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Abstract

Background Subtraction (BS) is one of the key steps
in video analysis. Many background models have been
proposed and achieved promising performance on public
data sets. However, due to challenges such as illumination
change, dynamic background etc. the resulted foreground
segmentation often consists of holes as well as background
noise. In this regard, we consider generalized fused lasso
regularization to quest for intact structured foregrounds.
Together with certain assumptions about the background,
such as the low-rank assumption or the sparse-composition
assumption (depending on whether pure background frames
are provided), we formulate BS as a matrix decomposition
problem using regularization terms for both the foreground
and background matrices. Moreover, under the proposed
formulation, the two generally distinctive background as-
sumptions can be solved in a unified manner. The opti-
mization was carried out via applying the augmented La-
grange multiplier (ALM) method in such a way that a fast
parametric-flow algorithm is used for updating the fore-
ground matrix. Experimental results on several popular BS
data sets demonstrate the advantage of the proposed model
compared to state-of-the-arts.

1. Introduction
Background Subtraction (BS) is often regarded as a key

step in video analysis. In general, it is challenging to devise
a good background model and some well-known challenges
include: illumination changes, dynamic background, boot-
strapping, camouflage etc. To meet these challenges, many
works on BS have been proposed. In the following, we dis-
cuss some related topics.
Models of BS. From the representation perspective, most
existing works could be categorized into two classes: pixel-
wise modeling and frame-wise modeling. In the first cate-
gory, representative methods model pixel-wise statistics of
the background using mixture of Gaussian models (MoG)

[21, 27, 12] and neural network models [9, 17] etc. Non-
parametric models are also proposed for improved effi-
ciency [1]. The pixel-wise models are prone to resulting
in fragmentary foregrounds, i.e. there are both “holes” in
the foregrounds and false positive pixels from the back-
ground. Whereas, the models of the second category, i.e.
frame-wise models, usually achieve better performance by
exploring structure information of the background. These
works can be generally viewed as follow-ups of the cele-
brated eigen-background model proposed in [20], of which
the key assumption is that when camera motion is small,
the matrix consists of background frames is approximately
low-rank [20, 7]. Hence, these models project video frames
onto the subspace spanned by the eigen-vectors associated
with the largest eigen-values of the matrix composed of all
the frames of a video sequence. The recovered signal in
the subspace is regarded as background and the residual is
assumed to be foreground. Although structure information
acquired by such holistic models helps to improve the in-
tegrity of the recovered background, such improvement can
be limited in many situations due to the neglect of fore-
ground structural prior at the same time. Thus deliberate
post-processing steps are often needed e.g. in [5, 12, 19].
Therefore, is there a way to quest for intact structured fore-
grounds, which in turn can benefit background estimation?
Learning in BS. In some scenarios, when pure background
frames are available, learning background models can be
achieved in a supervised manner. We call this situation
the supervised model learning (SML) case. Many pixel-
wise models belong to this category and they learn/update
the models from given background pixels. Whereas frame-
wise models, due to their blind decomposition origin of the
eigen-background, tend to neglect this piece of information.

In many other situations, foreground background coex-
ist in each frame. We call this situation the unsupervised
model learning (UML) case and it is more challenging than
the SML case. In practice, however, pixel-wise models are
learnt based on the frames ahead of the test frame, regard-
less of such an existence of foregrounds. Consequently, in
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the case of UML, the pixel-wise models are less robust com-
pared to the frame-wise counterpart, since the latter can ex-
ploit the holistic structure prior of background frames with-
out knowing explicit background labels.

Considering the two learning cases, is there a framework
that unifies both SML and UML situations of BS?
The Proposed Model. To address the above two questions,
we devise a BS model that explicitly models the cohesion
structure of the foregrounds in addition to the background
structural prior, and propose a unified framework that solves
both UML and SML cases of the BS problem.

