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Abstract—Correlation filters take advantage of specific properties in the Fourier domain allowing them to be estimated effi-
ciently: O(ND logD) in the frequency domain, versus O(D3 + ND2) spatially where D is signal length, and N is the number of
signals. Recent extensions to correlation filters, such as MOSSE, have reignited interest of their use in the vision community due to
their robustness and attractive computational properties. In this paper we demonstrate, however, that this computational efficiency
comes at a cost. Specifically, we demonstrate that only 1

D
proportion of shifted examples are unaffected by boundary effects which

has a dramatic effect on detection/tracking performance. In this paper, we propose a novel approach to correlation filter estimation that:
(i) takes advantage of inherent computational redundancies in the frequency domain, and (ii) dramatically reduces boundary effects.
Impressive object tracking and detection results are presented in terms of both accuracy and computational efficiency.

Index Terms—Correlation filters, object tracking, pattern detection
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1 INTRODUCTION

Correlation between two signals is a standard approach to
feature detection/matching. Correlation touches nearly every
facet of computer vision from pattern detection to object
tracking. Correlation is rarely performed naively in the spatial
domain. Instead, the fast Fourier transform (FFT) affords the
efficient application of correlating a desired template/filter with
a signal. Contrastingly, however, most techniques for esti-
mating a template for such a purpose (i.e. detection/tracking
through convolution) are performed in the spatial domain [1],
[2], [16], [18].

This has not always been the case. Correlation filters, devel-
oped initially in the seminal work of Hester and Casasent [12],
are a method for learning a template/filter in the frequency
domain that rose to some prominence in the 80s and 90s.
Although many variants have been proposed [12], [13], [15],
[14], the approach’s central tenet is to learn a filter, that
when correlated with a set of training signals, gives a desired
response (typically a peak at the origin of the object, with
all other regions of the correlation response map being sup-
pressed). Like correlation itself, one of the central advantages
of the approach is that it attempts to learn the filter in the fre-
quency domain due to the efficiency of correlation/convolution
in that domain.

Interest in correlation filters has been reignited in the vision
world through the recent work of Bolme et al. [4] on Minimum
Output Sum of Squared Error (MOSSE) correlation filters for
object detection and tracking. Bolme et al.’s work was able
to circumvent some of the classical problems with correlation
filters and performed well in tracking under changes in rota-
tion, scale, lighting and partial occlusion. A central strength
of the correlation filter is that it is extremely efficient in terms
of both memory and computation.

1.1 The Problem
An unconventional interpretation of a correlation filter, is that
of a discriminative template that has been estimated from

(a) (b)

   (c) (d)

Fig. 1. (a) Defines the example of fixed spatial support
within the image from which the peak correlation output
should occur. (b) The desired output response, based
on (a), of the correlation filter when applied to the entire
image. (c) A subset of patch examples used in a canonical
correlation filter where green denotes a non-zero correla-
tion output, and red denotes a zero correlation output in
direct accordance with (b). (d) A subset of patch examples
used in our proposed correlation filter. Note that our
proposed approach uses patches stemming from different
parts of the image, whereas the canonical correlation
filter simply employs circular shifted versions of the same
single patch. The central dilemma in this paper is how
to perform (d) efficiently in the Fourier domain. The two
last patches of (d) show that D−1

T patches near the image
border are affected by circular shift in our method which
can be greatly diminished by choosing D << T , where D
and T indicate the length of the vectorized face patch in
(a) and the image in (a), respectively.
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an unbalanced set of “real-world” and “synthetic” examples.
These synthetic examples are created through the application
of a circular shift on the real-world examples, and are supposed
to be representative of those examples at different translational
shifts. We use the term synthetic, as all these shifted examples
are plagued by circular boundary effects and are not truly rep-
resentative of the shifted example (see Figure 1(c)). As a result
the training set used for learning the template is extremely
unbalanced with one real-world example for every D − 1
synthetic examples (where D is the dimensionality of the
examples).

