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Abstract

We consider kernel methods on general geodesic metric spaces and provide both negative and positive results. First we
show that the common Gaussian kernel can only be generalized to a positive definite kernel on a geodesic metric space if
the space is flat. As a result, for data on a Riemannian manifold, the geodesic Gaussian kernel is only positive definite if the
Riemannian manifold is Euclidean. This implies that any attempt to design geodesic Gaussian kernels on curved Riemannian
manifolds is futile. However, we show that for spaces with conditionally negative definite distances the geodesic Laplacian
kernel can be generalized while retaining positive definiteness. This implies that geodesic Laplacian kernels can be generalized
to some curved spaces, including spheres and hyperbolic spaces. Our theoretical results are verified empirically.

1 Introduction
Standard statistics and machine learning tools require input data residing in a Euclidean space. However, many types of data
are more faithfully represented in general nonlinear metric spaces (e.g. Riemannian manifolds). This is, for instance, the
case for shapes [9, 22, 29, 36, 50, 52, 59], DTI images [21, 40, 43, 57], motion models [13, 54], symmetric positive definite
matrices [11, 44, 55], illumination-invariance [12], human poses [28, 41], tree structured data [18, 19], metrics [24, 27] and
probability distributions [2]. The underlying metric space captures domain specific knowledge, e.g. non-linear constraints,
which is available a priori. The intrinsic geodesic metric encodes this knowledge, often leading to improved statistical
models.

A seemingly straightforward approach to statistics in metric spaces is to use kernel methods [48], designing kernels k(x, y)
which only rely on geodesic distances d(x, y) between observations [14]:

k(x, y) = exp (−λ(d(x, y))q) , λ, q > 0. (1)

For q = 2 this gives a geodesic generalization of the Gaussian kernel, and q = 1 gives the geodesic Laplacian kernel. While
this idea has an appealing similarity to familiar Euclidean kernel methods, we show that it is highly limited if the metric space
is curved.

Positive definiteness of a kernel k is critical for the use of kernel methods such as support vector machines or kernel
PCA. In this paper, we analyze exponential kernels on geodesic metric spaces and show the following results, summarized in
Table 1.

• The geodesic Gaussian kernel is positive definite (PD) for all λ > 0 only if the underlying metric space is flat (The-
orem 1). In particular, when the metric space is a Riemannian manifold, the geodesic Gaussian kernel is PD for all
λ > 0 if and only if the manifold is Euclidean (Theorem 2). This negative result implies that Gaussian kernels cannot
be generalized to any non-trivial Riemannian manifolds of interest.

• The geodesic Laplacian kernel is PD if and only if the metric is conditionally negative definite (Theorem 4). This
condition is not generally true for metric spaces, but it holds for a number of spaces of interest. In particular, the
geodesic Laplacian kernel is PD on spheres, hyperbolic spaces, and Euclidean spaces (Table 2).

• For any Riemannian manifold (M, g), the kernel (1) will never be PD for all λ > 0 if q > 2 (Theorem 3).
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Extends to general
Kernel Metric spaces Riemannian manifolds
Gaussian (q = 2) No (only if flat) No (only if Euclidean)
Laplacian (q = 1) Yes, iff metric is CND Yes, iff metric is CND
Geodesic exp. (q > 2) Not known No

Table 1: Overview of results: For a geodesic metric, when is the geodesic exponential kernel (1) positive definite for all λ > 0?

Figure 1: Path length in a metric space is defined as the supremum of lengths of finite approximations of the path.

Generalization of geodesic kernels to metric spaces is motivated by the general lack of powerful machine learning tech-
niques in these spaces. In that regard, our first results are disappointing as they imply that generalizing Gaussian kernels to
metric spaces is not a viable direction forward. Intuitively, this is not surprising as kernel methods embed the data in a linear
space, which cannot be expected to capture the curvature of a general metric space. Our second result is therefore a positive
surprise: it allows the Laplacian kernel to be applied in some metric spaces, although this has strong implications for their
geometric properties. This gives hope that other kernels can be generalized, though our third result indicates that the geodesic
exponential kernels (1) have limited applicability on Riemannian manifolds.

The paper is organized as follows. We state our main results and discuss their consequences in Sec. 2, postponing proofs
until Sec. 3, which includes a formal discussion of the preliminaries. This section can be skipped in a first reading of the paper.
Related work is discussed in detail in Sec. 4, where we also review recent approaches which do not conflict with our results.
Sec. 5 contains empirical experiments confirming and extending our results on manifolds that admit PD geodesic exponential
kernels. The paper is concluded in Sec. 6.

2 Main results and their consequences
Before formally proving our main theorems, we state the results and provide hints as to why they hold. We start with a brief
review of metric geometry and the notion of a flat space, both of which are fundamental to the results.