Notice that the foregrounds in a video sequence often
correspond to meaningful objects such as people, cars, etc.,
therefore, the foreground pixels are usually both spatially
connected as well as sparse if their sizes are relatively small
w.r.t. the background scene. We realize such generic fore-
ground structural priors by adopting an adaptive version of
the generalized fused lasso (GFL) regularization in [25].
GFL can be viewed as a combination of the l1 norm of both
the variable values and their pairwise differences, i.e. the
total variation (TV) penalty [13]. By further modeling the
connection/fusion strength between pixel pairs according to
their similarity, (which is a strong prior in semantic seg-
mentation [4]), our foreground model can be considered as
a flexible structural prior model without any pre-defined or-
ganization of the pixels. Specifically, we denote each frame
as a vector and the sequence of frames as a matrix con-
catenating all the frame vectors. We assume that the ob-
served matrix is a summation of a background matrix and
a foreground matrix. Thus, by inducing a low-rank term of
the background matrix and the GFL term for all foreground
vectors, we formulate BS as a matrix decomposition prob-
lem. In this way, the proposed model exploits structure in-
formation from both the background and the foreground.

To harness the availability of pure background frames in
the SML situation, we derive a special case of the proposed
formulation. This is done by explicitly adding constraints
such that part of the observed matrix equals to the given
background matrix. We further assume that the unknown
background vectors of the testing frames lie in the span of
the given background matrix, which is itself a low-rank ma-
trix. In this way, we show that the resulted optimization is
equivalent to a sparse estimation problem.

From the perspective of optimization, the derived ob-
jective and constraints form a new problem. We pro-
pose an iterative algorithm by applying the augmented La-
grange multiplier (ALM) method, which alternatively up-
dates either the background matrix or the foreground ma-
trix. When updating the background, singular value thresh-
olding (SVT) [6] is applied for UML and fast iterative
softhreshing (FISTA) [2] is applied for SML. While updat-
ing the foreground, we solve the fused optimization with a
fast parametric-flow algorithm [11]. The idea behind this al-

ternation is that, simultaneous estimation of the foreground
and the background can reinforce each other. Indeed, exper-
iments show that the proposed model achieves better than
state-of-the-art performance on several popular data sets in-
cluding both natural and synthetic videos.
Related Works. In [7], the robust principle component
analysis (RPCA) model was applied to solve the BS prob-
lem. From the standpoint of BS per se, RPCA can be
viewed as an extension of the eigen-background model
where explicit sparse assumption of the foregrounds are
taken into account, but not the connectedness. Here we
introduce a stronger foreground model. In [8] and [26],
the group lasso (with overlap) regularization was applied to
model the foregrounds, where the structure of foreground is
assumed to be group sparse with predefined atomic group
structures. These works reported improved performance
over RPCA. However, in practice, experiments show that
our model outperforms that of [26]1 on all of the tested se-
quences. This indicates that the adaptive GFL could be a
more flexible foreground structural prior compared to group
lasso. In particular, Figure 6 shows such a comparison.
Contributions. In summary, the contributions of this work
are three folds. (1) We introduce an adaptive generalized
fused lasso as a flexible structural prior to modeling fore-
ground objects in the background subtraction problem. We
show that the performance of BS can be much improved by
exploiting the structure information of both the foreground
and the background. (2) We propose an effective algorithm
to optimize the new objective function, i.e. constrained
rank minimization with GFL, by extending the method of
augmented Lagrange multiplier. (3) The proposed solu-
tion to BS is a unified method which is able to solve both
supervised and unsupervised learning cases depending on
whether pure background frames are available, though they
lead to different objectives.

2. Proposed Background Subtraction Method

2.1. Unsupervised Model Learning

We start by introducing our model for the unsupervised
model learning problem, i.e. UML. Given a sequence of
n video frames, each frame is denoted as d(i) ∈ Rp,
i = 1, ..., n. All data are concatenated into one matrix D ∈
Rp×n, which is called the observation matrix. We assume
that the observation matrix is the summation of a back-
ground matrix and a foreground matrix, i.e. D = B + F,
where B,F ∈ Rp×n are the background matrix and the
foreground matrix, respectively. Therefore, by assuming
low-rank of B and structured sparsity of F, we propose the

1The model in [8] applied group sparsity to a trajectory representation
of videos, instead of pixels we considered here. Therefore in the experi-
ments, we focus on comparing with [26], which applied various of group
sparsity to pixel representation and it is more recent than [8].



following matrix decomposition objective,

min
B,F

rank(B) + λ‖F‖gfl

s.t. D = B + F,
(1)

where λ ≥ 0 is a tuning parameter (controlling the rela-
tive contribution) and ‖ · ‖gfl is the generalized fused lasso
regularization defined as

