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Abstract

3D structure recovery from a collection of2D images
requires the estimation of the camera locations and orien-
tations, i.e. the camera motion. For large, irregular collec-
tions of images, existing methods for the location estimation
part, which can be formulated as the inverse problem of
estimatingn locationst1, t2, . . . , tn in R

3 from noisy mea-
surements of a subset of the pairwise directionsti−tj

‖ti−tj‖
, are

sensitive to outliers in direction measurements. In this pa-
per, we firstly provide a complete characterization of well-
posed instances of the location estimation problem, by pre-
senting its relation to the existing theory of parallel rigidity.
For robust estimation of camera locations, we introduce a
two-step approach, comprised of a pairwise direction esti-
mation method robust to outliers in point correspondences
between image pairs, and a convex program to maintain ro-
bustness to outlier directions. In the presence of partially
corrupted measurements, we empirically demonstrate that
our convex formulation can even recover the locations ex-
actly. Lastly, we demonstrate the utility of our formulations
through experiments on Internet photo collections.

1. Introduction

Structure from motion (SfM) is the problem of recov-
ering a3D (stationary) structure by estimating the camera
motion corresponding to a collection of2D images of the
same structure. Classically, SfM involves three steps:(1)
Estimation of point correspondences between pairs of im-
ages, and relative pose estimation of camera pairs based
on corresponding points(2) Estimation of camera motion,
i.e. global camera orientations and locations, from relative
poses(3) 3D structure recovery based on the estimated
motion by reprojection error minimization (e.g., using the
bundle adjustment algorithm of [33]). Although there ex-
ist accurate and efficient algorithms for the first and the
third steps, existing methods for camera motion estimation,
and specifically for the camera location estimation part, are

usually sensitive to noise. The camera location estimation
problem can be formulated as a specific case (ford = 3)
of the inverse problem of estimatingn locationst1, . . . , tn
in R

d from a subset of (potentially noisy) measurements of
the pairwise directionsγij , given by

γij =
ti − tj

‖ti − tj‖
(1)

(see Figure1 for a noiseless instance of the problem). In
terms of this formulation, misidentified point correspon-
dences may manifest themselves (see§3) as direction mea-
surements with large errors (i.e., outlier directions), and
hence, may induce instability in location estimation.
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Figure 1. A (noiseless) instance of the location estimationproblem
in R

3, with n = 6 locations andm = 8 pairwise directions.

Existing methods for SfM can roughly be classified into
two main categories; incremental approaches (e.g. [1, 6, 11,
16, 31, 32, 44]), that integrate images to the estimation pro-
cess one by one (or in small groups) and global methods,
that aim to estimate the camera motion (and sometimes also
the3D structure) jointly for all images. Incremental meth-
ods are prone to accumulation of estimation errors at each
step. On the other hand, for the global methods, since si-
multaneous estimation of motion and3D structure is com-
putationally expensive, a usual procedure is to estimate mo-
tion and structure separately. Given an accurate motion es-
timate, a single instance of reprojection error minimization
is usually enough to obtain high quality structure estimates.

Since orientation estimation is a relatively well-posed
problem, with several efficient and stable existing meth-
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ods (e.g. [2, 7, 13, 14, 25, 27]), it is customary to estimate
the locations separately (based on the orientation estimates).
The works of [2, 5, 12], formulate the problem as finding a
least squares solution to a linear system of equations de-
rived from pairwise direction measurements (we refer to
this method as the “least squares” (LS) solver). However,
empirical observations (as in [27]) have pointed out the in-
stability of the LS solver, in the form of a tendency to pro-
duce spurious solutions clustering around a few locations.
The multistage linear method of [30] attempts to eliminate
the clustering solutions by estimating the relative scalesbe-
tween cameras. The Lie algebraic averaging method of [13]
is an efficient alternative, but may suffer from convergence
to local minima. [29] formulates a quasi-convex method
(based on iterative optimization of a functional of theℓ∞
norm). However, since theℓ∞ norm is prone to outlier
directions, this method usually fails to produce accurate
estimates (see,e.g., [27]). A relatively accurate method,
closely related to our formulation, is studied in [34, 35].
Based on minimizing theℓ2 norm of the error in direction
measurements (linearized inti’s), this method also employs
constraints to eliminate clustering solutions (hence, we re-
fer to this method as the “constrained least squares” (CLS)
solver). However, in the presence of outlier directions, the
accuracy of the CLS solver is degraded (see Figure5). An-
other method closely related to our formulation, minimizing
theℓ∞ norm of the error in direction measurements, is stud-
ied in [26]. The accuracy of this method is affected by the
sensitivity of theℓ∞ norm to outlier directions. In [19], a
global linear method, which uses triplets of images instead
of pairwise directions, is studied. In the recent work [40], a
preprocessing step (named 1DSfM, and designed to remove
outlier directions), followed by a non-convex optimization
method is introduced. Another recently introduced alterna-
tive is the “semidefinite relaxation” (SDR) solver of [27].
Formulated as an abstract problem to estimate locations
from pairwise “lines” (i.e., from measurements of±γij ,
where the sign is unknown), this method aims to resolve
the instability of the LS method by introducing extra non-
convex constraints in the LS problem, and then relaxing
them. However, semidefinite programming is computation-
ally expensive for large data sets, and its accuracy is de-
graded in the presence of outlier lines (see Figure5).