These boundary effects can dramatically affect the resulting
performance of the estimated template. Fortunately, these
effects can be largely removed (see Section 2) if the correlation
filter objective is slightly augmented, but has to be now solved
in the spatial rather than frequency domains. Unfortunately,
this shift to the spatial domain destroys the computational
efficiency that make correlation filters so attractive. It is this
dilemma that is at the heart of our paper.

1.2 Contribution
In this paper we make the following contributions:
• We propose a new correlation filter objective that can

drastically reduce the number of examples in a corre-
lation filter that are affected by boundary effects. We
further demonstrate, however, that solving this objective
in closed form drastically decreases computational ef-
ficiency: Ø(D3 + ND2) versus Ø(ND logD) for the
canonical objective where D is the length of the vec-
torized image and N is the number of examples.

• We demonstrate how this new objective can be efficiently
optimized in an iterative manner through an Augmented
Lagrangian Method (ALM) so as to take advantage
of inherent redundancies in the frequency domain. The
efficiency of this new approach is Ø([N + K]T log T )
where K is the number of iterations and T is the size of
the search window.

• We present impressive results for both object detection
and tracking outperforming MOSSE and other leading
non-correlation filter methods for object tracking.

1.3 Related Work
Bolme et al. [4] recently proposed an extension to traditional
correlation filters referred to as Minimum Output Sum of
Squared Error (MOSSE) filters. This approach has proven
invaluable for many object tracking tasks, outperforming cur-
rent state of the art methods such as [2], [18]. What made
the approach of immediate interest in the vision community
was the dramatically faster frame rates than current state of
the art (600 fps versus 30 fps). A strongly related method
to MOSSE was also proposed by Bolme et al. [5] for object
detection/localization referred to as Average of Synthetic Exact
Filters (ASEF) which also reported superior performance
to state of the art. A full discussion on other variants of
correlation filters such as Optimal Tradeoff Filters (OTF) [17],
Unconstrained MACE (UMACE) [19] filters, etc. is outside
the scope of this paper. Readers are encouraged to inspect [14]
for a full treatment on the topic.

1.4 Notation

Vectors are always presented in lower-case bold (e.g., a),
Matrices are in upper-case bold (e.g., A) and scalars in
italicized (e.g. a or A). a(i) refers to the ith element of the
vector a. All M -mode array signals shall be expressed in
vectorized form a. M -mode arrays are also known as M -mode
matrices, multidimensional matrices, or tensors. We shall be
assuming M = 2 mode matrix signals (e.g. 2D image arrays)
in nearly all our discussions throughout this paper. This does
not preclude, however, the application of our approach to
other M 6= 2 signals.

A M -mode convolution operation is represented as the ∗
operator. One can express a M -dimensional discrete circular
shift ∆τ to a vectorized M -mode matrix a through the
notation a[∆τ ]. The matrix I denotes a D×D identity matrix
and 1 denotes a D dimensional vector of ones. A ˆ applied
to any vector denotes the M -mode Discrete Fourier Trans-
form (DFT) of a vectorized M -mode matrix signal a such
that â← F(a) =

√
DFa. Where F() is the Fourier transforms

operator and F is the orthonormal D ×D matrix of complex
basis vectors for mapping to the Fourier domain for any D di-
mensional vectorized image/signal. We have chosen to employ
a Fourier representation in this paper due to its particularly
useful ability to represent circular convolutions as a Hadamard
product in the Fourier domain. Additionally, we take advantage
of the fact that diag(ĥ)â = ĥ ◦ â, where ◦ represents the
Hadamard product, and diag() is an operator that transforms
a D dimensional vector into a D × D dimensional diagonal
matrix. The role of filter ĥ or signal â can be interchanged
with this property. Any transpose operator > on a complex
vector or matrix in this paper additionally takes the complex
conjugate in a similar fashion to the Hermitian adjoint [14].
The operator conj(â) applies the complex conjugate to the
complex vector â.