In a general metric space (X, d) with distance metric d, the length l(γ) of a path γ : [0, L]→ X from x to y is defined as
the smallest upper bound of any finite approximation of the path (see Fig. 1)

l(γ) = sup
0=t0<t1<...<tn=1,n∈N

n∑
i=1

d(ti−1, ti).

A path γ : [0, L] → X is called a geodesic [8] from x to y if γ(0) = x, γ(L) = y and d (γ(t), γ(t′)) = |t − t′| for all
t, t′ ∈ [0, L]. In particular, l(γ) = d(x, y) = L for a geodesic γ. In a Euclidean space, geodesics are straight lines. A geodesic
from x to y will always be the shortest possible path from x to y, but geodesics with respect to a given metric do not always
exist, even if shortest paths do. An example is given later in Fig. 3.

A metric space (X, d) is called a geodesic space if every pair x, y ∈ X can be connected by a geodesic. Informally, a
geodesic metric space is merely a space in which distances can be computed as lengths of geodesics, and data points can be
interpolated via geodesics.

Riemannian manifolds are a commonly used class of metric spaces. Here distances are defined locally through a smoothly
changing inner product in the tangent space. Intuitively, a Riemannian manifold can be thought of as a smooth surface (e.g.
a sphere) with geodesics corresponding to shortest paths on the surface. A geodesic distance metric corresponding to the
Riemannian structure is defined explicitly as the length of the geodesic joining two points. Whenever a Riemannian manifold
is complete, it is a geodesic space. This is the case for most manifolds of interest.

Many efficient machine learning algorithms are available in Euclidean spaces; their generalization to metric spaces is an
open problem. Kernel methods form an immensely popular class of algorithms including support vector machines and kernel
PCA [48]. These algorithms rely on the specification of a kernel k(x, y), which embeds data points x, y in a linear Hilbert
space and returns their inner product. Kernel methods are very flexible, as they only require the computation of inner products
(through the kernel). However, the kernel is only an inner product if it is PD, so kernel methods are only well-defined for
kernels which are PD [48].
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Figure 2: If any geodesic triangle in (X, d) can be isometrically embedded into some Euclidean space, then X is flat. Note
in particular that when a geodesic triangle is isometrically embedded in a Euclidean space, it is embedded onto a Euclidean
triangle — otherwise the geodesic edges would not be isometrically embedded.

Many popular choices of kernels for Euclidean data rely only on the Euclidean distance between data points; for instance
the widely used Gaussian kernel (given by (1) with q = 2). Kernels which only rely on distances form an obvious target for
generalizing kernel methods to metric spaces, where distance is often the only quantity available.

2.1 Main results
In Theorem 1 of this paper we prove that geodesic Gaussian kernels on metric spaces are PD for all λ > 0 only if the
metric space is flat. Informally, a metric space is flat if it (for all practical purposes) is Euclidean. More formally:

Definition 1. A geodesic metric space (X, d) is flat in the sense of Alexandrov if any geodesic triangle in X can be isometri-
cally embedded in a Euclidean space.

Here, an embedding f : X → X ′ from a metric space (X, d) to another metric space (X ′, d′) is isometric if d′ (f(x), f(y)) =
d(x, y) for all x, y ∈ X1. A geodesic triangle abc in X consists of three points a, b and c joined by geodesic paths γab, γbc
and γac. The concept of flatness essentially requires that all geodesic triangles are identical to Euclidean triangles; see Fig. 2.

With this, we state our first main theorem:

Theorem 1. Let (X, d) be a geodesic metric space, and assume that k(x, y) = exp(−λd2(x, y)) is a PD geodesic Gaussian
kernel on X for all λ > 0. Then (X, d) is flat in the sense of Alexandrov.

This is a negative result, in the sense that most metric spaces of interest are not flat. In fact, the motivation for generalizing
kernel methods is to cope with data residing in non-flat metric spaces.

As a consequence of Theorem 1, we show that geodesic Gaussian kernels on Riemannian manifolds are PD for all
λ > 0 only if the Riemannian manifold is Euclidean.

Theorem 2. Let M be a complete, smooth Riemannian manifold with its associated geodesic distance metric d. Assume,
moreover, that k(x, y) = exp(−λd2(x, y)) is a PD geodesic Gaussian kernel for all λ > 0. Then the Riemannian manifold
M is isometric to a Euclidean space.

These two theorems have several consequences. The first and main consequence is that defining geodesic Gaussian
kernels on Riemannian manifolds or other geodesic metric spaces has limited applicability as most spaces of interest are not
flat. In particular, on Riemannian manifolds the kernels will generally only be PD if the original data space is Euclidean. In
this case, nothing is gained by treating the data space as a Riemannian manifold, as it is perfectly described by the well-known
Euclidean geometry, where many problems can be solved in closed form. In Sec. 4 we re-interpret recent work which does,
indeed, take place in Riemannian manifolds that turn out to be Euclidean.