In this paper, we characterize well-posed instances of the
camera location estimation problem, by presenting its rela-
tion to the existing results of parallel rigidity theory. For
robust estimation of camera locations, we introduce a two-
step formulation: robust estimation of pairwise directions
(in the presence of outliers in point correspondences), and
a convex program for robust estimation of camera locations
in the presence of measurements corrupted by large errors,
i.e. outlier directions. We provide empirical evaluation of
our formulations using synthetic data, which demonstrate

highly accurate location recovery performance compared to
existing methods, and even exact location recovery in the
presence of partially corrupted measurements (with suffi-
ciently many noiseless directions). We also provide exper-
imental results using real images, that present the accuracy
and efficiency of our methods.

Notation: We denote vectors inRd, d ≥ 2, in boldface. For
x ∈ R

d, ‖x‖ denotes its Euclidean norm.Sd and SO(d)
denote the (Euclidean) sphere inRd+1 and the special or-
thogonal group of rotations acting onRd, respectively. We
use the hat accent, to denote estimates of our variables, as
in X̂ is the estimate ofX . We use star to denote solutions
of optimization problems, as inX∗. Lastly, we use the let-
tersn andm to denote the number of locations|Vt| and the
number of edges|Et| of graphsGt = (Vt, Et) that encode
the pairwise direction information.

2. Location Estimation

The entire information of pairwise directions is repre-
sented using a measurement graphGt = (Vt, Et), where
thei’th node inVt = {1, 2, . . . , n} corresponds to the loca-
tion ti and each edge(i, j) ∈ Et is endowed with the direc-
tion γij . Provided with the set{γij}(i,j)∈Et

of (noiseless)
directions onGt = (Vt, Et), we first study the problem of
unique realizabilityof the locations. We will then introduce
our robust formulation for location estimation from noisy
pairwise directions.

2.1. Parallel Rigidity

The unique realizability of locations from (noise-
less) pairwise directions was previously studied un-
der the general title ofparallel rigidity theory (see,
e.g., [9, 10, 20, 21, 28, 38, 39] and references therein).
In the context of SfM, the implications of the parallel
rigidity theory for the camera location estimation part were
recognized in [27]1. Here, we present a brief summary of
fundamental results in parallel rigidity theory.

Provided with the noiseless pairwise directions
{γij}(i,j)∈Et

⊆ Sd−1 (termed a “formation”), we first
consider the following fundamental questions: Can we
uniquely realize{ti}i∈Vt

, of course, up to a global transla-
tion and scale (i.e. can we obtain a set of pointscongruent
to {ti}i∈Vt

)? Is unique realizability a generic property of
the measurement graphGt (i.e. is it independent of the
particular realization of the points, assuming they are in
generic position) and can it be decided efficiently?

Certifying unique realizability of locations is more
complicated,e.g., compared to certifying uniqueness of
camera orientations, which only requires (for arbitraryd)

1We note that, although the pairwise measurements studied in[27] are
of the form±γij (where, the sign is unavailable), the results of parallel
rigidity theory for unique realizability remain the same when the signs are
given.
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Figure 2.(a) A formation of 6 locations on a connected graph,
which is parallel rigid inR3 but not parallel rigid inR2. Non-
uniqueness inR2 is demonstrated by two non-congruent loca-
tion solutions{t1, t2, t3, t4, t5, t6} and {t1, t2, t′3, t4, t5, t

′
6},

each of which can be obtained from the other by anindependent
rescaling of the solution for one of its maximally parallel rigid
components inR2, (b) Maximally parallel rigid components in
R

