point correspondences), andcomplicated,e.g, compared to certifying uniqueness of
a convex program for robust estimation of camera locationsc@mera orientations, which only requires (for arbitra)y
in the presence of measurements corrupted by large errors, 1y note that, although the painwise measurements studigdfare
i.e. outlier directions. We provide empirical evaluation of of the form+~;; (where, the sign is unavailable), the results of parallel

our formulations using synthetic data, which demonstrate rigidity theory for unique realizability remain the sameemtthe signs are
given.
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Figure 2.(a) A formation of 6 locations on a connected graph,
which is parallel rigid inR* but not parallel rigid inR?. Non-
uniqueness ifk? is demonstrated by two non-congruent loca-
tion SOlUtiOﬂS{t1 ,t2,t3,t4, t5, ta} and {t1 , to, t{37 ta, ts, té},
each of which can be obtained from the other byiradependent
rescaling of the solution for one of its maximally parallel rigid
components ifR?, (b) Maximally parallel rigid components in
RR2, of the formation in (a)(c) A parallel rigid formation (inR?
andR?) obtained from the formation in (a) by adding the extra
edge(3, 4) linking its maximally parallel rigid components

the connectivity of the measurement graph (see Figure
On the other hand, parallel rigidity theory has a much
simpler structure compared to the (classical) rigidity
theory involving distance information (for a survey in
rigidity theory, see §]). The identification of parallel rigid
formations is addressed if,[10, 38, 39, 2] (also see the
survey [.7), where it is shown that parallel rigidity iR®

(d > 2) is a generic property off; that admits a complete
combinatorial characterization:

Theorem 1 (Whiteley,1987) For a graphG = (V, E), let
(d—1)E denote the set consisting @ — 1) copies of each
edge inE. Then,G is generically parallel rigid inR? if
and only if there exists a nonempty $&tC (d — 1) E, with
|D| =d|V]— (d+ 1), such that for all subset®’ of D,

|D'| < d[V(D)| = (d+1), (2)

whereV (D’) denotes the vertex set of the edge®in

The conditions of Theorerh can be used to design ef-
ficient algorithms €.g, adaptations of the pebble game al-
gorithm [Lg], with a time complexity ofO(n?)) for test-
ing parallel rigidity. Also, P7] provides a randomized
spectral test (having a time complexity ©f(m)) for test-
ing parallel rigidity. Moreover, unique realizability s
out to be equivalent to parallel rigidity, for arbitragy
(see P, 17,20, 27, 39)).

For a formation that is not parallel rigid, the algorithms
in [20, 21] can be used to decompose the graph into max-
imally parallel rigid components.é., to obtain maximal
subgraphs of+; that can be uniquely realized).

The results of parallel rigidity theory are valid fooise-
lessdirections. However, when provided wittoisy direc-
tions (.g, computed from real images), instead of unique-

ness of the solution of a specific camera location estimation

algorithm, we consider the following question: Is there-suf
ficient information for the location estimation problem to

be well-posed(in the sense that, if direction measurement
error is small enough, then locations can be estimated sta-
bly)? For formations which are not parallel rigid, instétigil
results from independent scaling and translation of maxi-
mally rigid components. Hence, we consider problem in-
stances on parallel rigid measurement graphs tovek-
posed As a result, given a (noisy) formatidny; } ; ;e e,

on G, = (Vi, Ey), we firstly check for parallel rigidity of
Gy, then, if the formation is not parallel rigid, we extract its
maximally parallel rigid components (using the algorithm
in [21]) and estimate the locations for the largest maximally
parallel rigid component of7,.

2.2. Robust L ocation Estimation

This section introduces our main formulation for robust
location estimation. Suppose we are given a set of pairwise
direction measurements;;; }; jer, € S? 1, i.e., foreach
(i,7) € Ey, v  satisfies

_ bt Y
W o e T ©
where,ezj denotes the direction error. Our objective is
to estimate the location$t;},cy, (from the directions
{4} (5,j)e E,) by maintaining robustness to outlier direction
measurements.€., v;;'s with Iargeezj’s) in a computation-
ally efficient manner. In this respect, we first rewri® (
as

ti —ty = ||t — t;]lvi; + € (4)
= dijvij + € (5)
= e =t =ty — dij (6)
where,ef-j denotes the displacement error, and we define
dij = ||ti — t;]| to rewritef; linearly int;, t; andd,;.