2 CORRELATION FILTERS

Due to the efficiency of correlation in the frequency domain,
correlation filters have canonically been posed in the frequency
domain. There is nothing, however, stopping one (other than
computational expense) from expressing a correlation filter in
the spatial domain. In fact, we argue that viewing a correlation
filter in the spatial domain can give: (i) important links to
existing spatial methods for learning templates/detectors, and
(ii) crucial insights into fundamental problems in current
correlation filter methods.

Bolme et. al’s [4] MOSSE correlation filter can be expressed
in the spatial domain as solving the following ridge regression
problem,

E(h) =
1

2

N∑
i=1

D∑
j=1

||yi(j)− h>xi[∆τ j ]||22 +
λ

2
||h||22 (1)

where yi ∈ RD is the desired response for the i-th ob-
servation xi ∈ RD and λ is a regularization term. C =
[∆τ 1, . . . ,∆τD] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a 2D
Gaussian of small variance (2-3 pixels) for yi centered at the
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location of the object (typically the centre of the image patch).
The solution to this objective becomes,

h = H−1
N∑
i=1

D∑
j=1

yi(j)xi[∆τ j ] (2)

where,

H = λI +

N∑
i=1

D∑
j=1

xi[∆τ j ]xi[∆τ j ]
> . (3)

Solving a correlation filter in the spatial domain quickly
becomes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3 +ND2).

2.1 Properties
Putting aside, for now, the issue of computational cost, the
correlation filter objective described in Equation 1 produces a
filter that is particularly sensitive to misalignment in transla-
tion. A highly undesirable property when attempting to detect
or track an object in terms of translation. This sensitivity is
obtained due to the circular shift operator x[∆τ ], where ∆τ =
[∆x,∆y]> denotes the 2D circular shift in x and y.

It has been well noted in correlation filter literature [14]
that this circular-shift alone tends to produce filters that do
not generalize well to other types of appearance variation (e.g.
illumination, viewpoint, scale, rotation, etc.). This generaliza-
tion issue can be somewhat mitigated through the judicious
choice of non-zero regularization parameter λ, and/or through
the use of an ensemble N > 1 of training observations that
are representative of the type of appearance variation one is
likely to encounter.

2.2 Boundary Effects
A deeper problem with the objective in Equation 1, however,
is that the shifted image patches x[∆τ ] at all values of ∆τ ∈
C, except where ∆τ = 0, are not representative of image
patches one would encounter in a normal correlation operation
(Figure 1(c)). In signal-processing, one often refers to this
as the boundary effect. One simple way to circumvent this
problem spatially is to allow the training signal x ∈ RT to be
a larger size than the filter h ∈ RD such that T > D. Through
the use of a D × T masking matrix P one can reformulate
Equation 1 as,

E(h) =
1

2

N∑
i=1

T∑
j=1

||yi(j)−h>Pxi[∆τ j ]||22 +
λ

2
||h||22 . (4)

The masking matrix P of ones and zeros encapsulates what
part of the signal should be active/inactive. The central benefit
of this augmentation in Equation 4 is the dramatic increase
in the proportion of examples unaffected by boundary effects
(T−D+1

T instead of 1
D ). From this insight it becomes clear that

if one chooses T >> D then boundary effects become greatly
diminished (Figure 1(d)). The computational cost O(D3 +
NTD) of solving this objective is only slightly larger than
the cost of Equation 1, as the role of P in practice can be
accomplished efficiently through a lookup table.

It is clear in Equation 4, that boundary effects could be
removed completely by summing over only a T − D + 1
subset of all the T possible circular shifts. However, as we
will see in the following section such a change along with
the introduction of P is not possible if we want to solve this
objective efficiently in the frequency domain.

