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Abstract

Tracking the ball is critical for video-based analysis of
team sports. However, it is difficult, especially in low-
resolution images, due to the small size of the ball, its speed
that creates motion blur, and its often being occluded by
players.

In this paper, we propose a generic and principled ap-
proach to modeling the interaction between the ball and
the players while also imposing appropriate physical con-
straints on the ball’s trajectory.

We show that our approach, formulated in terms of a
Mixed Integer Program, is more robust and more accurate
than several state-of-the-art approaches on real-life volley-
ball, basketball, and soccer sequences.

1. Introduction
Tracking the ball accurately is critically important to an-

alyze and understand the action in sports ranging from ten-
nis to soccer, basketball, volleyball, to name but a few.
While commercial video-based systems exist for the first,
automation remains elusive for the others. This is largely
attributable to the interaction between the ball and the play-
ers, which often results in the ball being either hard to detect
because someone is handling it or even completely hidden
from view. Furthermore, since the players often kick it or
throw it in ways designed to surprise their opponents, its
trajectory is largely unpredictable.

There is a substantial body of literature about dealing
with these issues, but almost always using heuristics that
are specific to a particular sport such as soccer [31], vol-
leyball [10], or basketball [6]. A few more generic ap-
proaches explicitly account for the interaction between the
players and the ball [28] while others impose physics-based
constraints on ball motion [23]. However, neither of these
things alone suffices in difficult cases, such as the one de-
picted by Fig. 1.

In this paper, we, therefore, introduce an approach to
simultaneously accounting for ball/player interactions and
imposing appropriate physics-based constraints. Our ap-

proach is generic and applicable to many team sports. It
involves formulating the ball tracking problem in terms of a
Mixed Integer Program (MIP) in which we account for the
motion of both the players and the ball as well as the fact the
ball moves differently and has different visibility properties
in flight, in possession of a player, or while rolling on the
ground. We model the ball locations in R3 and impose first
and second-order constraints where appropriate. The result-
ing MIP describes the ball behaviour better than previous
approaches [28, 23] and yields superior performance, both
in terms of tracking accuracy and robustness to occlusions.
Fig. 1(c) depicts the improvement resulting from doing this
rather than only modeling the interactions or only imposing
the physics-based constraints.

In short, our contribution is a principled and generic for-
mulation of the ball tracking problem and related physical
constraints in terms of a MIP. We will demonstrate that it
outperforms state-of-the-art approaches [27, 28, 23, 10] in
soccer, volleyball, and basketball.

2. Related work
While there are approaches to game understanding, such

as [16, 19, 20, 11, 7, 15], which rely on the structured nature
of the data without any explicit reference to the location
of the ball, most others either take advantages of knowing
the ball position or would benefit from being able to [7].
However, while the problem of automated ball tracking can
be considered as solved for some sports such as tennis or
golf, it remains difficult for team sports. This is particularly
true when the image resolution is too low to reliably detect
the ball in individual frames in spite of frequent occlusions.

Current approaches to detecting and tracking can be
roughly classified as those that build physically plausible
trajectory segments on the basis of sets of consecutive de-
tections and those that find a more global trajectory by min-
imizing an objective function. We briefly review both kinds
below.

2.1. Fitting Tracjectory Segments

Many ball-tracking approaches for soccer [21, 18], bas-
ketball [6], and volleyball [5, 10, 4] start with a set of suc-
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(a) (b) (c)
Figure 1: Importance of simultaneously modeling interactions and imposing physical constraints. For most of this 70-frame
volleyball sequence depicting the ball crossing the net and being bumped by a defending player and viewed by 3 cameras,
the defending player is on the ground. As a result, she was not detected by the person detector we use [9] because it only
finds people standing up. Furthermore, while the ball was near the player, it was occluded in the views of 2 of the 3 cameras,
and, therefore, not detected as a 3D object. (a) Tracking the players and the ball simultaneously without imposing motion
constraints as in [28] produces physically impossible trajectories. (b) Imposing motion constraints but tracking the players
and the ball separately as in [23] does not properly capture the ball and player interaction. (c) Our approach to both imposing
constraints and modeling the interaction gives a better overall result. The crosses denote the fact that the ball is in the “strike”
state until being bumped and in the “flying” one after that. Transitions between these states can only result from interacting
with a player, which encourages the optimizer to find one in spite of the weak evidence. Best viewed in color.