‖F‖gfl =
n∑
k=1

{
‖f (k)‖1 + ρ

∑
(i,j)∈N

w
(k)
ij |f

(k)
i − f (k)j |

}
,

(2)
where f (k) is the kth foreground vector andN is the spatial
neighborhood set, i.e. (i, j) ∈ N when pixel i and j are
spatially connected. Due to the l1 penalties on each pixel
as well as each adjacent pair of pixels, solutions of fs tend
to be both sparse and spatially connected. Here wij are in-
troduced to enhance the conventional GFL model [25] such
that wij encode the strength of the fusion between neigh-
boring pixels. In our model wij is defined as

w
(k)
ij = exp

−‖d(k)i − d
(k)
j ‖22

2σ2
, (3)

where d is the pixel intensity. This definition ofwij makes it
an adaptive weight encouraging spatial cohesion according
to the associated pixels’ intensity in the observed images.
To be specific, when we observe a large difference between
two neighbouring pixels, there is a high probability that this
pair of pixels belongs to different segments, therefore we
decrease the fusion of this pair. σ ≥ 0 is a tuning parame-
ter empirically set. When σ → ∞, all wij = 1, the model
reduces to the conventional GFL [25], where the fused term
encourages pure spatial cohesion regardless of the pixel dif-
ferences. When σ → 0, all wij = 0, the model reduces to
the RPCA model [7], where the foreground pixels are only
assumed to be sparse.

For ease of optimization, the convex nuclear/trace norm
is often applied to relax the matrix rank. Thus in practice,
the following surrogate is considered.

min
B,F
‖B‖∗ + λ‖F‖gfl

s.t. D = B + F,
(4)

where ‖B‖∗ is the nuclear norm of matrix B, i.e. the sum
of the singular values of B.

2.2. Optimization via ALM

Eq (4) is a convex optimization problem. Off-the-shelf-
solvers can be applied to solve it. However, when the di-
mension of D is large (which is often the case in BS), more
efficient algorithms have to be devised. Here we employ
the augmented Lagrange multiplier method [3, 16] to solve

Algorithm 1 ALM algorithm for Eq. (4).
1: Input: D ∈ Rp×n, λ > 0.
2: Output: B,F ∈ Rp×n.
3: Initialization: Set Y0 = 0, B0 = 0, F0 = 0, µ0 > 0,
β > 1 and µmax.

4: while not converged do
5: Bk+1 = argminB L(B,Fk,Yk, µk)
6: Fk+1 = argminF L(Bk+1,F,Yk, µk)
7: Yk+1 = Yk + µk(D−Bk+1 − Fk+1)
8: µk+1 = min{βµk, µmax}
9: return Bk,Fk

such an equality constrained optimization. We first formu-
late the following augmented Lagrangian function

L(B,F,Y, µ) = ‖B‖∗ + λ‖F‖gfl+

〈Y,D−B− F〉+ µ

2
‖D−B− F‖2F ,

(5)

where ‖·‖F is the Frobenius norm, Y is the Lagrangian
multiplier and µ is an auxiliary positive scalar. Accord-
ing to [16], the optimization problem in Eq. (4) can be
solved by iteratively searching for the optimal B, F and Y
to minimize Eq. (5). Under some rather general conditions,
e.g. when {µk} is an increasing sequence and bounded, the
searching process will converge Q-linearly to the optimal
solution. We summarize the pseudo code in Algorithm 12

and discuss how to update B and F in each iteration.
Updating B. We consider the following problem

Bk+1 = argmin
B

L(B,Fk,Yk, µk)

= argmin
B

‖B‖∗ + 〈Yk,D−B− Fk〉+
µk
2
‖D−B− Fk‖2F

= argmin
B

1

µk
‖B‖∗ +

1

2
‖B−M1‖2F ,

(6)

where M1 = D − Fk + 1
µk

Yk. Eq. (6) is a standard
nuclear norm minimization problem, which is known to be
fast solvable via Singular Value Thresholding (SVT) [6].
According to [6], the solution to Eq. (6) is

Bk+1 = UT 1
µk

(Σ)VT , where (U,Σ,VT ) = svd(M1).