Observe that, large errors in directiong/ Iargeezj’s) in-
duce large displacement erroﬁg’s. As a result, we can
employ displacement error minimization as a substitute for
direction error minimization for location estimation.

Hence, to maintain robustness to Iangjes in (6), we
choose to minimize the sum ohsquaredhorms ofegj’s.
Also, for computational efficiency, we drop the intrinsic
non-convex constraintg,; = ||t; —t;|| to obtain the convex
“least unsquared deviations” (LUD) formulation

minimize Z [t — t; — dijvi |
{ti}icv, CR? (i) e By
{dijYa,yer, T i (7)
subjectto > t; =0; di; > ¢, V(i,j) € E;
i€V

where the constraints_, t; = 0 andd;; > ¢ remove the
translational and the scale ambiguities of the solution, re



spectively log we takec = 1)2. The constraintg;; > ¢

are introduced to prevent trivial solutions of the fodip =
0,t; = 0, as well as solutions clustered around a few loca-
tions.

For well-posed instances of the location estimation prob-
lem (.e., for parallel rigidG;), and in the presence of noise-
less direction measurement®(, e]j = 0in (3)), we expect
the LUD and CLS solvers to recover the locatiopexactly.

Proposition 1 (Exact Recovery in the Noiseless Case)
Assume that the noiseless formatipn; } ; e, corre-
sponding to the locationst; };cv, (in general position), is
parallel rigid. Then, the LUDT) and CLS solvers recover
the locations exactly, in the sense that any solution is con-
gruent to{t; }icv,.

Proof. Wlog we assumenin; j)cg, [[t: — t;|| = 1 and
Zi t;, = 0. Then,{ti}iew together Withdij = ||ti — th,
(i,7) € E¢, constitute an optimal solution for the LUD)(
and CLS problems, with zero cost value. Lft;};cy, and
{d};}(i.j)er, be another solution of the LUD7J and CLS

for a proof of convergence of the IRLS solver (where, a
sequence of smooth regularizations, withy, 0, is as-
sumed).

Algorithm 1 Iteratively reweighted least squares (IRLS) al-
gorithm for the LUD {7) solver

Initialize: wy; = 1,V(i,j) € B
for r=0,1,...do
o Compute{t’ '}, {d/

]

} by solving the QP:

2
= dijvij|

5 —1/2
+5)

minimize wyij ||t — t;
> t;=0,1 .~
(1,5)EE:

di;>1
° wffl +— (

2r41 2r41 r+1
t, — tj — dij

Yij

3. Robust Pairwise Direction Estimation

We now present a pairwise direction estimation method

problems, which must also have zero cost value. Then, fordesigned to maintain robustness to outlier point correspon

each(i, j) € E,, we get

I8 — &) — diyig| =0 = & —t) = iy
ti -ttt

e, =51 It — 6]

(8)

i.e., {t;}icv, induces a formation o6, which is parallel to
the formation corresponding t&; };cv, on G;. However,
sinceG, is parallel rigid, {t;}.cy, has to be congruent to
{ti}iev, (in fact, t; = at;, for « > 1, by the feasibility of
{t}, d}.}). O

i g
2.3. Iteratively Reweighted Least Squares (IRLS)

In this section we formulate an iteratively reweighted
least squares (IRLS) solver (sexg, [8, 43]) for the LUD
problem {7). The main idea of IRLS is to iteratively solve

dences between image pairs.