cessive detections that obey a physical model. They then
greedily extend them and terminate growth based on vari-
ous heuristics. In [25], Canny-like hysteresis is used to
select candidates above a certain confidence level and link
them to already hypothesized trajectories. Very recently,
RANSAC has been used to segment ballistic trajectories of
basketball shots towards the basket [23]. These approaches
often rely heavily on domain knowledge, such as audio cues
to detect ball hits [5] or model parameters adapted to spe-
cific sports [4, 6].

While effective when the initial ball detections are suf-
ficiently reliable, these methods tend to suffer from their
greedy nature when the quality of these detections de-
creases. We will show this by comparing our results to
those of [10, 23], for which the code is publicly available
and have been shown to be a good representatives of this set
of methods.

2.2. Global Energy Minimization

One way to increase robustness is to seek the ball trajec-
tory as the minimum of a global objective function. It often
includes high-level semantic knowledge such as players’ lo-
cations [32, 31, 27], state of the game based on ball location,
velocity and acceleration [31, 32], or goal events [32].

In [28, 29], the players and the ball are tracked simulta-
neously and ball possession is explicitly modeled. However,
the tracking is performed on a discretized grid and without
physics-based constraints, which results in reduced accu-
racy. It has nevertheless been shown to work well on soccer
and basketball data. We selected it as our baseline to rep-
resent this class of methods, because of its state-of-the-art
results and publicly available implementation.

3. Problem Formulation

We consider scenarios where there are several calibrated
cameras with overlapping fields of view capturing a sub-
stantial portion of the play area, which means that the ap-
parent size of the ball is generally small. In this setting, tra-
jectory growing methods do not yield very good results both
because the ball is occluded too often by the players to be
detected reliably and because its being kicked or thrown by
them result in abrupt and unpredictable trajectory changes.

To remedy this, we explicitly model the interaction be-
tween the ball and the players as well as the physical con-
straints the ball obeys when far away from the players. To
this end, we first formulate the ball tracking problem in
terms of a maximization of a posteriori probability. We then
reformulate it in terms of an integer program. Finally, by
adding various constraints, we obtain the final problem for-
mulation that is a Mixed Integer Program.

3.1. Graphical Model for Ball Tracking

We model the ball tracking process from one frame to the
next in terms of the factor graph depicted by Fig. 2(a). We
associate to each instant t ∈ {1 . . . T} three variables Xt,
St, and It, which respectively represent the 3D ball posi-
tion, the state of the ball, and the available image evidence.
When the ball is within the capture volume, Xt is a 3D vec-
tor and St can take values such as flying or in possession,
which are common to all sports, as well as sport-dependent
ones, such as strike for volleyball or pass for basketball.
When the ball is not present, we take Xt and St to be ∞
and not present respectively. These notations as well as all
the others we use in this paper are summarized in Table 1.



(a) (b)

Figure 2: Graphical models. (a) Factor graph for ball track-
ing. At each time instant t, we consider the ball locationXt

and state St along with the available image evidence It. (b)
Ball graph used to formulate the integer program. To each
node i, is associated a location xi, a state si, and a time
instant ti. The relationship between the variables in both
graphs is spelled out in Eqs 3(d,e).