2.3 Efficiency in the Frequency Domain
It is well understood in signal processing that circular convo-
lution in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,

E(ĥ) =
1

2

N∑
i=1

||ŷi − x̂i ◦ conj(ĥ)||22 +
λ

2
||ĥ||22 (5)

=
1

2

N∑
i=1

||ŷi − diag(x̂i)
>ĥ||22 +

λ

2
||ĥ||22 .

where ĥ, x̂, ŷ are the Fourier transforms of h,x,y. The
complex conjugate of ĥ is employed to ensure the operation
is correlation not convolution. The equivalence between Equa-
tions 1 and 5 also borrows heavily upon another well known
property from signal processing namely, Parseval’s theorem
which states that

x>i xj = D−1x̂>i x̂j ∀i, j, where x ∈ RD . (6)

The solution to Equation 5 becomes

ĥ = [diag(ŝxx) + λI]−1
N∑
i=1

diag(x̂i)ŷi (7)

= ŝxy ◦−1 (ŝxx + λ1)

where ◦−1 denotes element-wise division, and

ŝxx =

N∑
i=1

x̂i ◦ conj(x̂i) & ŝxy =

N∑
i=1

ŷi ◦ conj(x̂i) (8)

are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ĥ in
Equations 1 and 5 are identical (other than that one is posed in
the spatial domain, and the other is in the frequency domain).
The power of this method lies in its computational efficiency.
In the frequency domain a solution to ĥ can be found with a
cost of O(ND logD). The primary cost is associated with the
DFT on the ensemble of training signals {xi}Ni=1 and desired
responses {yi}Ni=1.

3 OUR APPROACH
A problem arises, however, when one attempts to apply the
same Fourier insight to the augmented spatial objective in
Equation 4,

E(h) =
1

2

N∑
i=1

||ŷi−diag(x̂i)
>
√
DFP>h||22 +

λ

2
||h||22 . (9)

Unfortunately, since we are enforcing a spatial constraint
the efficiency of this objective balloons to O(D3 + ND2)
as h must be solved in the spatial domain.
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3.1 Augmented Lagrangian

Our proposed approach for solving Equation 9 involves the
introduction of an auxiliary variable ĝ,

E(h, ĝ) =
1

2

N∑
i=1

||ŷi − diag(x̂i)
>ĝ||22 +

λ

2
||h||22

s.t. ĝ =
√
DFP>h . (10)

We propose to handle the introduced equality constraints
through an Augmented Lagrangian Method (ALM) [6]. The
augmented Lagrangian of our proposed objective can be
formed as,

Ł(ĝ,h, ζ̂) =
1

2

N∑
i=1

||ŷi − diag(x̂i)
>ĝ||22 +

λ

2
||h||22

+ ζ̂
>

(ĝ −
√
DFP>h)

+
µ

2
||ĝ −

√
DFP>h||22 (11)

where µ is the penalty factor that controls the rate of con-
vergence of the ALM, and ζ̂ is the Fourier transform of the
Lagrangian vector needed to enforce the newly introduced
equality constraint in Equation 10. ALMs are not new to
learning and computer vision, and have recently been used to
great effect in a number of applications [6], [7]. Specifically,
the Alternating Direction Method of Multipliers (ADMMs)
has provided a simple but powerful algorithm that is well
suited to distributed convex optimization for large learning
and vision problems. A full description of ADMMs is outside
the scope of this paper (readers are encouraged to inspect [6]
for a full treatment and review), but they can be loosely
interpreted as applying a Gauss-Seidel optimization strategy
to the augmented Lagrangian objective. Such a strategy is ad-
vantageous as it often leads to extremely efficient subproblem
decompositions. A full description of our proposed algorithm
can be seen in Algorithm 1. We detail each of the subproblems
as follows:

3.2 Subproblem g

ĝ∗ = arg min Ł(ĝ; ĥ, ζ̂) (12)

= (ŝxy + µĥ− ζ̂) ◦−1 (ŝxx + µ1)

where ĥ =
√
DFP>h. In practice ĥ can be estimated

extremely efficiently by applying a FFT to h padded with
zeros implied by the P> masking matrix.