Let {I;,}7, be a collection of images of a stationary
3D scene. We use a pinhole camera model, and denote
the orientations, locations, and focal lengths of theam-
eras corresponding to these images{}? , C SQ(3),
{t;}7, C R3, and{f;}"; C RT, respectively. Consider
a scene poinP € R3 represented in théth image plane
by p; € R3. To producep;, P is firstly represented in the
i'th camera’s coordinate system B; = RT (P — t;) =
(P#,PY,P#)T and then projected onto tligh image plane
by p; = (fi/P7?)P;. Note that, for the image |we in fact
observey; = (p?,p?)? € R2 (i.e., the coordinates on the
image plane) as the measurement correspondiifg to

For an image pair;land |;, the essential matri¥;; =
[tij]XRij (WherERij = R;TRJ andtij = R;T(tj — tz)
denote the pairwise rotation and translation, &ngl. is
the matrix of cross product withy;) satisfies the “epipolar

(successive smooth regularizations of) the convex problemconstraints” given by

by using quadratic programing (QP) approximations. A
pseudo code version is provided in AlgoritHnfwhere, we
consider a single smooth regularization). At tih itera-
tion, more emphasis is given to the directions that are bette
approximated by the estimattiss andd{j 's. Also, the reg-
ularization parametef ensures that no single direction can
attain unbounded influence. The iterations are repeated un
til a convergent behavior in the variables, and in the cost
value of the problem is observed. We refer the readef]to [

2We note that the least squares version?{ie., the program with the
cost functiony ; g, IIt: —t; — di;jvij]|*, and the same constraints
as in (7)), which we name the “constrained least squares” (CLS) atkth
was previously studied irBf, 35]. However, as we experimentally demon-
strate in§4, the CLS formulation fails to maintain robustness to ouslie
Also, thel . version of {7), using the same constraints, was studie@ii.[

(9)

(10)

p; Eijp; =0

T
— |:qi{fi:| E;j {Qj{fj] =0

- The estimates?;; andt;;, computed from the decom-
position of Ez-j (estimated via X0)), usually have large
errors due to misidentified and/or small number of corre-
sponding points. Hence, instead of using existing algo-
rithms .9, [2, 14, 25]) to estimate the orientation®;
and then computing the pairwise direction estiméatgs=

3Although we use a single smooth approximation by fixings 1 for
simplicity, we always obtained a convergent behavior in@yreriments.



Riﬁij/HEij I, we take the following approach (a similar ap- note that the running time of our robust method is compara-
proach is used in7]): First, the rotation estimate’; are ble to that of PCA and hence does not significantly increase

computed using the iterative method §4.1 of [27] (us- the overall running time of the entire pipeline.
ing the robust algorithm of/] for each iteration), and we
Il Robust Directions

then use the epipolar constrainfi<) to robustly estimate r  Dire
the pairwise directions. . . [ JPCA Directions
To that end, we rewrite the epipolar constraihf)(to \Madr'd Metropolis | 1

emphasize its linearity it; andt;. Let {qF};" and r ‘ ‘ ‘ ‘ ‘ ‘ ]

{df},2 denotem; correspondmg feature points. Then, | ]
for T]i = |:qi l/fL :| andn_] — |:qj1/f] :| , we can rewrite 10) \Plazza deI POpOlO ‘ ‘ ‘ i

as (also see?} 22, 27)) R

(" B = (ot Ron)” (6= 1) =0 Amwhwm Sovedame] ]

= (5" (ti - tj) =0, for v}, denoting i ‘ ]

where, the normalization functid® is defined by®(x) = ° o ° ” o ° °° 7
X/HXH- ©(0) = 0. Then, in the noiseless case (assuming Figure 3. Histogram plots of the errors in direction estiesatom-

; > 2, and that we can find at least twgi 's not parallel puted by our robust method®) and the PCA method, for some
to each other){uw}m” determine @D subspace orthogo-  of the datasets (fronvi{]) st.udied in.§4.2. The errors represent
nal tot; — t;, and hence the (undirected) “line” through the angles between the estimated directions and the coneisy
andt; (i.e., %Qj = bi;7:;, where the sign,; € {—1,+1} is ground truth dII’eC'[IOFIS. (computed from a sequential SfMhoet
unknown, but can be determined by using the fact that thePased 9n$l], and prov@ed in {0)). we note that the errors take

. S values in[0, ], yet the histograms are restricted @ /4] to em-
3DIf\iﬁgepfgégtr?csehgfurl\%i“sey I;;rggjgr:]lig};nﬁéise)blace phasize the difference of the quality in the estimated tivas.
R;’s, fi's andq;’s with their estimates ini(1), we essen-
tially obtain noisy sampleza’C 's from the 2D subspace or-
thogonal tot; — t;. In order to maintain robustness to out-
liers amongy;’;’s in the estimation of (undirected) Iine/%,
we first consider the following (non-convex) problem:

A summary of our camera motion estimation algorithm
is given in Tablel.