Second, this result is not surprising: Curvature cannot be captured by a flat space, and Schönberg’s classical theorem
(see Sec. 3.1) indicates a strong connection between PD Gaussian kernels and linearity of the distance measure used in the
Gaussian kernel. This connection is made explicit by Theorems 1 and 2.

The obvious next question is the extent to which these negative results depend on the choice q = 2 in (1), which results in
a Gaussian kernel. A recent result by Istas [31] implies that for Riemannian manifolds, passing to a higher power q > 2 will
never lead to a PD kernel for all λ > 0:

Theorem 3. Let M be a Riemannian manifold with its associated geodesic distance metric d, and let q > 2. Then there is
some λ > 0 so that the kernel (1) is not PD.

1The metric space definition of isometric embedding [8], which is used when distances are in focus, should not be confused with the definition of isometric
embedding from Riemannian geometry, preserving Riemannian metrics which are not distances, but tangent space inner products.
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Geodesic metric
Chordal metricGeodesic metric

Chordal metric

Figure 3: The chordal metric on S2 ⊂ R3 is mea-
sured directly in R3, while the geodesic metric is
measured along S2. Shortest paths with respect to
the two metrics coincide, but the chordal metric is
not a geodesic metric, and the shortest path is not a
geodesic for the chordal metric, because the short-
est path between two points is longer than their
chordal distance.

The existence of a λ > 0 such that the kernel is not PD may seem innocent; however, this implies that the kernel bandwidth
parameter cannot be learned.

In contrast, the choice q = 1 in (1), giving a geodesic Laplacian kernel, leads to a more positive result: The geodesic
Laplacian kernel will be positive definite if and only if the distance d is conditionally negative definite (CND). CND metrics
have linear embeddability properties analogous to those of PD kernels; see Sec. 3.1 for formal definitions and properties. This
provides a PD kernel framework which can, for several popular Riemannian data manifolds, take advantage of the geodesic
distance.

Theorem 4. i) The geodesic distance d in a geodesic metric space (X, d) is CND if and only if the corresponding geodesic
Laplacian kernel is PD for all λ > 0.

ii) In this case, the square root metric d√ (x, y) =
√
d(x, y) is also a distance metric, and (X, d√ ) can be isometrically

embedded as a metric space into a Hilbert space H .

iii) The square root metric d√ is not a geodesic metric, and d√ corresponds to the chordal metric in H , not the intrinsic
metric on the image of X in H .

In Theorem 4, for φ : X → H , the chordal metric ‖φ(x)−φ(y)‖H measures distances directly inH rather than intrinsically
in the image φ(X) ⊂ H , see also Fig. 3.

In Sec. 4 we discuss several popular data spaces for which geodesic Laplacian kernels are PD (see Table 2); examples
include spheres, hyperbolic spaces and more. Nevertheless, we see from part ii) of Theorem 4 that any geodesic metric
space whose geodesic Laplacian kernel is always PD must necessarily have strong linear properties: Its square root metric is
isometrically embeddable in a Hilbert space.

This illustrates an intuitively simple point: A PD kernel has no choice but to linearize the data space. Therefore, its ability
to capture the original data space geometry is deeply connected to the linear properties of the original metric2.

3 Proofs of main results
In this section we prove the main results of the paper; this section may be skipped in a first reading of the paper. In the first
two subsections we review and discuss classical geometric results on kernels, manifolds and curvature, which we will use to
prove the main results.

3.1 Kernels
A modern and comprehensive treatment of the classical results on PD and CND kernels referred to here, can be found in [5,
Appendix C].

Definition 2. A positive definite (PD) kernel on a topological space X is a continuous function

k : X ×X → R

such that for any n ∈ N , any elements x1, . . . , xn ∈ X and any numbers c1, . . . , cn ∈ R, we have

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0.

2Another curious connection between kernels and curvature is found in [10], which shows that Gaussian and polynomial kernels on Rn and R2, respec-
tively, have flat feature space images φ(Rn) and φ(R2).
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Definition 3. A conditionally negative definite (CND) kernel on a topological space X is a continuous function

ψ : X ×X → R

which satisfies

i) ψ(x, x) = 0 for all x ∈ X
ii) ψ(x, y) = ψ(y, x) for all x, y ∈ X

iii) for any n ∈ N, any elements x1, . . . , xn ∈ X and any real numbers c1, . . . , cn with
∑n
i=1 ci = 0, we have

n∑
i=1

n∑
j=1

cicjψ(xi, xj) ≤ 0.