T,K Number of temporal frames and ball states
It Image evidence at time t

Xt, St Discrete location and state of the ball at time t
P t 3D coordinates of the ball at time t

i, j, k, l Node indices in the ball or players graph
Vb, Vp Sets of nodes in ball and player graphs
Eb, Ep Sets of edges in the ball and player graphs
xi, si, ti Discrete location, state, and time of node i

Sb Special node for the ball at t = 0

Sp, Tp Source and sink nodes of player trajectories
f ji , p

j
i Number of balls and players moving from i to j

cjbi,c
j
pi Ball and player transition costs from i to j

ΨX ,ΨS ,ΨI Position, state, image evidence potentials
ψ Potential of local image evidence
Dl Max. permissible distance between Xt and P t

Dp Max. permissible distance for ball possession
As,c, Bs,c Physics-based constants for state s, axis c
Cs,c, F c,s

Os,c Constraint-free locations for state s and axis c
F Permissible ball locations and state sequences

Table 1: Notations

Given the conditional independence assumptions im-
plied by the structure of the factor graph of Fig. 2(a), we
can formulate our tracking problem as one of maximizing
the energy function

Ψ(X,S, I) =
1

Z
ΨI(X

1, S1, I1)

T∏
t=2

[
ΨX(Xt−1, St−1, Xt)

ΨS(St−1, St)ΨI(X
t, St, It)

]
(1)

expressed in terms of products of the following potential
functions:

• ΨI(Xt, St, It) encodes the correlation between the
ball position, ball state, and the image evidence.

• ΨS(St−1, St) models the temporal smoothness of
states across adjacent frames.

• ΨX(Xt−1, St−1, Xt) encodes the correlation between
the state of the ball and the change of ball position from
one frame to the next one.

• ΨX(X1, S1, X2) and ΨS(S1, S2) include priors on
the state and position of the ball in the first frame.

In practice, as will be discussed in Sec. 4, the Ψ functions
are learned from training data. Let F be the set of all pos-
sible sequences of ball positions and states. We consider
the log of Eq. 1 and drop the constant normalization factor
logZ. We, therefore, look for the most likely sequence of
ball positions and states as

(X∗, S∗) = arg max
(X,S)∈F

T∑
t=2

[
log ΨX(Xt−1, St−1, St)+ (2)

log ΨS(St−1, St) + log ΨI(X
t, St, It)

]
+ log ΨI(X

1, S1, I1) .

In the following subsections, we first reformulate this
maximization problem as an integer program and then in-
troduce additional physics-based and in possession con-
straints.

3.2. Integer Program Formulation

To convert the maximization problem of Eq. 2 into an
Integer Program (IP), we introduce the ball graph Gb =
(Vb, Eb) depicted by Fig. 2(b). Vb represents its nodes,
whose elements each correspond to a location xi ∈ R3, state
si ∈ {1, · · · ,K}, and time index ti ∈ {1, · · · , T}. In prac-
tice, we instantiate as many as there are possible states at
every time step for every actual and potentially missed ball
detection. Our approach to hypothesizing such missed de-
tections is described in Sec. 5. Vb also contains an additional
node Sb denoting the ball location before the first frame. Eb

represents the edges of Gb and comprises all pairs of nodes
corresponding to consecutive time instants and whose loca-
tions are sufficiently close for a transition to be possible.

Let f ji denote the number of balls moving from i to j
and cjbi denote the corresponding cost. The maximization
problem of Eq. 2 can be rewritten as

maximize
∑

(i,j)∈Eb

f ji c
j
bi , (3)

where

cjbi = log ΨX(xi, si, xj) + log ΨS(si, sj) + log ΨI(xj , sj , I
tj ),

subject to



(a) f ji ∈ {0, 1} ∀(i, j) ∈ Eb
(b)

∑
(i,j)∈Eb,tj=1

f ji = 1

(c)
∑

(i,j)∈Eb

f ji =
∑

(j,k)∈Eb

fkj ∀j ∈ Vb : 0 < tj < T

(d) Xt =
∑

(i,j)∈Eb,tj=t

f ji xj ∀t ∈ 1, · · · , T

(e) St =
∑

(i,j)∈Eb,tj=t

f ji sj ∀t ∈ 1, · · · , T

(f) (X,S) ∈ F

We optimize with respect to the f ji , which can be considered
as flow variables. The constraints of Eqs.3(a-c) ensure that
at every time frame there exists only one position and one
state to which the only ball transitions from the previous
frame. The constraint of Eq.3(f) is intended to only allow
feasible combinations of locations and states as described
by the set F, which we define below.