Input: Images{l;};-,, Focal lengths{f;}i-,

1. Find corresponding points between images (using SF) [

mi; Ee_at:]re 2. ComputeF;;, using the eight-point algorithmi ] (for pairs
T k oints, with sufficiently many correspondences)
mmlmlze E | 'ng Vij 12 "\EASS?”"a| 3. Factorizel;; to compute{ Ri;} ; jye b, aNdGr = (V. Er)
'Yu‘ k=1 ( ) C::T:Igre;' 4. Compute the orientation estimat&s from {R,j}(,‘,ﬁeEk

(using the iterative approach ¢f {] with the robust method

subject to H’)/?J =1 Orientations || ¢ 1750 each iteration)

. . .. Robust kM
In order to obtain the estimaté}, we use a (heuristic) IRLS Painwise || COMPUE (D subspace samplds, ), for each
method for ((2). Here, although the program?) is not [E"Srt?rf]‘g;m 6. Estimate the pairwise directio$:; }; j e, using (.2)
convex, and hence the IRLS method is not guaranteed to : : —

t lobal ti iricall b d thi 7. Extract the largest maximally parallel rigid component

converge to global optima, we empirically observed this ap- S Go = (Vi. E) of Gp (see P1)
proach to produce high quality estimates for the |II‘}%$ Estimations2 || & lﬁgncﬁtge (;)“;L‘iﬁii;"("uéii;r?ﬁ;e.‘i;%;x |Z<y)mhmor sl
while preserving computational efficiency (for alternativ interior point methodse.g, [36])

methods, see’3, 37, 47]). Lastly, the estimates;; of the
signs of the direction estimatés; = Bij’y?j are computed
using the fact that th8D points should lie in front of the Table 1. Algorithm for camera motion estimation
cameras.

In Figure3, we provide a comparison of our robust direc-
tion estimation method, with a PCA-based estimator (com- 4. EXperiments
prised of solving {2) by replacing the cost function with the :
sum of squares versione. with 3=, |(v%)77f5|?). The re- 4.1 Synthetic Data Experiments
sults imply that, the accuracy of the direction estimates ca  In this section we provide synthetic data experiments for
be significantly improved by our robust method. We also the LUD formulation 7). In particular, we provide evidence

Output: Camera orientations and translatiops;, €}




d=2,n=100

d=2,n=200

for exact location recovery from partially corrupted direc
tions, and also compare the LUD solver to the CR§ B5],
the SDR pP7] and the LS P, 5] methods.

The measurement graplis = (V;, E;) of our exper-
iments are random graphs drawn from the Erd&s-Rényi
model G(n, q), i.e. each(i,j) is in the edge seE; with
probability ¢, independently of all other edges. In each ex-
periment, we only record the results of problem instances
defined on parallel rigid7;. Given a set of locations
{t;}7; € R¥andG, = (V;, Ey), for each(i,j) € E;,
we first let

0.4

d=3,n=200

Figure 4. NRMSE 14) results of the LUD 7) solver for the exact
recovery experiments. The color intensity of each pixetespnts
log,,(NRMSE), depending on the edge probabilityz-axis), and
the outlier probabilityp (y-axis). Measurements are generated by
the noise mode(13), assumingr = 0, and NRMSE values are
averaged ovet0 trials.