(7)
Tτ (·) is an element-wise soft-thresholding operator, i.e.
diag(Tτ (Σ)) = [tτ (σ1), tτ (σ2), ..., tτ (σr)] where tτ (σ) is
defined as

tτ (σ) = sign(σ)max(|σ| − τ, 0). (8)

2Notice that Algorithm 1 is an approximate version of the original
ALM. This approximation generally gives satisfactory results but con-
verges much faster in practice [16].



Updating F. Now we consider the updating of F

Fk+1 = argmin
F

L(Bk+1,F,Yk, µk)

= argmin
F

λ‖F‖gfl + 〈Yk,D−Bk+1 − F〉

+
µk
2
‖D−Bk+1 − F‖2F

= argmin
F

λ

µk
‖F‖gfl +

1

2
‖F−M2‖2F

= argmin
f (l)

n∑
l=1

{ λ
µk
‖f (l)‖1 +

λρ

µk

∑
(i,j)∈N

w
(l)
ij |f

(l)
i − f

(l)
j |

+
1

2
‖f (l) −m(l)‖22

}
,

(9)

where M2 = D−Bk+1+
1
µk

Yk and m(l) is the l-th column
of M2. Notice that in Eq. (9), the optimizations of each
column are independent of each other. Therefore, solving
Eq. (9) equals to n times of solving the following problem

f∗ = argmin
f

λ1‖f‖1 + λ2
∑

(i,j)∈N

wij |fi − fj |+
1

2
‖f −m‖22,

(10)
where λ1= λ

µk
and λ2=λρ

µk
. In order to solve Eq. (10), ac-

cording to [10], we introduce the following Lemma.

Lemma 2.1. Suppose we have

f̂ = argmin
f

λ2
∑

(i,j)∈N

wij |fi − fj |+
1

2
‖f −m‖22, (11)

the solution to Eq. (10), i.e. f∗, can be achieved by
element-wise soft-thresholding such that f∗i = tλ1

(f̂i) for
i = 1, ..., p.

The proof can be shown by exploring the optimality con-
dition of Eq. (10) and (11). We provide the sketch of the
proof as follows. A rigorous proof can be found in [10].

Proof. We define the objectives in Eq. (10) and (11) as
g1(f) and g2(f) respectively. Since f̂ is the optimizer of
g2(f), it satisfies ∂g2(f)/∂f = 0 (sub-gradient is applied
where necessary). Because the additional ‖f‖1 term in
Eq. (10) is separable with respect to fi, after applying the
element-wise soft-thresholding e.g. f∗i = tλ1(f̂i), the re-
sulted f∗ satisfies ∂g1(f)/∂f = 0.

Due to Lemma 2.1, we can first solve Eq .(11) and then
use such an element-wise soft-thresholding technique to fi-
nally solve Eq (10) and therefore update F. Notice that Eq.
(11) is a continuous total variation formulation. In [25, 24],
it is shown that Eq (11) is equivalent to a parametric graph-
cut problem which can be efficiently solved via fast flow
algorithms such as the parametric-flow proposed in [11].

2.3. Supervised Model Learning

In the situation where pure background frames are given
(i.e. SML), we can of course still apply the same method
above for background subtraction. However, by doing so,
we do not fully exploit the provided information about the
background. To utilized such extra information, we derive
a variant of the model introduced above.

We separate the observation matrix D as D = [D1,D2],
where D1 is the matrix of all pure background frames
(the training data) and D2 is the matrix containing the rest
frames with mixed content. The unknown B and F are
separated correspondingly. We assume D1=B1 and thus
F1=0. By applying them to Eq. (1), we have

min
B,F

rank([B1,B2]) + λ‖F2‖gfl

s.t. D1 = B1, D2 = B2 + F2,
(12)

We now make another assumption that rank([B1,B2]) =
rank(B1). The idea behind this assumption is that if we
have enough pure background frames, the corresponding
background vectors fully span the background subspace.
By taking this assumption, the columns of the unknown
B2 can be represented using linear combinations of the
columns of B1. Specifically, we have B2 = B1S = D1S,
where S is the coefficient matrix. Thus, Eq. (12) becomes

min
D1,S,F2

rank(D1[I,S]) + λ‖F2‖gfl

s.t. D2 = D1S + F2.
(13)

Interestingly, since D1 is observed/given and its rank is ir-
relevant to the optimization. As before, we assume D1 to
be low-rank, therefore there must exists a sparse S. This is
because each column of B2 can be represented as a linear
combination of a small number of the columns of D1 (given
that D1 is low-rank). So we can instead propose to solve

min
S,F2

‖S‖1 + λ‖F2‖gfl

s.t. D2 = D1S + F2,
(14)

where ‖ · ‖1 is a convex surrogate for ‖ · ‖0, which counts
the number of non-zero entries.