2, of the formation in (a),(c) A parallel rigid formation (inR2

andR
3) obtained from the formation in (a) by adding the extra

edge(3, 4) linking its maximally parallel rigid components

the connectivity of the measurement graph (see Figure2).
On the other hand, parallel rigidity theory has a much
simpler structure compared to the (classical) rigidity
theory involving distance information (for a survey in
rigidity theory, see [3]). The identification of parallel rigid
formations is addressed in [9, 10, 38, 39, 20] (also see the
survey [17]), where it is shown that parallel rigidity inRd

(d ≥ 2) is a generic property ofGt that admits a complete
combinatorial characterization:

Theorem 1 (Whiteley,1987). For a graphG = (V,E), let
(d− 1)E denote the set consisting of(d− 1) copies of each
edge inE. Then,G is generically parallel rigid inRd if
and only if there exists a nonempty setD ⊆ (d− 1)E, with
|D| = d|V | − (d+ 1), such that for all subsetsD′ ofD,

|D′| ≤ d|V (D′)| − (d+ 1) , (2)

whereV (D′) denotes the vertex set of the edges inD′.

The conditions of Theorem1 can be used to design ef-
ficient algorithms (e.g., adaptations of the pebble game al-
gorithm [18], with a time complexity ofO(n2)) for test-
ing parallel rigidity. Also, [27] provides a randomized
spectral test (having a time complexity ofO(m)) for test-
ing parallel rigidity. Moreover, unique realizability turns
out to be equivalent to parallel rigidity, for arbitraryd
(see [9, 17, 20, 27, 39]).

For a formation that is not parallel rigid, the algorithms
in [20, 21] can be used to decompose the graph into max-
imally parallel rigid components (i.e., to obtain maximal
subgraphs ofGt that can be uniquely realized).

The results of parallel rigidity theory are valid fornoise-
lessdirections. However, when provided withnoisydirec-
tions (e.g., computed from real images), instead of unique-
ness of the solution of a specific camera location estimation
algorithm, we consider the following question: Is there suf-
ficient information for the location estimation problem to

be well-posed(in the sense that, if direction measurement
error is small enough, then locations can be estimated sta-
bly)? For formations which are not parallel rigid, instability
results from independent scaling and translation of maxi-
mally rigid components. Hence, we consider problem in-
stances on parallel rigid measurement graphs to bewell-
posed. As a result, given a (noisy) formation{γij}(i,j)∈Et

on Gt = (Vt, Et), we firstly check for parallel rigidity of
Gt, then, if the formation is not parallel rigid, we extract its
maximally parallel rigid components (using the algorithm
in [21]) and estimate the locations for the largest maximally
parallel rigid component ofGt.

2.2. Robust Location Estimation

This section introduces our main formulation for robust
location estimation. Suppose we are given a set of pairwise
direction measurements{γij}(i,j)∈Et

⊆ Sd−1, i.e., for each
(i, j) ∈ Et, γij satisfies

γij =
ti − tj

‖ti − tj‖
+ ǫγij (3)

where, ǫγij denotes the direction error. Our objective is
to estimate the locations{ti}i∈Vt

(from the directions
{γij}(i,j)∈Et

) by maintaining robustness to outlier direction
measurements (i.e., γij ’s with largeǫγij ’s) in a computation-
ally efficient manner. In this respect, we first rewrite (3)
as

ti − tj = ‖ti − tj‖γij + ǫtij (4)

= dijγij + ǫtij (5)

⇐⇒ ǫtij = ti − tj − dijγij (6)

where,ǫtij denotes the displacement error, and we define
dij ..= ‖ti − tj‖ to rewriteǫtij linearly in ti, tj anddij .
Observe that, large errors in directions (i.e., largeǫγij ’s) in-
duce large displacement errorsǫtij ’s. As a result, we can
employ displacement error minimization as a substitute for
direction error minimization for location estimation.

Hence, to maintain robustness to largeǫtij ’s in (6), we
choose to minimize the sum ofunsquarednorms ofǫtij ’s.
Also, for computational efficiency, we drop the intrinsic
non-convex constraintsdij = ‖ti−tj‖ to obtain the convex
“least unsquared deviations” (LUD) formulation

minimize
{ti}i∈Vt

⊆R
d

{dij}(i,j)∈Et

∑

(i,j)∈Et

‖ti − tj − dijγij‖

subject to
∑

i∈Vt

ti = 0 ; dij ≥ c, ∀(i, j) ∈ Et

(7)

where the constraints
∑

i ti = 0 anddij ≥ c remove the
translational and the scale ambiguities of the solution, re-



spectively (wlog we takec = 1)2. The constraintsdij ≥ c
are introduced to prevent trivial solutions of the formd∗ij ≡
0, t∗i ≡ 0, as well as solutions clustered around a few loca-
tions.