U
- Vij > W.p. p
Yij = (13)
! {(ti—tj)/|ti—tj|+075 w.p.1—p

and normalizey;;’s to obtain~y;; = 7;;/|%:;| as the di-
rection measurement for the péir j). Here {~{} i jcr,
and{y$} . jece, areii.d. random variables drawn from the
uniform distribution onS?—! and the standard normal dis- o
tribution onRY, respectively. Also, the original locations °PServed similar performance fdr= 2). The outcomes
t.’s are i.i.d. random variables drawn from standard normal ¢/€arly present the robustness of the LUD formulation in
distribution onR<. the presence of outliers (up to a significant proportion of

We evaluate the performance in terms of the “normalized CUtliers, depending og andn), while the recovery perfor-
root mean squared error” (NRMSE) given by mance of the other me_tho_ds is d_egraded significantly. _Even
if the measurement noise is dominated by small errors in the
inlier directions {.e., wheno is relatively large compared to
p), the LUD solver continues to outperform the other meth-
ods, in almost all cases.

>, NIt — ]2
> i llti —tol?

NRMSE({t,}) = (14)

wheret,’s are the location estimates (after removal of the
global scale and translation) anglis the center of;’s.

The first set of experiments demonstrates the recovery
performance of the LUD solver in the presence of partially
corrupted directions, by setting= 0 in (13), and by con-
trolling the proportion of outlier measurements via the pa-
rameterp. The results are summarized in Figutewhere
for each experiment the intensity of each pixel represents
log,,(NRMSE) (NRMSE values are averaged ovérran-
dom realizations). These results demonstrate a strikiag fe
ture of the LUD solver: In the presence of partially cor-
rupted directions (with sufficiently small, but non-zermp
portion of corrupted directions), the LUD solvercovers
the original locations exactl{i.e., we get NRMSE< ¢rs,
whereer.s is the convergence tolerance for the IRLS algo-
rithm, set toer s = 1€-8 in our experiments). In Figuré,
we observe that, the exact recovery performance fer 3
is improved as compared to thle= 2 case. Additionally,

0.8

NRMSE

0.2

q=0.25p=0

q=0.25,p=0.05

q=0.25p=02

—a—LUD
—&—CLS
—+—SDR
——LS

0.8

0.6

0.4

0.2

—=—LUD
——CLS
—+—SDR
—4—LS

—=—LUD
—4&—CLS
0.8f| —+—spR
——LS

0.6

0.4

e
o.z;z/z/y@/ﬁ

q=01,0=0

q=0.250=0

—a—LUD
—&—CLS
—+—SDR
—4—LS

T

o

0.8

0.6

0.4

0.2

—&—LUD
—£—CLS
—+—SDR
——LS

a//a/

0.8f| ——sDR

0.6
0.4

02 A

_

]

0.2 0.4
p

0.2 0.4
p

0.2
p

0.4

Figure 5. NRMSE(14) performance of the LUD7) formulation
vs. the CLS B4, 35], the SDR P7] and the LS P, 5] solvers,
for n = 200 locations. Measurements are generated by the noise

the transition to the exact recovery region becomes sfightl model(13) and NRMSE values are averaged ovetrials.

sharper, and exact recovery performance for small values of

outlier probabilityp is marginally improved when enlarging
n from 100 to 200.

The second set of experiments, depicted in Fighire
presents a comparative evaluation of the NRMSE of the
LUD, the CLS, the SDR and the LS solvers, tbe= 3 (we

4.2. Real Data Experiments

We tested our location estimation algorithm on nine sets
of real images from4(]. These are relatively irregular col-
lections of images and hence estimating the camera loca-



Dataset LUD CLS [34, 39] SDR [27] 1DSM [40] [17

Size Initial After BA Initial After BA Initial | After BA ||Init.| After BA After BA
Name PCA | Robust Robust Robust| Robust Robustf Robust