3.3 Subproblem h

h∗ = arg min Ł(h;g, l) (13)

= (µ+
λ√
D

)−1(µg + l)

where g = 1√
D
PF>ĝ and l = 1√

D
PF>ζ̂. In practice both g

and l can be estimated extremely efficiently by applying an
inverse FFT and then applying the lookup table implied by
the masking matrix P.

3.4 Lagrange Multiplier Update

ζ̂
(i+1)

← ζ̂
(i)

+ µ(ĝ(i+1) − ĥ(i+1)) (14)

where ĝ(i+1) and ĥ(i+1) are the current solutions to the above
subproblems at iteration i+ 1 within the iterative ADMM.

3.5 Choice of µ
A simple and common [6] scheme for selecting µ is the
following

µ(i+1) = min(µmax, βµ
(i)) . (15)

We found experimentally µ(0) = 10−2, β = 1.1 and µmax =
20 to perform well.

3.6 Computational Cost
Inspecting Algorithm 1 the dominant cost per iteration of the
ADMM optimization process is Ø(T log T ) for FFT. There
is a pre-computation cost (before the iterative component,
steps 4 and 5) in the algorithm for estimating the auto-
and cross-spectral energy vectors ŝxx and ŝxy respectively.
This cost is Ø(NT log T ) where N refers to the number
of training signals. Given that K represents the number of
ADMM iterations the overall cost of the algorithm is there-
fore Ø([N +K]T log T ).

Algorithm 1 Our approach using ADMMs

1: Intialize h(0), l(0).
2: Pad with zeros and apply FFT:

√
DFP>h(0) → ĥ(0).

3: Apply FFT:
√
DFl(0) → ζ̂

(0)
.

4: Estimate auto-spectral energy ŝxx using Eqn. (8).
5: Estimate cross-spectral energy ŝxy using Eqn. (8).
6: i = 0
7: repeat
8: Solve for ĝ(i+1) using Eqn. (12), ĥ(i) & ζ̂

(i)
.

9: Inverse FFT then crop: 1√
D
PF>ĝ(i+1) → g(i+1).

10: Inverse FFT then crop: 1√
D
PF>ζ̂

(i+1)
→ l(i+1).

11: Solve for h(i+1) using Eqn. (13), g(i+1) & l(i).
12: Pad and apply FFT:

√
DFP>h(i+1) → ĥ(i+1).

13: Update Lagrange multiplier vector Eqn. (14).
14: Update penalty factor Eqn. (15).
15: i = i+ 1
16: until ĝ,h, ζ̂ has converged

4 EXPERIMENTS

4.1 Localization Performance
In the first experiment, we evaluated our method on the
problem of eye localization, comparing with prior correlation
filters, e.g. OTF [17], MACE [15], UMACE [19], ASEF
[5], and MOSSE [4]. The CMU Multi-PIE face database
1 was used for this experiment, containing 900 frontal faces
with neutral expression and normal illumination. We randomly

1. http://www.multipie.org/
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selected 400 of these images for training and the reminder
for testing. All images were cropped to have a same size of
128 × 128 such that the left and right eye are respectively
centered at (40,32) and (40,96) coordinates. The cropped
images were power normalized to have a zero-mean and
standard deviation of 1.0. Then, a 2D cosine window was
employed to reduce the frequency effects caused by opposite
borders of the images in the Fourier domain.

We trained a 64 × 64 filter of the right eye using 64 × 64
cropped patches (centered upon the right eye) for the other
methods, and full face images for our method (T = 128 ×
128 and D = 64 × 64). Similar to ASEF and MOSSE, we
defined the desired response as a 2D Gaussian function with
an spatial variance of s = 2. Eye localization was performed
by correlating the filters over the testing images followed by
selecting the peak of the output as the predicted eye location.
The eye localization was evaluated by the distance between the
predicted and desired eye locations normalized by inter-ocular
distance,

d =
‖pr −mr‖2
‖ml −mr‖2

(16)

where mr and ml respectively indicate the true coordinates
of the right and left eye, and pr is the predicted location of
the right eye. A localization with normalized distance d < th
was considered as a successful localization. The threshold th
was set to a fraction of inter-ocular distance.