Example 1. If d : H ×H → R is the metric induced by the norm on a Hilbert space H , then the map d2 : H ×H → R given
by d2(x, y) = (d(x, y))2 is a CND kernel [5].

The following two theorems are key to understanding the connection between distance metrics and their corresponding
exponential kernels.

Theorem 5 (Due to Schönberg [49], Theorem C.3.2 in [5]). If X is a topological space and ψ : X ×X → R is a continuous
kernel on X such that ψ(x, x) = 0 and ψ(y, x) = ψ(x, y) for all y, x ∈ X , then the following two properties are equivalent:

• ψ is a CND kernel
• the kernel k(x, y) = e−λψ(x,y) is PD for all λ ≥ 0.

Theorem 6 (Part of Theorem C.2.3 in [5]). If ψ : X ×X → R is a CND kernel on a topological space X , then there exists a
real Hilbert space H and a continuous mapping

f : X → H

such that ψ(x, y) = ‖f(x)− f(y)‖2H for all x, y ∈ X .

From the above, it is straightforward to deduce:

Corollary 1. If the geodesic Gaussian kernel is PD, then there exists a mapping f : X → H into some Hilbert space H such
that

d(x, y) = ‖f(x)− f(y)‖H
for each x, y ∈ X . Note that this mapping f is not necessarily related to the feature mapping φ : X → V such that
k(x, y) = 〈φ(x), φ(y)〉V .

3.2 Curvature
While curvature is usually studied using differential geometry, we shall access curvature via a more general approach that
applies to general geodesic metric spaces. This notion of curvature, originating with Alexandrov and Gromov, operates by
comparing the metric space to spaces whose geometry we understand well, referred to as model spaces. The model spaces
Mκ are spheres (of positive curvature κ > 0), the Euclidean plane (flat, curvature κ = 0) and hyperbolic space (negative
curvature κ < 0). Since metric spaces can be pathological, curvature is approached by bounding the curvature of the space at
a given point from above or below. The bounds are attained by comparing geodesic triangles in the metric space with triangles
in the model spaces, as expressed in the CAT (κ) condition:

Definition 4. Let (X, d) be a geodesic metric space X . Let abc be a geodesic triangle of perimeter < 2Dκ, where Dκ is the
diameter of Mκ, that is, Dκ =∞ for κ ≤ 0, and Dκ = π√

κ
for κ > 0. There exists a triangle āb̄c̄ in the model space Mκ with

vertices ā, b̄ and c̄ and with geodesic edges γ̄āb̄, γ̄b̄c̄ and γ̄āc̄, whose lengths are the same as the lengths of the edges γab, γbc
and γac in abc. This is an Mκ-comparison triangle for abc (see Fig. 4).

For any point x sitting on the segment γbc, there is a corresponding point x̄ on the segment γ̄b̄c̄ in the comparison triangle,
such that dMκ

(x̄, b̄) = d(x, b). If we have
d(x, a) ≤ dMκ

(x̄, ā) (2)

for every such x, and similarly for any x on γab or γac, then the geodesic triangle abc satisfies the CAT (κ) condition.
The metric space X is a CAT (κ) space if any geodesic triangle abc in X of perimeter < 2Dκ satisfies the CAT (κ)

condition given in eq. 2. Geometrically, this means that triangles in X are thinner than triangles in Mκ.
The metric space X has curvature ≤ κ in the sense of Alexandrov if it is locally CAT (κ).
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Figure 4: Left: A geodesic triangle, right: the corresponding comparison triangles in hyperbolic space H2, the plane R2 and
the sphere S2, respectively.

While curvature in the CAT (κ) sense allows the study of curvature through the relatively simple means of geodesic
distances alone, it is a weaker concept of curvature than the standard sectional curvature used in Riemannian geometry.
Nevertheless, the two concepts are related, as captured by the following theorem due to Cartan and Alexandrov:

Theorem 7 (Theorem II.1A.6 [8]). A smooth Riemannian manifold M is of curvature ≤ κ in the sense of Alexandrov if and
only if the sectional curvature of M is ≤ κ.

The proof of the main theorem will, moreover, rely on the following theorem characterizing manifolds of constant zero
sectional curvature:

Theorem 8 (Part of Theorem 11.12 [39]). Let M be a complete, simply connected m-dimensional Riemannian manifold with
constant sectional curvature C = 0. Then M is isometric to Rm.

We are now ready to start proving our main theorems.

3.3 Geodesic Gaussian kernels on metric spaces: Proof of Theorem 1
As in the statement of Theorem 1, assume that the metric space (X, d) is a geodesic space as defined in Sec. 2, and that
k(x, y) = e−λd

2(x,y) is a PD geodesic Gaussian kernel on X for all λ > 0.
An important consequence of Theorem 6 is that the map f : X → H must take geodesic segments to geodesic segments,

which in H are straight line segments.