m|N.||e|lé|e|ée|NJ|el|lel|le|lée|N|el|lelele|N|e|é| e |N.|e|eée|N| e
Piazza del Popolp60 [328((3.0| 7 |1.5| 5 |305(1.0| 4 |[3.5| 6 |305[1.4| 5 |[1.9]| 8 |305|1.3| 7 || 3.1 |308(2.2|200|| 93 | 16
NYC Library 130(3321(/4.9|1 9 |2.0) 6 [320|{1.4| 7 ||5.0| 8 {320]3.9| 8 ||5.0| 8 |320|4.6| 8 || 2.5 295|0.4| 1 ||271|14
Metropolis 20013411{4.3| 8 |1.6] 4 |288(1.5| 4 |[6.4|10[288(3.1| 7 ||4.2| 8 [288(3.1| 7]/ 9.9 /1291|0.5| 70 ||240| 18
Yorkminster 150(437(5.4|110|2.7| 5 [404|1.3| 4 |[6.2| 9 |404|2.9| 8 ||5.0|10{404[4.0|10]| 3.4 |401|0.1{500|/345| 6.7
Tower of London| 300|572 12 [25]4.7| 20 |425(3.3| 10 || 16 | 30|425| 15| 30 || 20 |30(425| 17 |30 11 |414|1.0| 40 ||306| 44
Montreal N. D. 30 [450(/1.4] 2 |0.5| 1 |435|0.4| 1 ||1.1| 2 |435]|0.5| 1 —|—=| = | =1—-1/25|427|0.4| 1 ||357|9.8
Notre Dame 300(553|1.1] 2 [0.3/0.8/536[0.2|0.7//0.8] 2 [536]0.3{0.9|| —|—| — | —|—| 10 |507|1.9| 7 |/473]2.1
Alamo 70 |577||1.51 3 10.4] 2 [547({0.3| 2 |[1.3]| 3 |547]|06| 2 || — |—| — | — | —| 1.1 |1529]|0.3 |2€7||422| 2.4
Vienna Cathedral 120|836 || 7.2|12|5.4| 10 | 750|4.4| 10 ||8.8|10|750(8.2|10|| — |—| — | — | — |/ 6.6 |770]0.4|2e4 ||652| 12

Table 2. Performance comparison of various methods foisdetdrom {1(]: Units are (approximately) in meteréV. denotes number of
estimated camera locationsdenotes the average distance, @mdenotes the median distance of the estimated camera logatiche
corresponding cameras in the reference solution (compusgied [31], and provided in40]). ‘PCA and ‘Robust’ refers to the pairwise
direction estimation method usedf{ (12) and Figure3).

tions for all of these images (or a large subset) is challeng-LUD, the CLS and the SDR solvers are computed after an

ing. To solve the LUD problem7(, we use the IRLS al- initial 3D structure is provided). The comparison of the ac-

gorithm 1, and to construct @D structure in our exper-  curacy of the LUD solver given the robust directionsf (

iments, we use the parallel bundle adjustment (PBA) al- §3) to the case of the PCA directions, and the comparison

gorithm of [41]. We perform our computations on work- of the LUD solver to the CLS, the SDR and]] imply that,

stations with Intel(R) Xeon(R) X542 CPUs, each witl6 the combination of our robust direction estimation method

cores, running a2.67 GHz. In order to directly compare and the LUD solver produces highly accurate initial esti-

the accuracy of the location estimation by LUD to that of mates, with a computation cost that is slightly higher than

CLS [34, 35 and SDR P7] solvers, we use the same direc- the CLS method and4[]. Using the initial estimates, we

tion estimatesd.f. Tablel) for each method (except forthe apply PBA once, to obtain ricBD structures and further

case where the PCA directions are used for the LUD solver,improvements in accuracy. See Figéror some of the3D

c.f. columnst and5 of Table2). These estimates produced structures obtained from the initial LUD estimates.

more accurate location estimates for all data sets. We note

that, the computation of the robust direction estimates is 5. Conclusion and Future Work

performed in parallel (usintp cores for each dataset). Sim- . o

ilar to [40)], for performance evaluation, we consider the . We provided a complete chr_alracterl_zatlc_)n of WeII-pose_d
. . . instances of the camera location estimation problem, via

camera location estimates computed by a sequential SfMth isting th f llel rigidit q diti

solver based on Bundlet]] (and provided in 40]) as the € existing theory of parailel Ngidity, ahd Used 1t in prac

ground truth, and use a RANSAC-based method to com-lice to extract maximal image subsets for which estimation

pute the global transformation between our estimates and’ f camera Ioc;auon IS vyell posed. For T°b.“3t e_stlmguon of
the ground truth camera locations, we introduced a pairwise direction esti-