For well-posed instances of the location estimation prob-
lem (i.e., for parallel rigidGt), and in the presence of noise-
less direction measurements (i.e., ǫγij ≡ 0 in (3)), we expect
the LUD and CLS solvers to recover the locationsti exactly.

Proposition 1 (Exact Recovery in the Noiseless Case).
Assume that the noiseless formation{γij}(i,j)∈Et

, corre-
sponding to the locations{ti}i∈Vt

(in general position), is
parallel rigid. Then, the LUD (7) and CLS solvers recover
the locations exactly, in the sense that any solution is con-
gruent to{ti}i∈Vt

.

Proof. Wlog, we assumemin(i,j)∈Et
‖ti − tj‖ = 1 and

∑

i ti = 0. Then,{ti}i∈Vt
together withdij = ‖ti − tj‖,

(i, j) ∈ Et, constitute an optimal solution for the LUD (7)
and CLS problems, with zero cost value. Let,{t′i}i∈Vt

and
{d′ij}(i,j)∈Et

be another solution of the LUD (7) and CLS
problems, which must also have zero cost value. Then, for
each(i, j) ∈ Et, we get

‖t′i − t′j − d′ijγij‖ = 0 ⇐⇒ t′i − t′j = d′ijγij

=⇒
t′i − t′j

‖t′i − t′j‖
=

ti − tj

‖ti − tj‖
(8)

i.e., {t′i}i∈Vt
induces a formation onGt, which is parallel to

the formation corresponding to{ti}i∈Vt
on Gt. However,

sinceGt is parallel rigid,{t′i}i∈Vt
has to be congruent to

{ti}i∈Vt
(in fact, t′i = αti, for α ≥ 1, by the feasibility of

{t′i, d
′
ij}).

2.3. Iteratively Reweighted Least Squares (IRLS)

In this section we formulate an iteratively reweighted
least squares (IRLS) solver (see,e.g., [8, 43]) for the LUD
problem (7). The main idea of IRLS is to iteratively solve
(successive smooth regularizations of) the convex problem
by using quadratic programing (QP) approximations. A
pseudo code version is provided in Algorithm1 (where, we
consider a single smooth regularization). At ther’th itera-
tion, more emphasis is given to the directions that are better
approximated by the estimatest̂ri ’s andd̂rij ’s. Also, the reg-
ularization parameterδ ensures that no single direction can
attain unbounded influence. The iterations are repeated un-
til a convergent behavior in the variables, and in the cost
value of the problem is observed. We refer the reader to [4]

2We note that the least squares version of (7) (i.e., the program with the
cost function

∑
(i,j)∈Et

‖ti − tj − dijγij‖
2, and the same constraints

as in (7)), which we name the “constrained least squares” (CLS) method,
was previously studied in [34, 35]. However, as we experimentally demon-
strate in§4, the CLS formulation fails to maintain robustness to outliers.
Also, theℓ∞ version of (7), using the same constraints, was studied in [26].

for a proof of convergence of the IRLS solver (where, a
sequence of smooth regularizations, withδ ց 0, is as-
sumed3).

Algorithm 1 Iteratively reweighted least squares (IRLS) al-
gorithm for the LUD (7) solver

Initialize: w0
ij = 1, ∀(i, j) ∈ Et

for r = 0, 1, . . . do
























• Compute{t̂r+1
i }, {d̂r+1

ij } by solving the QP:

minimize
{∑

ti=0,
dij≥1

}

∑

(i,j)∈Et

wr
ij ‖ti − tj − dijγij‖

2

• wr+1
ij ←

(

∥

∥

∥
t̂
r+1
i − t̂

r+1
j − d̂r+1

ij γij

∥

∥

∥

2

+ δ

)−1/2

3. Robust Pairwise Direction Estimation

We now present a pairwise direction estimation method
designed to maintain robustness to outlier point correspon-
dences between image pairs.