3.3. Mixed Integer Program Formulation

Some ball states impose first and second order con-
straints on ball motion, such as zero acceleration for the
freely flying ball or zero vertical velocity and limited nega-
tive acceleration for the rolling ball. Possession implies that
the ball must be near the player.

In this section, we assume that the players’ trajectories
are available in the form of a player graph Gp = (Vp, Ep)
similar to the ball graph of Sec. 3.2 and whose nodes com-
prise locations xi and time indices ti. In practice, we com-
pute it using publicly available code as described in Sec. 5.1.

Given Gp, the physics-based and possession constraints
can be imposed by introducing auxiliary continuous vari-
ables and expanding constraint of Eq. 3(f), as follows.

Continuous Variables. The xi represent specific 3D lo-
cations where the ball could potentially be, that is, ei-
ther actual ball detections or hypothesized ones as will
be discussed in Sec. 5.2. Since they cannot be expected
to be totally accurate, let the continuous variables P t =
(P t

x, P
t
y , P

t
z) denote the true ball position of at time t. We

impose
||P t −Xt|| ≤ Dl (4)

where Dl is a constant that depends on the expected accu-
racy of the xi. These continuous variables can then be used
to impose ballistic constraints when the ball is in flight or
rolling on the ground as follows.

Second-Order Constraints. For each state s and coordi-
nate c of P , we can formulate a second-order constraint of
the form

As,c(P tc − 2P t−1
c + P t−2

c ) +Bs,c(P tc − P t−1
c )+ (5)

Cs,cP tc − F s,c ≤ K(3−M t
s,c −M t−1

s,c −M t−2
s,c ) ,

where M t
s,c =

∑
(i,j)∈Eb,tj=t,sj=s,xj 6∈Os,c

f ji ,

K is a large positive constant and Os,c denotes the loca-
tions where there are scene elements with which the ball
can collide, such as those near the basketball hoops or close
to the ground. Given the constraints of Eq. 3, M t

s,c, M t−1
s,c ,

and M t−2
s,c must be zero or one. This implies that right side

of the above inequality is either zero if M t
s,c = M t−1

s,c =
M t−2

s,c = 1 or a large number otherwise. In other words,
the constraint is only effectively active in the first case, that
is, when the ball consistently is in a given state. When this
is the case, (As,c, Bs,c, Cs,c,F s,c) model the correspond-
ing physics. For example, when the ball is in the flying
state, we use (1, 0, 0, −g

fps2 ) for the z coordinate to model
the parabolic motion of an object subject to the sole force
of gravity whose intensity is g. In the rolling state, we use
(1, 0, 0, 0) for both the x and y coordinates to denote a con-
stant speed motion in the xy plane. In both cases, we ne-
glect the effect of friction. We give more details for all states
we represent in the supplementary materials. Note that we
turn off these constraints altogether at locations in Os,c.

Possession constraints. While the ball is in possession of
a player, we do not impose any physics-based constraints.
Instead, we require the presence of someone nearby. The
algorithm we use for tracking the players [2] is implemented
in terms of people flows that we denote as pji on a player
graph Gp = (Vp, Ep) that plays the same role as the ball
graph. The pji are taken to be those that

maximize
∑

(i,j)∈Ep

pji c
j
pi , (6)

where cjpi =
logPp(xi|Iti )

1−logPp(xi|Iti )
,

subject to

(a) pji ∈ {0, 1} ∀(i, j) ∈ Ep
(b)

∑
i:(i,j)∈Ep

pji ≤ 1 ∀j ∈ Vp \ {Sp}

(c)
∑

(i,j)∈Ep

pji =
∑

(j,k)∈Ep

pkj ∀j ∈ Vp \ {Sp, Tp} .

Here Pp(xi|Iti) represents the output of probabilistic peo-
ple detector at location xi given image evidence Iti .
Sp, Tp ∈ Vp are the source and sink nodes that serve as
starting and finishing points for people trajectories, as in [2].
In practice we use the publicly available code of [9] to com-
pute the probabilities Pp in each grid cell of discretized ver-
sion of the court.