Lemma 1. If γ : [0, L]→ X is a geodesic of length L from a = γ(0) to b = γ(L) in X , then f(γ([0, L])) is the straight line
from f(a) to f(b) in H , and

f (γ(t)) = f(a) +
t

L
(f(b)− f(a)) (3)

for all t ∈ [0, L].

Proof. Since γ : [0, L]→ X is a geodesic, it contains every point γ(t) for all t ∈ [0, L], and since γ is a geodesic of length L,
we have d (γ(0), γ(t)) = t for each t ∈ [0, L], so

‖f (γ(0))− f (γ(t)) ‖ = d (γ(0), γ(t)) = t.

This is only possible if f ◦ γ is the straight line from f(a) to f(b) in H . Equation (3) follows directly, as it is the geodesic
parametrization of a straight line from f(a) to f(b).

This enables us to prove Theorem 1:

Proof of Theorem 1. Let a, b, c ∈ X be three points in X and form a geodesic triangle spanned by their joining geodesics
γab, γbc and γca. Then the points f(a), f(b) and f(c) in H are connected by straight line geodesics f ◦γab, f ◦γbc and f ◦γca
by Lemma 1. These points and geodesics in H span a 2-dimensional linear subspace of H in which they form a Euclidean
comparison triangle.

Without loss of generality, pick any two points x and y on the geodesic triangle and measure the distance d(x, y). The
corresponding distance in the comparison triangle is ‖f(x) − f(y)‖, and by the definition of f we know that d(x, y) =
‖f(x)− f(y)‖, so the geodesic triangle is isometrically embedded into the comparison triangle. Hence, X is flat in the sense
of Alexandrov.

Corollary 2. The metric space X is contractible, and hence simply connected.

Proof. By Theorem 1, X must necessarily be a CAT (0), and contractible by [8, Corollary II.1.5].
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3.4 Geodesic Gaussian kernels on Riemannian manifolds: Proof of Theorem 2
As in the statement of Theorem 2, assume that M is a complete, smooth Riemannian manifold with associated geodesic
distance metric d, and that k(x, y) = e−λd

2(x,y) is a geodesic Gaussian kernel which is PD for all λ > 0. We prove that then,
the Riemannian manifold M is isometric to a Euclidean space.

Proof of Theorem 2. We start out by showing that the sectional curvature of M is 0 everywhere.
By Theorem 1, M is a CAT (0) space, so in particular it has curvature ≤ 0 in the sense of Alexandrov. Therefore, by

Theorem 7, the sectional curvature of M is ≤ 0.
To prove the claim, we need to show that M does not have any points with negative sectional curvature. To this end,

assume that there is some point p ∈M such that the sectional curvature ofM at p is κ < 0. Then, since sectional curvature on
smooth Riemannian manifolds is continuous, there exists some neighborhood U of p and some κ′ < 0 such that the sectional
curvature in U is ≤ κ′ < 0. But then, by Theorem 7, U also has curvature ≤ κ′ in the sense of Alexandrov, which cannot
hold due to Theorem 1. It follows that the sectional curvature of M at p cannot be κ < 0; hence, the sectional curvature of M
must be everywhere 0.

Since M is simply connected by Corollary 2, we apply Theorem 8 to conclude that M must be isometric to Rm.

3.5 The case q > 2

Proof of Theorem 3. This is a direct consequence of [31, Theorem 2.12].

3.6 Geodesic Laplacian kernels:
Proof of Theorem 4

Another consequence of Schönberg’s Theorem 5 is that the geodesic Laplacian kernel defined by (1) with q = 1 will be PD
if and only if the distance d is CND. This provides a PD kernel framework which can, for several popular Riemannian data
manifolds, take advantage of the geodesic distance.

Proof of Theorem 4. i) Let (X, d) be a geodesic metric space. By Theorem 5, d is CND if and only if the Laplacian kernel
k(x, y) = e−λd(x,y) is PD for all λ > 0.

ii) By Theorem 6, there exists a real Hilbert space H and a continuous map f : X → H such that

d(x, y) = ‖f(x)− f(y)‖2H for all x, y ∈ X. (4)

That is, d√ (x, y) = ‖f(x)− f(y)‖H for all x, y ∈ X . The map f must be injective, because if f(x) = f(y) for x 6= y

then by (4), 0 = ‖f(x)− f(y)‖H = d(x, y) > 0, which is false. Therefore, d√ coincides with the restriction to f(X)

of the metric on H induced by ‖ · ‖. Since the restriction of a metric to a subset is a metric, d√ is a metric, and by
definition, f is an isometric embedding of (X, d√ ) into H .

iii) Since f is an isometric embedding as metric spaces, d√ must correspond to the chordal metric in H .
Assume that d√ is a geodesic metric on X , then by Lemma 1, f maps geodesics in (X, d√ ) to straight line segments
in H . Focusing on a single geodesic segment γ : [0, L]→ X , we obtain

d√ (γ(t), γ(t′)) = ‖f ◦ γ(t)− f ◦ γ(t′)‖ = |t− t′|

for all t, t′ ∈ [0, L]. Since d = d2√ is a metric by assumption, the square dγ(t, t′) = |t − t′|2 = d (γ(t), γ(t′)) is a
metric on [0, L]. But this is not true, as the triangle inequality fails to hold.
Therefore, d√ cannot be a geodesic metric on X .