Let {Ii}ni=1 be a collection of images of a stationary
3D scene. We use a pinhole camera model, and denote
the orientations, locations, and focal lengths of then cam-
eras corresponding to these images by{Ri}

n
i=1 ⊆ SO(3),

{ti}
n
i=1 ⊆ R

3, and{fi}ni=1 ⊆ R
+, respectively. Consider

a scene pointP ∈ R
3 represented in thei’th image plane

by pi ∈ R
3. To producepi, P is firstly represented in the

i’th camera’s coordinate system byPi = RT
i (P − ti) =

(Px
i ,P

y
i ,P

z
i )

T and then projected onto thei’th image plane
by pi = (fi/P

z
i )Pi. Note that, for the image Ii, we in fact

observeqi = (px
i ,p

y
i )

T ∈ R
2 (i.e., the coordinates on the

image plane) as the measurement corresponding toP.
For an image pair Ii and Ij, the essential matrixEij =

[tij ]×Rij (whereRij = RT
i Rj and tij = RT

i (tj − ti)
denote the pairwise rotation and translation, and[tij ]× is
the matrix of cross product withtij ) satisfies the “epipolar
constraints” given by

pT
i Eijpj = 0 (9)

⇐⇒

[

qi/fi
1

]T

Eij

[

qj/fj
1

]

= 0 (10)

The estimateŝRij and t̂ij , computed from the decom-
position of Êij (estimated via (10)), usually have large
errors due to misidentified and/or small number of corre-
sponding points. Hence, instead of using existing algo-
rithms (e.g., [2, 14, 25]) to estimate the orientationŝRi

and then computing the pairwise direction estimatesγ̂ij =

3Although we use a single smooth approximation by fixingδ ≪ 1 for
simplicity, we always obtained a convergent behavior in ourexperiments.



R̂it̂ij/‖t̂ij‖, we take the following approach (a similar ap-
proach is used in [27]): First, the rotation estimateŝRi are
computed using the iterative method in§4.1 of [27] (us-
ing the robust algorithm of [7] for each iteration), and we
then use the epipolar constraints (10) to robustly estimate
the pairwise directions.

To that end, we rewrite the epipolar constraint (10) to
emphasize its linearity inti and tj . Let {qk

i }
mij

k=1 and
{qk

j }
mij

k=1 denotemij corresponding feature points. Then,

for ηki =
[

q
k
i /fi
1

]

andηkj =
[

q
k
j /fj
1

]

, we can rewrite (10)

as (also see [2, 22, 27])

(ηki )
TEijη

k
j =

(

Riη
k
i ×Rjη

k
j

)T
(ti − tj) = 0

⇐⇒ (νkij)
T (ti − tj) = 0, for νkij denoting

νkij
..= Θ

(

Riη
k
i ×Rjη

k
j

)

(11)

where, the normalization functionΘ is defined byΘ(x) =
x/‖x‖, Θ(0) = 0. Then, in the noiseless case (assuming
mij ≥ 2, and that we can find at least twoνkij ’s not parallel
to each other),{νkij}

mij

k=1 determine a2D subspace orthogo-
nal toti − tj , and hence the (undirected) “line” throughti
andtj (i.e., γ0

ij = bijγij , where the signbij ∈ {−1,+1} is
unknown, but can be determined by using the fact that the
3D scene points should lie in front of the cameras).

In the presence of noisy measurements,i.e. if we replace
Ri’s, fi’s andqi’s with their estimates in (11), we essen-
tially obtain noisy sampleŝνkij ’s from the2D subspace or-
thogonal toti − tj . In order to maintain robustness to out-
liers amonĝνkij ’s in the estimation of (undirected) linesγ0

ij ,
we first consider the following (non-convex) problem:

minimize
γ0
ij

mij
∑

k=1

|(γ0
ij)

T ν̂kij |

subject to‖γ0
ij‖ = 1

(12)

In order to obtain the estimatêγ0
ij , we use a (heuristic) IRLS

method for (12). Here, although the program (12) is not
convex, and hence the IRLS method is not guaranteed to
converge to global optima, we empirically observed this ap-
proach to produce high quality estimates for the linesγ0

ij ,
while preserving computational efficiency (for alternative
methods, see [23, 37, 42]). Lastly, the estimateŝbij of the
signs of the direction estimateŝγij = b̂ij γ̂

0
ij are computed

using the fact that the3D points should lie in front of the
cameras.

In Figure3, we provide a comparison of our robust direc-
tion estimation method, with a PCA-based estimator (com-
prised of solving (12) by replacing the cost function with the
sum of squares version,i.e. with

∑

k |(γ
0
ij)

T ν̂kij |
2). The re-

sults imply that, the accuracy of the direction estimates can
be significantly improved by our robust method. We also

note that the running time of our robust method is compara-
ble to that of PCA and hence does not significantly increase
the overall running time of the entire pipeline.

Madrid Metropolis
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Figure 3. Histogram plots of the errors in direction estimates com-
puted by our robust method (12) and the PCA method, for some
of the datasets (from [40]) studied in§4.2. The errors represent
the angles between the estimated directions and the corresponding
ground truth directions (computed from a sequential SfM method
based on [31], and provided in [40]). We note that the errors take
values in[0, π], yet the histograms are restricted to[0, π/4] to em-
phasize the difference of the quality in the estimated directions.