Given the ball flow variables f ji and people flow ones pji ,
we express the in possession constraints as∑

(k,l)∈Ep,tl=tj ,

||xj−xl||2≤Dp

plk ≥
∑

i:(i,j)∈Eb

f ji ∀j : sj ≡ in possession , (7)

where Dp is the maximum possible distance between the
player and the ball location when the player is in control of
it, which is sport-specific.



Resulting MIP. Using the physics-based constraints of
Eq. 4 and 5 and the possession constraints of Eq. 7 along
with the formulation of people tracking from Eq. 6 to rep-
resent the feasible set of states F of Eq. 3(f) yields the MIP

maximize
∑

(i,j)∈Eb

f ji c
j
bi +

∑
(i,j)∈Ep

pji c
j
pi

subject to the constraints of Eqs.3(a-e), 4, 5, 6(a-c), and 7.
(8)

In practice, we use the Gurobi [12] solver to perform the
optimization. Note that we can either consider the people
flows as given and optimize only on the ball flows or opti-
mize on both simultaneously. We will show in the results
section that the latter is only slightly more expensive but
yields improvements in cases such as the one of Fig. 1.

4. Learning the Potentials
In this section, we define the potentials introduced in

Eq. 2 and discuss how their parameters are learned from
training data. They are computed on the nodes of the ball
graph Gb and are used to compute the cost of the edges,
according to Eq. 3. We discuss its construction in Sec. 5.2.

Image evidence potential ΨI . It models the agreement
between location, state, and the image evidence. We write

ΨI(xi, si, I) = ψ(xi, si, I)
∏

j∈Vb:tj=t,

(xj ,sj)6=(xi,si)

(
1− ψ(xj , sj , I)

)
,

ψ(x, s, I) = σs(Pb(x|I)Pc(s|x, I)) , (9)

σs(y) =
1

1 + e−θs0−θs1y
,

where Pb(x) represents the output of a ball detector for lo-
cation x, Pc(s|x, I) the output of multiclass classifier that
predicts the state s given the position and the local image
evidence. psi(x, s, I) is close to one when the ball is likely
to be located at x in state swith great certainty based on im-
age evidence only and its value decreases as the uncertainty
of either estimates increases.

In practice, we train a Random Forest classifier [3] to
estimate Pc(s|x, I). As features, it uses the 3D location
of the ball. Additionally, when the player trajectories are
given, it uses the number of people in its vicinity as a fea-
ture. When simultaneously tracking the players and the ball,
we instead use the integrated outputs of the people detector
in the vicinity of the ball. We give additional details in the
supplementary materials.

The parameters θs0, θs1 of the logistic function σs are
learned from training data for each state s. Given the spe-
cific ball detector we rely on, we use true and false detec-
tions in the training data as positive and negative examples
to perform a logistic regression.

State transition potential ΨS . We define it as the tran-
sition probability between states, which we learn from the
training data, that is:

ΨS(si, sj) = P (St = si|St−1 = sj) . (10)

As noted in Sec. 3.1, potential for the first time frame has
a special form P (S2 = si|S1 = sj)P (S1 = sj), where
P (S1 = sj) is the probability of the ball being in state sj at
arbitrary time instant; it is learned from the training data.

Location change potential ΨX . It models the transition
of the ball between two time instants. Let Ds denote the
maximum speed of the ball when in state s. We write it as

ΨX(xi, si, xj) = 1(||xi − x||2 ≤ Dsi) . (11)

For the not present state, we only allow transitions between
the node representing the absent ball and the nodes near the
border of the tracking area. For the first frame the potential
has an additional factor of P (X1 = xi), ball location prior,
which we assume to be uniform inside of the tracking area.

5. Building the Graphs
Recall from Sections 3.2 and 3.3, that our algorithm op-

erates on a ball and player graph. We build them as follows.