As noted in Table 2 below, for a number of popular Riemannian manifolds, the geodesic distance metric is CND, meaning
that geodesic Laplacian kernels are PD.

Remark 5. For a CND distance metric d : X × X → R, a second way of constructing a PD kernel k : X × X → R is
through the formula k(x, x′) = d(x, x′)− d(x, x0)− d(x0, x

′) [7,47], where x0 ∈ X is any point. For other kernels based on
distances, such as the rational-quadratic kernel, little is known.
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Space Distance metric Geodesic Euclidean? CND PD Gaussian PD Laplacian
metric? metric? metric? kernel? kernel?

Rn [48, 49] Euclidean metric X X X X X
Rn, n > 2 [31] lq-norm ‖ · ‖q , q > 2 X ÷ ÷ ÷ ÷
Sphere Sn [31] classical intrinsic X ÷ X ÷ X

Real projective space Pn(R) [45] classical intrinsic X ÷ ÷ ÷ ÷
Grassmannian classical intrinsic X ÷ ÷ ÷ ÷

Sym+
d Frobenius X X X X X

Sym+
d Log-Euclidean X X X X X

Sym+
d Affine invariant X ÷ ÷ ÷ ÷

Sym+
d Fisher information metric X ÷ ÷ ÷ ÷

Hyperbolic space Hn [31] classical intrinsic X ÷ X ÷ X
1-dimensional normal distributions Fisher information metric X ÷ X ÷ X
Metric trees [56], [31, Thm 2.15] tree metric X ÷ X ÷ X

Geometric graphs (e.g. kNN) shortest path distance X ÷ ÷ ÷ ÷
Strings [15] string edit distance X ÷ ÷ ÷ ÷

Trees, graphs tree/graph edit distance X ÷ ÷ ÷ ÷

Table 2: For a set of popular metric and manifold data spaces and metrics, we record whether the metric is a geodesic metric,
whether it is a Euclidean metric, whether it is a CND metric, and whether its corresponding Gaussian and Laplacian kernels
are PD.

4 Implications for popular manifolds and related work
Many popular data spaces appearing in computer vision are not flat, meaning that their geodesic distances are not CND and
their geodesic Gaussian kernels will not be PD. Table 2 lists known results on CND status of some popular data spaces. In
particular, the classical intrinsic metrics on Rn, Hn and Sn are all CND3. As the Fisher information metric on 1-dimensional
normal distributions defines the hyperbolic geometry H2 [2], it will give a CND geodesic metric. For projective space,
on the other hand, [45] provides an example showing that the classical intrinsic metric is not CND. As Grassmannians are
generalizations of projective spaces, their geodesic metrics are therefore also not generally CND.

Symmetric, positive definite (d × d) matrices form another important data manifold, denoted Sym+
d . While the popular

Frobenius and Log-Euclidean [3] metrics on Sym+
d are actually Euclidean, little is known theoretically about whether the

geodesic distance metrics of non-Euclidean Riemannian metrics on Sym+
d are CND. In Sec. 5 we show empirically that

neither the affine-invariant metric [43] nor the Fisher information metric on the corresponding fixed-mean multivariate normal
distributions [2, 4] induce a CND geodesic metric. Note how the qualitatively similar affine-invariant and Log-Euclidean
metrics differ in whether they generate PD exponential kernels.

Non-manifold data spaces are also popular, e.g. the edit distance on strings was shown not to be CND by Cortes et al.
[15]. As tree- and graph edit distances generalize string edit distance, the same holds for these. The metric along a metric
tree, on the other hand, is CND. In Sec. 5 we show empirically that this does not generalize to the shortest path metric on a
geometric graph, such as the kNN or ε-neighborhood graphs often used in manifold learning [1, 6, 46, 53].

4.1 Relation to previous work
Several PD kernels on manifolds have appeared in the literature, some of them even Gaussian kernels based on distance
metrics on manifolds such as spheres or Grassmannian manifolds, which we generally consider as curved manifolds. The
reader might wonder how this is possible given the above presented results. The explanation is that the distances used in
these kernels are not geodesic distances and, in many cases, have little or nothing to do with the Riemannian structure of the
manifold. We discuss a few examples.