A summary of our camera motion estimation algorithm
is given in Table1.

Input: Images:{Ii}ni=1, Focal lengths:{fi}ni=1

Feature
Points,
Essential
Matrices,
Camera
Orientations

1. Find corresponding points between images (using SIFT [24])
2. ComputeÊij , using the eight-point algorithm [15] (for pairs
with sufficiently many correspondences)
3. FactorizeÊij to compute{R̂ij}(i,j)∈ER

andGR = (VR, ER)

4. Compute the orientation estimatesR̂i from {R̂ij}(i,j)∈ER

(using the iterative approach of [27] with the robust method
of [7] for each iteration)

Robust
Pairwise
Direction
Estimation§3

5. Compute the2D subspace samples{ν̂kij}
mij

k=1 for each
(i, j) ∈ ER (11)

6. Estimate the pairwise directions{γ̂ij}(i,j)∈ER
using (12)

Location
Estimation§2

7. Extract the largest maximally parallel rigid component
Gt = (Vt, Et) of GR (see [21])

8. Compute the location estimates{t̂i}i∈Vt
by

the LUD (7) method (using the IRLS Algorithm1 or classical
interior point methods,e.g., [36])

Output: Camera orientations and translations:{R̂i, t̂i}

Table 1. Algorithm for camera motion estimation

4. Experiments

4.1. Synthetic Data Experiments

In this section we provide synthetic data experiments for
the LUD formulation (7). In particular, we provide evidence



for exact location recovery from partially corrupted direc-
tions, and also compare the LUD solver to the CLS [34, 35],
the SDR [27] and the LS [2, 5] methods.

The measurement graphsGt = (Vt, Et) of our exper-
iments are random graphs drawn from the Erdős-Rényi
modelG(n, q), i.e. each(i, j) is in the edge setEt with
probabilityq, independently of all other edges. In each ex-
periment, we only record the results of problem instances
defined on parallel rigidGt. Given a set of locations
{ti}

n
i=1 ⊆ R

d andGt = (Vt, Et), for each(i, j) ∈ Et,
we first let

γ̃ij =

{

γU
ij , w.p. p

(ti − tj)/‖ti − tj‖+ σγG
ij w.p.1− p

(13)

and normalizẽγij ’s to obtainγij = γ̃ij/‖γ̃ij‖ as the di-
rection measurement for the pair(i, j). Here,{γU

ij}(i,j)∈Et

and{γG
ij}(i,j)∈Et

are i.i.d. random variables drawn from the
uniform distribution onSd−1 and the standard normal dis-
tribution onRd, respectively. Also, the original locations
ti’s are i.i.d. random variables drawn from standard normal
distribution onRd.

We evaluate the performance in terms of the “normalized
root mean squared error” (NRMSE) given by

NRMSE({t̂i}) =

√

∑

i ‖t̂i − ti‖2
∑

i ‖ti − t0‖2
(14)

wheret̂i’s are the location estimates (after removal of the
global scale and translation) andt0 is the center ofti’s.

The first set of experiments demonstrates the recovery
performance of the LUD solver in the presence of partially
corrupted directions, by settingσ = 0 in (13), and by con-
trolling the proportion of outlier measurements via the pa-
rameterp. The results are summarized in Figure4, where
for each experiment the intensity of each pixel represents
log10(NRMSE) (NRMSE values are averaged over10 ran-
dom realizations). These results demonstrate a striking fea-
ture of the LUD solver: In the presence of partially cor-
rupted directions (with sufficiently small, but non-zero, pro-
portion of corrupted directions), the LUD solverrecovers
the original locations exactly(i.e., we get NRMSE< ǫIRLS,
whereǫIRLS is the convergence tolerance for the IRLS algo-
rithm, set toǫIRLS = 1e-8 in our experiments). In Figure4,
we observe that, the exact recovery performance ford = 3
is improved as compared to thed = 2 case. Additionally,
the transition to the exact recovery region becomes slightly
sharper, and exact recovery performance for small values of
outlier probabilityp is marginally improved when enlarging
n from 100 to 200.