5.1. Player Graph

To detect the players, we first compute a Probability Oc-
cupancy Map on a discretized version of the court or field
using the algorithm of [9]. We then follow the promising
approach of [28]. We use the K-Shortest-Path (KSP) [2]
algorithm to produce tracklets, which are short trajectories
with high confidence detections. To hypothesize the missed
detections, we use the Viterbi algorithm on the discretized
grid to connect the tracklets. Each individual location in a
tracklet or path connecting tracklets becomes a node of the
player graph Gp, it is then connected by an edge to the next
location in the tracklet or path.

5.2. Ball Graph

To detect the ball, we use a SVM [13] to classify im-
age patches in each camera view based on Histograms of
Oriented Gradients, HSV color histograms, and motion his-
tograms. We then triangulate these detections to gener-
ate candidate 3D locations and perform non-maximum sup-
pression to remove duplicates. We then aggregate features
from all camera view for each remaining candidate and train
a second SVM to only retain the best.

Given these high-confidence detections, we use KSP
tracker to produce ball tracklets, as we did for people. How-
ever, we can no longer use the Viterbi algorithm to connect
them as the resulting connections may not obey the required
physical constraints. We instead use an approach briefly de-
scribed below. More details in supplementary materials.

To model the ball states associated to a physical model,
we grow the trajectories from each tracklet based on the
physical model, and then join the end points of the tracklets
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Figure 3: An example of ball detections, hypothesized ball
locations when it is missed, and graph construction.

and grown trajectories, by fitting the physical model. An
example of such procedure is shown in Fig. 3. To model
the state in possession, we create a copy of each node and
edge in the players graph. To model the state not present,
we create one node in each time instant and connect it to the
node in the next time instant, and nodes for all other states
in the vicinity of the tracking area border. Finally, we add
edges between pairs of nodes with different states, as long
as they are in the vicinity of each other (bold in Fig. 2(b)).

6. Experiments
In this section, we compare our results to those of several

state-of-the-art multi-view ball-tracking algorithms [27, 28,
23], a monocular one [10], as well as two tracking methods
that could easily be adapted for this purpose [30, 2].

We first describe the datasets we use for evaluation pur-
poses. We then briefly introduce the methods we compare
against and finally present our results.

6.1. Datasets

We use two volleyball, three basketball, and one soccer
sequences, which we detail below.

Basket-1 and Basket-2 comprise a 4000- and a 3000-
frame basketball sequences captured by 6 and 7 cameras, re-
spectively. These synchronized 25-frame-per-second cam-
eras are placed around the court. We manually annotated
each 10th frame of Basket-1 and 500 consecutive frames of
Basket-2 that feature flying ball, passed ball, possessed ball
and ball out of play. We used the Basket-1 annotations to
train our classifiers and the Basket-2 ones to evaluate the
quality of our results, and vice versa.

Basket-APIDIS is also a basketball dataset [26] captured
by seven unsynchronized 22-frame-per-second cameras. A
pseudo-synchronized 25-frame-per-second version of the
dataset is also available and this is what we use. The dataset
is challenging because the camera locations are not good for
ball tracking and lighting conditions are difficult. We use
1500 frames with manually labeled ball locations provided
by [23] to train the ball detector, and Basket-1 sequence to

train the state classifier. We report our results on another
1500 frames that were annotated manually in [26].

Volley-1 and Volley-2 comprise a 10000- and a 19500-
frame volleyball sequences captured by three synchronized
60-frame-per-second cameras placed at both ends of the
court and in the middle. Detecting the ball is often diffi-
cult both because on either side of the court the ball can be
seen by at most two cameras and because, after a strike, the
ball moves so fast that it is blurred in middle camera im-
ages. We manually labeled each third frame in 1500-frame
segments of both sequences. As before, we used one for
training and the other for evaluation.

Soccer-ISSIA is a soccer dataset [8] captured by six
synchronized 25-frame-per-second cameras located on
both sides of the field. As it is designed for player tracking,
the ball is often out of the field of view when flying. We
train on the 1000 frames and report results on another 1000.

In all these datasets, the apparent size of the ball is
often so small that state-of-the-art monocular object
tracker [30] was never able to track the ball reliably for
more than several seconds.