We provide the accuracy comparisons in TableThe mation method to maintain robustness to outliers in point
. . s correspondences, and we also presented a robust convex
results are given in terms of the average distah@nd the

median distancé of the estimated camera locations to the gcr)(l)\?er?rrt]c') r&?r?ier}]lighﬂt]r?elee?fsetcltjsniqfujdﬁii riei\;:atlgir:vsvis((la_léli?)
corresponding cameras in the reference solution (units are ' P

approximately in meters). The results &f] correspond rec.tlon measurgments. We empirically d.emonstrated that
to the estimates computed by the combination of an out- Unlike other estimators, the LUD formulation allows exact

lier direction detection method (termed “1DSfM” iri(]) recovery of locations in the presence of partially corrdpte

and a location estimation method employing a robust costdiref:tion measurements. In the context Of_ structure from
function. The results ofl[7] are cited from {(]. Also, the motion, our formulations can be U.SGd to efficiently and ro-
results of the SDR method@7] correspond to the estimates bust!y ?SF'F“"’.“G camera Iocat}ong, n ordertq prqduqe ahigh
computed by applying the solver to the whole measurementqua“ty initialization for reprojection error minimizath aI_—
graphs, and hence are not provided for the relatively Iargergor'thms’ as demonstrated by our experiments on realimage
datasets due to computational limitations. We also providesets'

the running times corresponding to each experiment in Ta_nogser]:zt#roef\gsgé’t \;\éecc?\l,i? tsviiﬁrth:riigrezg?ﬁetéze dFi)rZ?::
ble 3 (note that the bundle adjustment tim&g 4 for the y P y P

tions, to characterize the conditions for its existence.



LUD CLS[34 39 SDR7] 1DSIM [40] ERNER
Dataset Trp|Ta | T, || Tt |Tea| Thot || T4 | Ta | Thot | Tt | T | Thot || TR| T | Ty | TA | Thot || Tiot || Tiot
Piazza del Popolp35 | 43 | 18 || 35 | 31 | 162 || 9 | 106 | 211 ||358| 39 | 493 || 14| 9 | 35| 191 | 249 || 138 || 1287
NYC Library 27 144 | 18 || 57 | 54 | 200 || 7 | 47 | 143 ||462| 52 | 603 | 9 |13 | 54 | 392 | 468 || 220 || 3807
Metropolis 27 137 [ 13 || 27 | 38 | 142 || 6 | 23 | 106 ||181| 45 | 303 || 15| 8 | 20 | 201 | 244 || 139 || 1315
Yorkminster 19 | 46 | 33 || 51 | 148 | 297 || 10| 133 | 241 ||648| 75 | 821 || 11 | 18| 93 | 777 | 899 || 394 || 3225
Tower of London| 24 | 54 | 23 || 41 | 86 | 228 || 8 | 202 | 311 ||352| 170 | 623 || 9 |14 | 55 | 606 | 648 || 264 || 1900
Montreal N. D. 68 |115| 91 || 112] 167 | 553 || 21| 270 | 565 || — — — 17122 | 75 [1135[1249 || 424 || 2710
Notre Dame 135(214(325|[247| 126 [1047|| 52| 504 [1230| — — — || 53 | 42| 59 | 1445|1599 || 1193 || 6154
Alamo 103(232| 96 || 186| 133 | 750 |{40| 339 | 810 || — — — || 56 [29 | 73 | 752 | 910 || 1403 || 1654
Vienna Cathedral 267|472 265 || 255 | 208 |[1467| 46 | 182 [1232|] — — — || 98 | 60 | 144 | 283731392273 | 10276

Table 3. Running times, in seconds, for the experiments libeTa times for orientation estimatiorYz), extraction of largest maximally
parallel rigid component(i), robust pairwise direction estimatiofi’(), translation estimatioril), bundle adjustmentl(z 1), and total
time (T%,+). (For the LUD, the CLS and the SDR solvers, the bundle adijest timesI'z4 are computed after an initidD structure is
provided, and the first three columns,, Tr, 7,75, are common).
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Figure 6. Snapshots of select&ld structures computed using the camera location estimétbe @ UD solver {) (without bundle adjust-
ment). Eact8D point is visible through at least three cameras.
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