Eq. (14) is our SML BS model. Since it is again
an equality constrained optimization, the ALM introduced
above can still be applied. This time, when updating the
foregrounds, the optimization is the same as before, except
that we are now dealing with F2 instead of F. While updat-
ing the background, we solve the following problem

Sk+1 = argmin
S

1

µk
‖S‖1 +

1

2
‖D1S−M‖2F . (15)

Eq. (15) can be further decomposed into column-wise
optimization and each of which is a standard Lasso [22]
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Figure 1. Alternated updating of the background and the foreground. In each iteration (iter) either the background model or the foreground
is updated and the objective value (the green plots) keeps decreasing until convergence.

problem. Many fast algorithms can be applied e.g. the
FISTA algorithm proposed in [2].

In summary, we can effectively solve both the UML and
SML BS models by applying the ALM algorithm described
in Algorithm 1. Detailed updating rules for both the back-
ground B and the foreground F are given above. Interest-
ingly, although ALM is a general optimization method, its
application to BS helps us to understand how our model
alternately pursues and refines the background and the fore-
grounds. In Figure 1, we visualize the estimation in each
iteration of ALM. We observe that the foreground estima-
tion becomes better as the iteration goes on. This is mainly
due to the synergy of the background estimation and fore-
ground estimation.

3. Experiments
3.1. Data sets

We test our model on three popular BS data sets, namely,
the Wallflower3 data set [23] , the Li4 data set [15] and
the SABS5 data set [5]. All together, there are 17 se-
quences of both natural and synthetic videos. Most well-
known BS challenges are presented in these sequences, e.g.
gradual/sudden illumination changes, moving background,
bootstrapping, camouflage, and occlusion etc. We give a
brief introduction of these data sets respectively as follows.

• “Wallflower”: The Wallflower data set consists of
7 natural video sequences representing different BS
challenges. The resolution of the frames is about
160 × 120. Manually labeled ground truth are pro-
vided. Most of the sequences have pure background

3http://research.microsoft.com/en-us/um/people/jckrumm/Wallfl-
ower/testimages.htm

4http://perception.i2r.a-star.edu.sg/bk model/bk index.html
5http://www.vis.uni-stuttgart.de/forschung/informationsvisualisierung-

und-visual-analytics/visuelle-analyse-videostroeme/sabs.html

frames, which can be used for SML.

• “Li”: The Li data set consists of 9 natural video se-
quences. The resolution of the frames is about 176 ×
144. Manually labeled ground truth are provided. Part
of them have pure background frames.

• SABS: The SABS data set is a synthetic data set and
therefore provides high quality ground truth. The res-
olution of the frames is 800 × 600. Several BS chal-
lenges are synthesized to the same scene. Following
[12], only the basic sequence is used. Pure background
frames are available.

All three data sets are popular public data sets. Results
of many existing models have been reported based on these
sets. In order to evaluate the proposed model, we directly
compare with the results reported in the respective papers.

3.2. Comparison with RPCA

Recall that the proposed model in the UML case can be
reduced to RPCA when the model parameter wij = 0 in
Eq.2 (Section.2.1). Therefore, we first show how the pro-
posed model improves performance over the RPCA model
due to GFL foreground modeling.

Quantitative comparisons on all the sequences of the
three data sets are shown in Table 2∼4. From the compar-
isons we can see that the proposed model consistently out-
performs RPCA. Qualitatively, we use the same 200 frames
of the airport sequence in “Li” data set as reported in [7] to
construct a head-to-head comparison, where we apply both
RPCA and our model for background subtraction. In Figure
2, we illustrate the BS results of the test frame used in [7].
In practice, even after fine-grid search for the best parame-
ters, the detected foregrounds of RPCA have more “holes”
and more false positives from background than those of the
proposed model. (Some obvious examples are marked by