6.2. Baselines

We use several recent multi-camera ball tracking algo-
rithms as baselines. To ensure a fair comparison, we ran all
publicly available approaches with the same set of detec-
tions, which were produced by the ball detector described
in Sec. 5.2. We briefly describe these algorithms below.

• InterTrack [28] introduces an Integer Programming
approach to tracking two types of interacting objects,
one of which can contain another. Modeling the ball as
being “contained” by the player in possession of it was
demonstrated as a potential application. In [29], this
approach is shown to outperform several multi-target
tracking approaches [24, 17] for ball tracking task.

• RANSAC [23] focuses on segmenting ballistic trajec-
tories of the ball and was originally proposed to track
it in the Basket-APIDIS dataset. Approach is shown to
outperform the earlier graph-based filtering technique
of [22]. We found that it also performs well in our vol-
leyball datasets that feature many ballistic trajectories.
For the Soccer-ISSIA dataset, we modified the code to
produce linear rather than ballistic trajectories.

• FoS [27] focuses on modeling the interaction between
the ball and the players, assuming that long passes are
already segmented. In the absence of a publicly avail-
able code, we use the numbers reported in the article
for Basket-1-2-APIDIS and on Soccer-ISSIA.

• Growth [10] greedily grows the trajectories instanti-
ated from points in consecutive frames. Heuristics



are used to terminate trajectories, extend them and
link neighbouring ones. It is based on the approach
of [5] and shown to outperform approaches based on
the Hough transform. Unlike the other approaches, it
is monocular and we used as input our 3D detections
reprojected into the camera frame.

To refine our analysis and test the influence of specific el-
ement of our approach, we also used the following ap-
proaches.
• MaxDetection. To demonstrate the importance of

tracking the ball, we give the results obtained by sim-
ply choosing the detection with maximum confidence.
• KSP [2]. To demonstrate the importance of model-

ing interactions between the ball and the players, we
use the publicly available KSP tracker to track only
the ball, while ignoring the players.
• OUR-No-Physics. To demonstrate the importance of

physics-based second-order constraints of Eq. 5, we
turn them off.
• OUR-Two-States. Similarly, to demonstrate the im-

pact of keeping track of many ball states, we assume
that the ball can only be in one of two states, posses-
sion and free motion.

6.3. Metrics

Our method tracks the ball and estimates its state. We
use a different metric for each of these two tasks.

Tracking accuracy at distance d is defined as the percent
of frames in which the location of the tracked ball is closer
than d to the ground truth location. The curve obtained
by varying d is known as the “precision plot” [1]. When the
ball is in possession, its location is assumed to be that of the
player possessing it. If the ball is reported to be not present
while it really is present, or vice versa, the distance is taken
to be infinite.

Event accuracy measures how well we estimate the state
of the ball. We take an event to be a maximal sequence of
consecutive frames with identical ball states. Two events
are said to match if there are not more than 5 frames during
which one occurs and not the other. Event accuracy then
is a symmetric measure we obtain by counting recovered
events that matched ground truth ones, as well as the ground
truth ones that matched the recovered ones, normalized by
dividing it by the number of events in both sequences.

6.4. Comparative Results

We now compare our approach to the baselines in terms
of the above metrics. As mentioned in Sec. 3.3, we obtain
the players trajectories by first running the code of [9] to
compute the player’s probabilities of presence in each sep-
arate fame and then that of [2] to compute their trajectories.

We first report accuracy results when these are treated as
being correct, which amounts to fixing the pji in Eq. 8, and
show that our approach performs well. We then perform
joint optimization, which yields a further improvement.

Tracking and Event Accuracy. As shown in Fig. 4(a-
f), OUR complete approach, outperforms the others on all
6 datasets. Two other methods that explicitly model the
ball/player interactions, OUR-No-Physics and InterTrack,
come next. FoS also accounts for interactions but does
markedly worse for small distances, probably due to the
lack of an integrated second order model.

Volleyball. The differences are particularly visible in
the Volleyball datasets that feature both interactions with
the players and ballistic trajectories. Note that OUR-Two-
States does considerably worse, which highlights the im-
portance of modeling the different states accurately.