Example 2. In [33], a PD kernel is defined on Sym+
d by using a geodesic Gaussian kernel with the log-Euclidean metric

[43]. The log-Euclidean metric is defined by pulling the (Euclidean) Frobenius metric on Symd back to Sym+
d via the

diffeomorphic matrix logarithm. Equivalently, data in Sym+
d is mapped into the Euclidean Symd via the diffeomorphic log

map, and data is analyzed there. The geodesic Gaussian kernel is PD because the Riemannian manifold is actually a Euclidean
space. In such cases, the Riemannian framework only adds an unnecessary layer of complexity.

Example 3. In [34], radial kernels are defined on spheres Sn by restricting kernels on Rn+1 to Sn, giving radial kernels
with respect to the chordal metric on Sn. Due to the symmetry of Sn, any kernel which is radial with respect to the chordal
metric, will also be radial with respect to the geodesic metric on Sn. This result is next used to define PD radial kernels on

3As a curious side note, this implies that
√
‖x− y‖ is a metric on Rn.
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the Grassmannian manifold Grn and on the Kendall shape space SPn. However, these kernels are not radial with respect to
the usual Riemannian metrics on these spaces, but with respect to the projection distance and the full Procrustes distance,
respectively, both of which are not geodesic distances with respect to any Riemannian metric on Grn and SPn, respectively4.
These kernels, thus, have little to do with the Riemannian geometry of Grn and SPn.

Example 4. In [16] it is noted that since the feature map φ corresponding to a Euclidean Gaussian kernel maps data onto a
hypersphere S in the reproducing kernel Hilbert space V [48], it might improve classification to consider the geodesic distance
on S rather than the chordal distance from V . This is, however, done by projecting each φ(x) ∈ V onto the tangent space
Tφ(x̃)S at a fixed base point φ(x̃), where the linear kernel in V is employed. This explains why the resulting kernel kx̃ is PD:
the kernel linearizes the sphere and, thereby, discards the spherical geometry.

Example 5. In [30] and [35], geodesic Laplacian kernels are defined on spheres; as shown above, these are PD.

Example 6. In [32], a kernel is defined on a general sample space X by selecting a generating probability distribution Pθ on
X and defining a Fisher kernel onX . Denote byMΘ the Riemannian manifold defined by a parametrized family of probability
distributions Pθ, θ ∈ Θ, on X endowed with the Fisher information metric. The kernel k : X ×X → R is defined by mapping
samples in X to the tangent space TθMΘ and applying the Riemannian metric at Pθ ∈ MΘ. This is PD because the kernel is
an inner product on data mapped into a Euclidean tangent space. Again, the statistical manifold is linearized and the resulting
kernel does not fully respect its geometry.

In several of these examples the data space is linearized by mapping to a tangent space or into a linear ambient space,
which always gives a PD kernel. It should, however, be stressed that the resulting kernels neither respect the distances nor the
constraints encoded in the original Riemannian structure. Thus, the linearization will inevitably remove the information that
the kernel was aiming to encode.

In general, whenever a data space is embedded into a Euclidean/Hilbert space and the chordal metric is used in (1), this
will give a PD kernel. In this way, by the Whitney embedding theorem [39], universal kernels can be defined on any manifold.
These kernels will, however, disregard any constraints encoded by the geodesic distance.

It is tempting to refer to the Nash theorem [42], which states that any Riemannian manifold can be isometrically embedded
into a Euclidean space. Here, however, ”isometric embedding” refers to a Riemannian isometry, which preserves the Rieman-
nian metric (the smoothly changing inner product) — not to be confused with a distance metric! Therefore, in a Riemannian
isometric embedding f : X → Rn we typically have d(x, y) 6= ‖f(x)− f(y)‖. A kernel based on chordal distances in a Nash
embedding will, thus, not generally be related to the geodesic distance.

Note, moreover, that the Nash theorem does not guarantee a unique embedding; in fact there are viable embeddings
generating a wide range of distance metrics inherited from the ambient Euclidean space. Therefore, an exponential kernel
based on the chordal metric will typically have little to do with the intrinsic Riemannian structure of the manifold.

There exist PD kernels that take full advantage of Riemannian geometry without relying on geodesic distances:

Example 7. Gong et al. [25] design a PD kernel for domain adaptation using the geometry of the Grassmann manifold: Let
S1 and S2 be two low-dimensional subspaces of Rn estimated with PCA on two related data sets. This gives two points
x1, x2 on the Grassmann manifold. A test point can be projected into all possible subspaces along the Grassmann geodesic
connecting x1 and x2, giving an infinite dimensional feature vector in a Hilbert space. Gong et al. [25] show how to compute
inner products in this Hilbert space in closed-form, thereby providing a PD kernel which takes geometry into account without
relying on geodesic distances.