Table 1. Brief summaries of the models compared. (Part of the descriptions are from [12, 5])

methods notation description

[1] KDE Kernel density estimation (KDE) with a spherical kernel. Uses a stochastic history.
[9] G-KDE Neural network variant of Gaussian KDE.
[14] C-KDE Codebook based; almost KDE with a cuboid kernel.
[15] Hist Histogram based, includes co-occurrence statistics. Lots of heuristics.
[17] Map Uses a self organising map, passes information between pixels.
[21] MoG Classic MoG approach. Assigns mixture components to bg/fg.
[27] R-MoG Refinement of [21]. Has an adaptive learning rate.
[20] Eigen Eigenbackground.
[18] Gauss unimodal (Gaussian)
[12] D-MoG Dirichlet process Gaussian mixture Model.
[7] RPCA Robust PCA model.
[26] G-Lasso Online subspace learning with group lasso with overlap regularization.

Table 2. Results for the SABS data set, given as the F-score.

Gauss C-KDE Eigen Map KDE R-MoG MoG Hist RPCA G-Lasso Ours

F-score .3806 .5601 .5891 .6672 .7177 .7232 .7284 .7457 .6483 0.7326 .7775∗

the red boxes in Figure 2 (d). Note that these results are not
post-processed.) Qualitative results of the whole sequence
are provided on our webpage6.

(a) test image (b) Our recovered background

(c) Our detected foregrounds (d) RPCA detected foreground

Figure 2. Results comparison of RCPA and our model for the air-
port data from the Li data set.

3.3. Comparison with State-of-the-Art

A brief summary of all the models we compared can be
found in Table 1. We compare our model to these mod-

6http://idm.pku.edu.cn/staff/wangyizhou/

els on all three data sets7. Following the literature, for the
“Wallflower” data set, mis-classified number of pixels is
used as the evaluation criteria; for both “Li” and “SABS,”
F-score (F) is used as the evaluation criterion. We put a “∗”
on the upper-right corner of the scores to indicate that the
sequence is of the SML case.
On Wallflower data set. We tested our model on all the
seven sequences of this data set. In Table 3, we provide
quantitative comparisons, where our model achieved the
least mis-classified number of pixels on five sequences and
the second least on one sequence. Note, however, our model
performed poorly on the sequence “CF”. The reason is that
the foreground in “CF” occupies a large portion of the tested
frame, which violates the prior assumption on foreground
sparsity. The same failure happened to both the RPCA and
G-Lasso models, since both of them also assume sparse
foreground prior. In Figure 3, we show the qualitative re-
sults of our model on the seven sequences.
On Li data set. We applied our model to all the nine se-
quences of the data set. In Table 4, we show quantitative
comparisons, where our model achieved the highest F-score
on all these sequences. Notably, in some sequences such as
“lb”, “ap” etc., the improvements over the second best are
more than 10%. On average, our model achieved an 8% F-
score gain ahead of the second best model. The qualitative
results of all nine sequences are shown in Figure 4.
On SABS data set. Following [12], we apply our model
to the “Basic” sequence and compared with the other mod-
els on this representative sequence. The results of different

7Note that, since we are using the results reported by respective papers,
not all the models have results on every sequence.



(a) MO (b) TD (c) LS (d) WT (e) CF (f) BS (g) FA

Figure 3. Results on Wallflower data set. From top to bottom: test images, the ground truth and the estimations of our model.

Table 3. Results for Wallflower, given as the number of pixels that have been mix-classified.

methods MO TD LS WT CF BS FA

Frame Difference 0 1358 2565 6789 10070 2175 4354
Mean+threshold 0 2593 16232 3285 1832 3236 2818
Block correlation 1200 1165 3802 3771 6670 2673 2402

MoG 0 1028 15802 1664 3496 2091 2972
Eigen 1065 895 1324 3084 1898 6433 2978

D-MoG 0 330 3945 184 384 1236 1569
RPCA 0 628 2016 1014 1465 2875

G-Lasso 0 912 1067 629 1779 1139
Ours 0∗ 418∗ 686∗ 166∗ 795∗ 192∗

models on an example frame (No. 448) are illustrated in
Figure 5. (The qualitative results on the whole sequence
can be found on our webpage.) As is shown, our model al-
most cuts a perfect foreground (including its shadow). In
the ground truth, the shadow is not included, which makes
the value of the F-score relatively low. However, this defi-
nition of foreground may be controversial depending on the
actually situations. Nevertheless, our model outperforms all
the rest models on the test image. The average F-scores of
all the models on the whole sequence are summarized in
Table 2, where our model is shown to have achieved the
highest performance.