Basketball. The differences are less obvious in the
basketball datasets where OUR-No-Physics and Inter-
Track, which model the ball/player interactions without im-
posing global physics-based constraints, also do well. This
reflects the fact that the ball is handled much more than in
volleyball. As a result, our method’s ability to also impose
strong physics-based constraints has less overall impact.

Soccer. On the soccer dataset, the ball is only present
in about 75% of the frames and we report our results on
those. Since the ball is almost never seen flying, the
two states (in possession and rolling) suffice, which ex-
plains the very similar performance of OUR and OUR-
Two-States. KSP also performs well because in soccer oc-
clusions during interactions are less common than in other
sports. Therefore, handling them delivers less of a benefit.

Our method also does best in terms of event accuracy,
among the methods that report the state of the ball, as shown
in Fig. 4(g). As can be seen in Fig. 5, both the trajectory
and the predicted state are typically correct. Most state as-
signment errors happen when the ball is briefly assigned to
be in possession of a player when it actually flies nearby,
or when the ball is wrongly assumed to be in free motion,
while is is really in possession but clearly visible.

Simultaneous tracking of the ball and players. All the
results shown above were obtained by processing sequences
of at least 500 frames. In such sequences, the people tracker
is very reliable and makes few mistakes. This contributes to
the quality of our results at the cost of an inevitable delay
in producing the results. Since this could be damaging in
the live-broadcast situation, we have experimented with us-
ing shorter sequences. We show here that simultaneously
tracking the ball and the players can mitigate the loss of re-
liability of the people tracker, albeit to a small extent.

As shown in Tab. 2 for the Volley-1 dataset, we need 200-
long frames to get the best people tracking accuracy when
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Figure 4: Comparative results. (a-f) OUR outperforms the other approaches in terms of ball accuracy, followed by the other
methods that also model ball/player interaction, OUR-No-Physics, InterTrack, and FoS for larger values of d. (g) OUR
also does best in terms of event accuracy.

Volley-1 Basket-1 Soccer-ISSIA
Figure 5: Visualisation of results on 3 10-second sequences from different sports. Cirlces indicate true ball location: empty
circles correspond to free motion, filled circles indicate ball in possession. Line indicates predicted ball locations: thick when
predicted state is in possession, thin otherwise. Best viewed in color.

Metric MODA [14],% Tracking acc. @ 25 cm,%
50 94.1 / 93.9 / 0.26 69.2 / 67.2 / 2.03
75 94.5 / 94.2 / 0.31 71.4 / 69.4 / 2.03

100 96.5 / 96.3 / 0.21 72.5 / 71.0 / 1.41
150 97.2 / 97.1 / 0.09 73.8 / 73.0 / 0.82
200 97.3 / 97.4 / 0.00 74.1 / 74.1 / 0.00

(a) (b)
Table 2: Tracking the ball given the players’ locations vs.
simultaneous tracking of the ball and players. The three
numbers in both columns correspond to simultaneous track-
ing of the players and ball / sequential tracking of the play-
ers and then the ball / improvement, as function of the
lengths of the sequences. (a) People tracking accuracy in
terms of the MODA score. (b) Ball tracking accuracy.

first tracking the people by themselves first, as we did be-
fore. As the number of frames decreases, the people tracker
becomes less reliable but performing the tracking simulta-

neously yields a small but noticeable improvement both for
the ball and the players. The case of Fig. 1 is an example
of this. We identified 3 similar cases in 1500 frames of the
volleyball sequence used for the experiment.

7. Conclusion
We have introduced an approach to ball tracking and

state estimation in team sports. It uses Mixed Integer Pro-
gram that allows to account for second order motion of the
ball, interaction of the ball and the players, and different
states that the ball can be in, while ensuring globally op-
timal solution. We showed our approach on several real-
world sequences from multiple team sports. In future, we
would like to extend this approach to more complex tasks of
activity recognition and event detection. For this purpose,
we can treat events as another kind of objects that can be
tracked through time, and use interactions between events
and other objects to define their state.
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