The average of evaluation results across 10 random runs
are depicted in Figure 2, where our method outperforms the
other approaches across all thresholds and training set sizes.
The accuracy of OTF and MACE declines by increasing the
number of training images due to over-fitting. During the
experiment, we observed that the low performance of the
UMACE, ASEF and MOSSE was mainly caused by wrong
localizations of the left eye and the nose. This was not the
case for our method, as our filter was trained in a way that
return zero correlation values when centred upon non-target
patches of the face image. A visual depiction of the filters and
their outputs can be seen in Figure 3, illustrating examples of
wrong and correct localizations. The Peak-to-Sidelobe Ratio
(PSR) [4] values show that our method returns stronger output
compared to the other filters.

Moreover, we examined the influence of T (the size of train-
ing images) on the performance of eye localization. For this
purpose, we employed cropped patches of the right eye with
varying sizes of T = {D, 1.5D, 2D, 2.5D, 3D, 3.5D, 4D} to
train filters of size D = 32× 32. The localization results are
illustrated in Figure 4(a), showing that the lowest performance
obtained when T is equal to D and the localization rate
improved by increasing the size of the training patches with
respect to the filter size. The reason is that by choosing
T > D the portion of patches unaffected by boundary effects
(T−D+1

T ) reduces.

4.2 Runtime Performance
This experiment demonstrates the advantage of our approach
to other iterative methods. Specifically, we compared our pro-
posed approach against other methods in literature for learning
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Fig. 2. Eye localization performance as a function of (a)
number of training images, and (b) localization thresholds.

UMACE ASEF MOSSE Our method

PSR = 3.1 PSR = 8.4 PSR = 9.3 PSR = 15.7

Fig. 3. An example of eye localization is shown for
an image with normal lighting. The outputs (bottom) are
produced using 64x64 correlation filters (top). The green
box represents the approximated location of the right
eye (output peak). The peak strength measured by PSR
shows the sharpness of the output peak.

filters efficiently using iterative methods. We compared our
convergence performance with a steepest descent method [20]
for optimizing our same objective. Results can be seen in
Figure 5: (a) represents time to converge as a function of the
number of training images, and (b) represents the number of
iterations required to optimize the objective (in Equation 9).

In (a) one notices impressively how convergence perfor-
mance is largely independent to the number of images used
during training. This can largely be attributed to the pre-
computation of the auto- and cross-spectral energy vectors. As
a result, iterations of the ADMM do not need to re-touch the
training set, allowing our proposed approach to dramatically
outperform more naive iterative approaches. Similarly, in (b)
one also notices how relatively few iterations are required to
achieve good convergence.

4.3 Tracking Performance

Finally, we evaluated the proposed method for the task of
real-time tracking on a sequence of commonly used test
videos [18], described in Table 1. We compared our approach
with state-of-the-art trackers including MOSSE [4], kernel-
MOSSE [11], MILTrack [3], STRUCK [10], OAB [8],
SemiBoost [9], FragTrack [1] and IVT [18]. All of these
methods were tuned by the parameter settings proposed in
their reference papers. The desired response for a m × n
target was defined as a 2D Gaussian with a variance of
s =
√
mn/16. The regularization parameter λ was set to 10−2.

We evaluated our method with differen number of iterations
{1, 2, 4, 8, 16, 32, 64}, as shown in Figure 4(b), and eventually
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Fig. 4. (a) The localization rate obtained by different sizes
of training images (T ), the size of the trained filter is
D = 32× 32. (b) The position error of tracking versus the
number of ADMM iterations. We selected 4 iterations as a
tradeoff between tracking performance and computation.
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Fig. 5. Runtime performance of our method against
another naive iterative method (steepest descent
method) [20]. Our approach enjoys superior performance
in terms of: (a) convergence speed to train two filters with
different sizes (32x32 and 64x64) and (b) the number of
iterations required to converge.