Compare with group lasso. As mentioned in the related
works of Section 1, the group lasso regularization was ap-
plied to modeling foregrounds of BS in [26] . The authors
used both “3 × 3 blocks group” and “coarse-to-fine super-
pixel group” structures to pursue connected sparse fore-
grounds. However, as can be seen from the above com-
parisons e.g. Table 4, 3 & 2 and Figure 5, their performance
are not as good as those of the proposed model. In Figure
6, we provide a close-up comparison with the deliberately
pre-defined grouping of pixels for foreground modeling. It
shows that the group lasso model generates artifacts of de-
tected foreground objects due to inappropriate pre-defined

group structure. This arguably indicates that, compared to
(adaptive) GFL, the group sparse models may not be flexi-
ble enough for recovering arbitrary foreground shapes.

(a) Test image (b) Ground Truth (c) Ours: 0.876

(d) G-Lasso: 0.848 (e) RPCA: 0.802 (f) KDE: 0.803

(g) Hist 0.782 (h) MoG: 0.819 (i) R-MoG: 0.807

Figure 5. Results on the SABS data set. F-scores are shown.
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Figure 4. Results on Li data set. From top to bottom: test images, the ground truth and the estimations of our model.

Table 4. Results for Li, given as F-score.

methods cam ft ws mr lb sc ap br ss mean

Hist .1596 .0999 .0667 .1841 .1554 .5209 .1135 .3079 .1294 .1930
MoG .0757 .6854 .7948 .7580 .6519 .5363 .3335 .3838 .1388 .4842
Map .6960 .6554 .8247 .8178 .6489 .6677 .5943 .6019 .5770 .6760

D-MoG .7624 .7265 .9134 .3871 .6665 .6721 .5663 .6273 .5269 .6498
RPCA .5226 .8650 .6082 .9014 .7245 .7785 .5879 .8322 .7374 .7286

G-Lasso .8347 .8789 .9236 .8995 .6996 .8019 .5616 .7475 .6432 .7767
Ours .8386 .9011 .9424∗ .9592 .8208 .8500 .7422 .8476 .7613 .8515

(a) G-lasso (3×3
block)

(b) G-lasso (coarse-to-
fine superpixel)

(c) Ours (adaptive
fused lasso)

Figure 6. Different foreground regularization comparison.

3.4. Discussions

Computation. The algorithm does not take many iterations
to converge, see e.g. Figure 1, and in practice the aver-
age number of iterations is about 10-20. Therefore, the ma-
jor computational cost to pursue structured background and
foregrounds in the mid-steps can be eased up by this few it-
erations. Moreover, since the updating of the foreground are
column-wise, the implementation can be highly paralleled
in practice. The code can be downloaded on our webpage.
SML vs. UML. Note that, in general when pure back-
ground frames are available, like most of the sequences in
the Wallflower dataset, we have reported the results of the
SML model. Such a choice outperforms its unsupervised
counterpart, e.g. with an improvement of 24 (for WT) to
179 (for TD) pixels on the Wallflower dataset. However,
this is not always the case. For example, in the “cam”
sequence of the Li dataset, although there are pure back-

ground frames, they seem to be less representative possi-
bly due to some background changes. Then, the supervised
model did not achieve obviously better results but still com-
petitive, in this case: 0.8382 vs 0.8386.
Comparison with Explicit Post-processing. Arguably, ex-
plicit post-processing in BS e.g. [19] can be viewed as
a special case of foreground modeling since these meth-
ods are fundamentally using foreground structural priors to
guide post-processing. Therefore, we carried out some ex-
periments with the data used in [19], where MoG models
are post-processed by a hole-filling method. In summery,
our model achieved competitive or even better results, de-
tailed comparisons can be found on our webpage. .

4. Conclusion

In this paper, we propose a method of background sub-
traction by exploiting structure information of the fore-
grounds to help background modeling. Our model works
for both supervised and unsupervised learning paradigms
and automatically pursue meaningful background and fore-
grounds. To optimize the new objective function, we pro-
posed an effective algorithm by extending the ALM, which
alternatively updates the background and the foreground
matrices. Experimental results show that the proposed
model achieves better than state-of-the-art performance on
several popular public data sets.
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