The second set of experiments, depicted in Figure5,
presents a comparative evaluation of the NRMSE of the
LUD, the CLS, the SDR and the LS solvers, ford = 3 (we

p

q

d = 2, n = 100

 

 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

−10

−8

−6

−4

−2

0

p

q

d = 2, n = 200

 

 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

−10

−8

−6

−4

−2

0

p

q

d = 3, n = 100

 

 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

−10

−8

−6

−4

−2

0

p

q

d = 3, n = 200

 

 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

−10

−8

−6

−4

−2

0

Figure 4. NRMSE (14) results of the LUD (7) solver for the exact
recovery experiments. The color intensity of each pixel represents
log10(NRMSE), depending on the edge probabilityq (x-axis), and
the outlier probabilityp (y-axis). Measurements are generated by
the noise model(13), assumingσ = 0, and NRMSE values are
averaged over10 trials.

observed similar performance ford = 2). The outcomes
clearly present the robustness of the LUD formulation in
the presence of outliers (up to a significant proportion of
outliers, depending onq andn), while the recovery perfor-
mance of the other methods is degraded significantly. Even
if the measurement noise is dominated by small errors in the
inlier directions (i.e., whenσ is relatively large compared to
p), the LUD solver continues to outperform the other meth-
ods, in almost all cases.
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Figure 5. NRMSE(14) performance of the LUD (7) formulation
vs. the CLS [34, 35], the SDR [27] and the LS [2, 5] solvers,
for n = 200 locations. Measurements are generated by the noise
model(13) and NRMSE values are averaged over10 trials.

4.2. Real Data Experiments

We tested our location estimation algorithm on nine sets
of real images from [40]. These are relatively irregular col-
lections of images and hence estimating the camera loca-



Dataset LUD CLS [34, 35] SDR [27] 1DSfM [40] [12]

Name
Size Initial After BA Initial After BA Initial After BA Init. After BA After BA

PCA Robust Robust Robust Robust Robust Robust
m Nc ẽ ê ẽ ê Nc ẽ ê ẽ ê Nc ẽ ê ẽ ê Nc ẽ ê ẽ Nc ẽ ê Nc ẽ

Piazza del Popolo60 328 3.0 7 1.5 5 305 1.0 4 3.5 6 305 1.4 5 1.9 8 305 1.3 7 3.1 308 2.2 200 93 16

NYC Library 130 332 4.9 9 2.0 6 320 1.4 7 5.0 8 320 3.9 8 5.0 8 320 4.6 8 2.5 295 0.4 1 271 1.4

Metropolis 200 341 4.3 8 1.6 4 288 1.5 4 6.4 10 288 3.1 7 4.2 8 288 3.1 7 9.9 291 0.5 70 240 18

Yorkminster 150 437 5.4 10 2.7 5 404 1.3 4 6.2 9 404 2.9 8 5.0 10 404 4.0 10 3.4 401 0.1 500 345 6.7

Tower of London 300 572 12 25 4.7 20 425 3.3 10 16 30 425 15 30 20 30 425 17 30 11 414 1.0 40 306 44

Montreal N. D. 30 450 1.4 2 0.5 1 435 0.4 1 1.1 2 435 0.5 1 − − − − − 2.5 427 0.4 1 357 9.8

Notre Dame 300 553 1.1 2 0.3 0.8 536 0.2 0.7 0.8 2 536 0.3 0.9 − − − − − 10 507 1.9 7 473 2.1

Alamo 70 577 1.5 3 0.4 2 547 0.3 2 1.3 3 547 0.6 2 − − − − − 1.1 529 0.3 2e7 422 2.4

Vienna Cathedral120 836 7.2 12 5.4 10 750 4.4 10 8.8 10 750 8.2 10 − − − − − 6.6 770 0.4 2e4 652 12

Table 2. Performance comparison of various methods for datasets from [40]: Units are (approximately) in meters.Nc denotes number of
estimated camera locations,ê denotes the average distance, andẽ denotes the median distance of the estimated camera locations to the
corresponding cameras in the reference solution (computedusing [31], and provided in [40]). ‘PCA’ and ‘Robust’ refers to the pairwise
direction estimation method used (c.f. (12) and Figure3).

tions for all of these images (or a large subset) is challeng-
ing. To solve the LUD problem (7), we use the IRLS al-
gorithm 1, and to construct a3D structure in our exper-
iments, we use the parallel bundle adjustment (PBA) al-
gorithm of [41]. We perform our computations on work-
stations with Intel(R) Xeon(R) X7542 CPUs, each with6
cores, running at2.67 GHz. In order to directly compare
the accuracy of the location estimation by LUD to that of
CLS [34, 35] and SDR [27] solvers, we use the same direc-
tion estimates (c.f. Table1) for each method (except for the
case where the PCA directions are used for the LUD solver,
c.f. columns4 and5 of Table2). These estimates produced
more accurate location estimates for all data sets. We note
that, the computation of the robust direction estimates is
performed in parallel (using10 cores for each dataset). Sim-
ilar to [40], for performance evaluation, we consider the
camera location estimates computed by a sequential SfM
solver based on Bundler [31] (and provided in [40]) as the
ground truth, and use a RANSAC-based method to com-
pute the global transformation between our estimates and
the ground truth.