5 Experiments
We now validate our theoretical results empirically. First, we generate 500 randomly drawn symmetric PD matrices of size
3 × 3. We compute the Gram matrix of both the Gaussian and Laplacian kernels under both the affine-invariant metric [43]
and the Fisher information metric on the corresponding fixed-mean multivariate normal distributions [2, 4]. Fig. 5a shows the
eigenspectrum of the four different Gram matrices. All four kernels have negative eigenvalues, which imply that none of them
are positive definite. This empirically proves that neither the affine-invariant metric nor the Fisher information metric induce
CND geodesic distance metrics in general, although we know this to hold for the Fisher information metric on Sym+

1 = R+.
Next, we consider kernels on the unit sphere. We generate data from salient points in the 1934 painting Etude de femmes

by Le Corbusier. At each salient point a HOG [17] descriptor is computed; as these descriptors are normalized they are points

4Assume that either of these metrics were a Riemannian geodesic distance metric. The family of PD radial kernels defined in [34] on both Grn and SPn

include Gaussian kernels with the projection distance and the full Procrustes distance, respectively. By our previous results, if these were geodesic distances
with respect to some Riemannian metric, this Riemannian metric would define a Euclidean structure on Grn and SPn, respectively. This is impossible, since
these manifolds are both compact.
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Figure 5: (a)–(e): Eigenspectra of the Gram matrices for different geodesic exponential kernels on different manifolds. (f)
Data used in panels b and e.

on the unit sphere. Fig. 5b shows the eigenspectrum of the Gram matrix of the geodesic Gaussian and Laplacian kernels.
While the geodesic Gaussian kernel has negative eigenvalues, the geodesic Laplacian does not. This verifies our theoretical
results from Sec. 4 and Table 2.

We also consider data on the Grassmann manifold. First, we consider one-dimensional subspaces as spanned by samples
from a 50-dimensional isotropic normal distribution. We again consider both the Gaussian and the Laplacian kernel; here both
under the usual intrinsic metric, but also under the extrinsic metric [26]. Fig. 5c shows the eigenspectra of the different Gram
matrices. Only the Gaussian kernel under the intrinsic metric appears to have negative eigenvalues, while the remaining have
strictly positive eigenvalues.

Next, we consider 15-dimensional subspaces of R100 drawn from a uniform distribution on the corresponding Grassman-
nian. We only consider kernels under the intrinsic metric, and the eigenspectra are shown in Fig. 5d. The Gaussian kernel has
negative eigenvalues, while the Laplacian kernel does not. Note that this does not prove that the Laplacian kernel is PD on the
Grassmannian; in fact, we know theoretically from [45] that it is generally not.

Finally, we consider shortest-path distances on nearest neighbor graphs as commonly used in manifold learning. We take
124 one-digits from the MNIST data set [38], project them into their two leading principal components, form a ε-neighborhood
graph, and compute shortest path distances. We then compute the eigenspectrum of both the Gaussian and Laplacian kernel;
Fig. 5e show these spectra. Both kernels have negative eigenvalues, which empirically show that the shortest-path graph
distance is not CND.

6 Discussion and outlook
We have shown that exponential kernels based on geodesic distances in a metric space or Riemannian manifold will only be
positive definite if the geodesic metric satisfies strong linearization properties:

• for Gaussian kernels, the metric space must be flat (or Euclidean).
• for Laplacian kernels, the metric must be conditionally negative definite. This implies that the square root metric can be

embedded in a Hilbert space.

With the exception of select metric spaces, these results show that geodesic exponential kernels are not well-suited for data
analysis in curved spaces.
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This does, however, not imply that kernel methods can never be extended to metric spaces. Gong et al. [25] provide an
elegant kernel based on the geometry of the Grassmann manifold, which is well-suited for domain adaptation. This kernel is
not a geodesic exponential kernel, yet it strongly incorporates the geodesic structure of the Grassmannian. As an alternative,
the Euclidean Gaussian kernel is a diffusion kernel. Such kernels are positive definite on Riemannian manifolds [37], and
might provide a suitable kernel. However, these kernels generally do not have closed-form expressions, which may hinder
their applicability.

Most existing machine learning tools assume a linear data space. Kernel methods only encode non-linearity via a non-
linear transformation between a data space and a linear feature space. Our results illustrate that such methods are limited for
analysis of data from non-linear spaces. Emerging generalizations of learning tools such as regression [20, 29, 51] or transfer
learning [23,58] to nonlinear data spaces are encouraging. We believe that learning tools that operate directly in the non-linear
data space, without a linearization step, is the way forward.
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