selected four iterations (a tradeoff between precision and
tracking speed) for our tracker. A track initialization process
was employed for our approach and MOSSE, where eight
random affine perturbations were used to initialize the first
filter. We borrowed the online adaption from the work of
Bolme et al. [4] to adapt our filter at ith frame using averaged
auto-spectral and cross-spectral energies:

(ŝxx)i = η(x̂i ◦ conj(x̂i)) + (1− η)(ŝxx)i−1

(ŝxy)i = η(ŷi ◦ conj(x̂i)) + (1− η)(ŝxy)i−1 (17)

where, η is the adaption rate. We practically found that η =
0.025 is appropriate for our method to quickly be adapted
against pose change, scale, illumination, etc.

The tracking results are evaluated in Table 2 following the
recent tracking papers [3] [10] [8], including (i) percentage
of frames where the predicted position is within 20 pixels of
the ground truth (precision), (ii) average localization error in
pixels, and (iii) tracking speed as frames per second (fps) Our
method averagely achieved maximum precisions and minimum
localization errors, followed by STRUCK. One explanation for
this is that our method employs a rich set of training samples
containing all possible positive (target) and negative (non-
target) patches to train the correlation filter. Whilst, the non
filter approaches such as STRUCK and MILTrack are limited
by learning a small subset of positive and negative patches.

Sequence Frames Main Challenges
Faceocc1 886 Moving camera, occlusion
Faceocc2 812 Appearance change, occlusion

Girl 502 Moving camera, scale change
Sylv 1344 Illumination and pose change

Tiger1 354 Fast motion, pose change
David 462 Moving camera, illumination change

Cliffbar 472 Scale change, motion blur
Coke Can 292 Illumination change, occlusion

Dollar 327 Similar object, appearance change
Twinings 472 Scale and pose change

TABLE 1
Video sequences used for tracking evaluation.

Similarly, it can be explained that the accuracy of MOSSE and
kernel-MOSSE are affected by using synthetic negative sam-
ples which are not representative of the ”real-world” examples,
as illustrated in Figure 1(c). Moreover, our method owes its
robustness against challenging variations in scale (Cliffbar and
Twinings), illumination (Sylv), pose (David), appearance (Girl)
and partial occlusion (Faceocc1 and Faceocc2) to the online
adaption. In the case of tracking speed, MOSSE outperformed
the other methods by 600 fps. Our method obtained lower fps
compared to MOSSE and kernel-MOSSE, due to its iterative
manner. However, it obtained a tracking speed of 50 fps which
is appropriate for real-time tracking.

A visual depiction of tracking results for some selected
videos is shown in Figures 6 and 7, where our method
achieved higher precisions over all videos except Tiger1 and
Twinings. Moreover, Figure 6(b) shows that our approach
suffers from less drift over the selected test videos.

5 CONCLUSIONS

A method for estimating a correlation filter is presented
here that dramatically limits circular boundary effects while
preserving many of the computational advantages of canonical
frequency domain correlation filters. Our approach demon-
strated superior empirical results for both object detection and
real-time tracking compared to current state of the arts.
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MOSSE KMOSSE MILTrack STRUCK OAB(1) SemiBoost FragTrack Our method
FaceOcc1 {1.00, 7} {1.00, 5} {0.75, 17} {0.97, 8} {0.22, 43} {0.97, 7} {0.94, 7} {1.00, 8}
FaceOcc2 {0.74, 13} {0.95, 8} {0.42, 31} {0.93, 7} {0.61, 21} {0.60, 23} {0.59, 27} { 0.97, 7}

Girl {0.82, 14} {0.44, 35} {0.37, 29} {0.94, 10} - - {0.53, 27} {0.90, 12}
Sylv {0.87, 7} {1.00, 6} {0.96, 8} {0.95, 9} {0.64, 25} {0.69, 16} {0.74, 25} {1.00, 4}