We provide the accuracy comparisons in Table2: The
results are given in terms of the average distanceê, and the
median distancẽe of the estimated camera locations to the
corresponding cameras in the reference solution (units are
approximately in meters). The results of [40] correspond
to the estimates computed by the combination of an out-
lier direction detection method (termed “1DSfM” in [40])
and a location estimation method employing a robust cost
function. The results of [12] are cited from [40]. Also, the
results of the SDR method [27] correspond to the estimates
computed by applying the solver to the whole measurement
graphs, and hence are not provided for the relatively larger
datasets due to computational limitations. We also provide
the running times corresponding to each experiment in Ta-
ble 3 (note that the bundle adjustment timesTBA for the

LUD, the CLS and the SDR solvers are computed after an
initial 3D structure is provided). The comparison of the ac-
curacy of the LUD solver given the robust directions (c.f.
§3) to the case of the PCA directions, and the comparison
of the LUD solver to the CLS, the SDR and [40] imply that,
the combination of our robust direction estimation method
and the LUD solver produces highly accurate initial esti-
mates, with a computation cost that is slightly higher than
the CLS method and [40]. Using the initial estimates, we
apply PBA once, to obtain rich3D structures and further
improvements in accuracy. See Figure6 for some of the3D
structures obtained from the initial LUD estimates.

5. Conclusion and Future Work

We provided a complete characterization of well-posed
instances of the camera location estimation problem, via
the existing theory of parallel rigidity, and used it in prac-
tice to extract maximal image subsets for which estimation
of camera location is well posed. For robust estimation of
camera locations, we introduced a pairwise direction esti-
mation method to maintain robustness to outliers in point
correspondences, and we also presented a robust convex
program, namely “the least unsquared deviations” (LUD)
solver, to diminish the effects of outliers in pairwise di-
rection measurements. We empirically demonstrated that
unlike other estimators, the LUD formulation allows exact
recovery of locations in the presence of partially corrupted
direction measurements. In the context of structure from
motion, our formulations can be used to efficiently and ro-
bustly estimate camera locations, in order to produce a high-
quality initialization for reprojection error minimization al-
gorithms, as demonstrated by our experiments on real image
sets.

As future work, we plan to further investigate the phe-
nomenon of exact recovery with partially corrupted direc-
tions, to characterize the conditions for its existence.



LUD CLS [34, 35] SDR [27] 1DSfM [40] [12] [31]
Dataset TR TG Tγ Tt TBA Ttot Tt TBA Ttot Tt TBA Ttot TR Tγ Tt TBA Ttot Ttot Ttot

Piazza del Popolo35 43 18 35 31 162 9 106 211 358 39 493 14 9 35 191 249 138 1287

NYC Library 27 44 18 57 54 200 7 47 143 462 52 603 9 13 54 392 468 220 3807

Metropolis 27 37 13 27 38 142 6 23 106 181 45 303 15 8 20 201 244 139 1315

Yorkminster 19 46 33 51 148 297 10 133 241 648 75 821 11 18 93 777 899 394 3225

Tower of London 24 54 23 41 86 228 8 202 311 352 170 623 9 14 55 606 648 264 1900

Montreal N. D. 68 115 91 112 167 553 21 270 565 − − − 17 22 75 1135 1249 424 2710

Notre Dame 135 214 325 247 126 1047 52 504 1230 − − − 53 42 59 1445 1599 1193 6154

Alamo 103 232 96 186 133 750 40 339 810 − − − 56 29 73 752 910 1403 1654

Vienna Cathedral267 472 265 255 208 1467 46 182 1232 − − − 98 60 144 2837 3139 2273 10276

Table 3. Running times, in seconds, for the experiments in Table 2: times for orientation estimation (TR), extraction of largest maximally
parallel rigid component (TG), robust pairwise direction estimation (Tγ), translation estimation (Tt), bundle adjustment (TBA), and total
time (Ttot). (For the LUD, the CLS and the SDR solvers, the bundle adjustment timesTBA are computed after an initial3D structure is
provided, and the first three columns,i.e.,TR,TG,Tγ , are common).

Figure 6. Snapshots of selected3D structures computed using the camera location estimates of the LUD solver (7) (without bundle adjust-
ment). Each3D point is visible through at least three cameras.
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