Tiger1 {0.61, 25} {0.62, 25} {0.94, 9} {0.95, 9} {0.48, 35} {0.44, 42} {0.36, 39} {0.79, 18}
David {0.56, 14} {0.50, 16} {0.54, 18} {0.93, 9} {0.16, 49} {0.46, 39} {0.28, 72} {1.00, 7}

Cliffbar {0.88, 8} {0.97, 6} {0.85, 12} {0.44, 46} {0.76, -} - {0.22, 39} { 1.00, 5}
Coke Can {0.96, 7} {1.00, 7} {0.58, 17} {0.97, 7} {0.45, 25} {0.78, 13} {0.15, 66} {0.97, 7}

Dollar {1.00, 4} {1.00, 4} {1.00, 7} {1.00, 13} {0.67, 25} {0.37, 67} {0.40, 55} { 1.00, 6}
Twinings {0.48, 16} {0.89, 11} {0.76, 15} {0.99, 7} {0.74, -} - {0.82, 14} {0.99, 9}

mean {0.80, 11} {0.84, 12} {0.72, 16} {0.91, 12} {0.53, 31} {0.62, 29} {0.51, 37} {0.97, 8}
fps 600 100 25 11 25 25 2 50

TABLE 2
The tracking performance is shown as a tuple of {precision within 20 pixels, average position error in pixels}, where
our method achieved the best performance over 8 of 10 videos. The best fps was obtained by MOSSE. Our method

obtained a real-time tacking speed of 50 fps using four iterations of ADMM. The best result for each video is
highlighted in bold.
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Fig. 6. Tracking results for selected videos, (a) precision versus the thresholds, and (b) position error per frame.
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Fig. 7. Tracking results of our method over the test videos with challenging variations of pose, scale, illumination and
partial occlusion. The blue (dashed) and red boxes respectively represent the ground truth and the positions predicted
by our method. For each frame, we illustrate the target, trained filter and correlation output.

[11] J. F. Henriques, R. Caseiro, P. Martines, and J. Batista. Exploiting the
circulant structure of tracking-by-detection with kernels. In ECCV, 2012.

[12] C. F. Hester and D. Casasent. Multivariant technique for multiclass
pattern recognition. Appl. Opt., 19(11):1758–1761, 1980.

[13] B. V. K. V. Kumar. Minimum-variance synthetic discriminant functions.
J. Opt. Soc. Am. A, 3(10):1579–1584, 1986.

[14] B. V. K. V. Kumar, A. Mahalanobis, and R. D. Juday. Correlation
Pattern Recognition. Cambridge University Press, 2005.

[15] A. Mahalanobis, B. V. K. V. Kumar, and D. Casasent. Minimum average
correlation energy filters. Appl. Opt., 26(17):3633–3640, 1987.

[16] N. C. Oza. Online Ensemble Learning. PhD thesis, U. C. Berkley, 2001.
[17] P. Refregier. Optimal trade-off filters for noise robustness, sharpness of

the correlation peak, and horner efficiency. Optics Letters, 16:829–832,
1991.

[18] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust
visual tracking. IJCV, 77(1):125–141, 2008.

[19] M. Savvides and B. V. K. V. Kumar. Efficient design of advanced
correlation filters for robust distortion-tolerant face recognition. In AVSS,
pages 45–52, 2003.

[20] M. Zeiler, D. Krishnan, and G. Taylor. Deconvolutional networks.
CVPR, 2010.


	1 Introduction
	1.1 The Problem
	1.2 Contribution
	1.3 Related Work
	1.4 Notation

	2 Correlation Filters
	2.1 Properties
	2.2 Boundary Effects
	2.3 Efficiency in the Frequency Domain

	3 Our Approach
	3.1 Augmented Lagrangian
	3.2 Subproblem g
	3.3 Subproblem h
	3.4 Lagrange Multiplier Update
	3.5 Choice of bold0mu mumu 
	3.6 Computational Cost

	4 Experiments
	4.1 Localization Performance
	4.2 Runtime Performance
	4.3 Tracking Performance

	5 Conclusions
	References

