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Abstract

Given a food image, can a fine-grained object recog-
nition engine tell “which restaurant which dish” the food
belongs to? Such ultra-fine grained image recognition is
the key for many applications like search by images, but it
is very challenging because it needs to discern subtle dif-
ference between classes while dealing with the scarcity of
training data. Fortunately, the ultra-fine granularity natu-
rally brings rich relationships among object classes. This
paper proposes a novel approach to exploit the rich rela-
tionships through bipartite-graph labels (BGL). We show
how to model BGL in an overall convolutional neural net-
works and the resulting system can be optimized through
back-propagation. We also show that it is computationally
efficient in inference thanks to the bipartite structure. To
facilitate the study, we construct a new food benchmark
dataset, which consists of 37,885 food images collected
from 6 restaurants and totally 975 menus. Experimental
results on this new food and three other datasets demon-
strates BGL advances previous works in fine-grained ob-
ject recognition. An online demo is available at http:
//www.f-zhou.com/fg_demo/.

1. Introduction

Fine-grained image classification concerns the task of
distinguishing sub-ordinate categories of some base classes
such as dogs [26, 43], birds [5, 8], flowers [1, 40],
plants [32, 45], cars [30, 36, 48], food [3, 6, 38, 59],
clothes [14], fonts [10] and furniture [4]. It differs from the
base-class classification [15] in that the differences among
object classes are more subtle, and thus it is more difficult
to distinguish them. Yet fine-grained object classification is
extremely useful because it is the key to a variety of chal-
lenging applications even difficult for human annotators.

While general image classification has achieved impres-
sive success within the last few years [31, 49, 46, 21, 56,
22], it is still very challenging to recognize object classes
with ultra-fine granularity. For instance, how to recognize
each of the three food images shown in Fig. 1 into which
restaurant which dish? The challenge arises in two ma-
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Figure 1. Illustration of three ultra-fine grained classes (middle),
Mapo Tofu of Restaurant A, Salt Pepper Tofu of Restaurant B,
and Mapo Tofu of Restaurant B. Their relationships can be mod-
eled through three bipartite graphs, fine-grained classes vs. gen-
eral food dishes (left) and fine-grained classes vs. two ingredients
(right). This paper shows how to incorporate the rich bipartite-
graph labels (BGL) into convolutional neural network training to
improve recognition accuracy.

jor aspects. First, different classes may be visually similar,
e.g., the Mapo Tofu dish from Restaurant A (the 1st im-
age in Fig. 1) looks very similar to the one from Restaurant
B (the 3rd image in Fig. 1). Second, each class may not
have enough training images because of the ultra-fine gran-
ularity. In such setting, how to share information between
similar classes while maintaining strong discriminativeness
becomes more critical.

To that end, we propose a novel approach using bipartite-
graph labels (BGL) that models the rich relationships
among the ultra-fine grained classes. In the example of
Fig. 1, the 1st and 3rd images are both Mapo Tofu dishes;
and they share some ingredients with the 2nd one. Such
class relationships can be modeled in three bipartite graphs.
This paper shows how to incorporate the class bipartite
graphs into CNN and learn the optimal classifiers through
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overall back-propagation.
Using BGL has several advantages: (1) BGL imposes

additional constraints to regularize CNN training, thereby
largely reducing the possibility of being overfitting when
only a small amount of training data is available. (2)
Knowing classes that belong to the same coarse category or
share some common attributes can allow us to borrow some
knowledge from relevant classes. (3) The supervised feature
learning through a global back-propagation allows learning
discriminative features for capturing subtle differences be-
tween similar classes. (4) By constraining the structure to
bipartite graphs, BGL prevents the exponential explosion
from enumerating all possible states in inference.

This work is in parallel to the existing big body of fine-
grained image classification research, which has focused
on devising more discriminative feature by aligning object
poses [17, 20, 62] and filtering out background through ob-
ject segmentation [42]. The techniques developed in this
work can be combined with the ones in those existing re-
search works to achieve better fine-grained image recogni-
tion performance.

To facilitate the study, we built an ultra-fine grained im-
age recognition benchmark, which consists of 37,885 food
training images collected directly from 6 restaurants with
totally 975 menus. Our results show that the proposed BGL
approach produces significantly better recognition accuracy
compared to the powerful GoogLeNet [49]. We also test the
BGL approach on some existing fine-grained benchmark
datasets. We observe the benefit of BGL modeling as well
although the improvement is less significant because of the
less rich class relationships.

2. Previous work
This section reviews the related work on fine-grained im-

age classification, and structural label learning.

2.1. Fine-grained image classification

Fine-grained image classification needs to discern subtle
differences among similar classes. The majority of exist-
ing approaches have thus been focusing on localizing and
describing discriminative object parts in fine-grained do-
mains. Various pose-normalization pooling strategies com-
bined with 2D or 3D geometry have been proposed for
recognizing birds [7, 17, 20, 62, 63, 64], dogs [37] and
cars [28, 30]. The main drawback of these approaches is
that part annotations are significantly more challenging to
collect than image labels. Instead, a variety of methods
have been developed towards the goal of finding object parts
in an unsupervised or semi-supervised fashion. Krause et
al. [29] combined alignment with co-segmentation to gen-
erating parts without annotations. Lin et al. [35] proposed
an architecture that uses two separate CNN feature extrac-
tors to model the appearance due to where the parts are and

what the parts look like. Jaderberg et al. [23] introduced
spatial transformer, a new differentiable module that can
be inserted into existing convolutional architectures to spa-
tially transform feature maps without any extra training su-
pervision. In parallel to above efforts, our approach focuses
on exploiting rich class relationships and is applicable to
generic fine-grained objects even they do not own learnable
structures (e.g., food dishes).

To provide good features for recognition, another promi-
nent direction is to adopt detection and segmentation meth-
ods as an initial step and to filter out noise and clutter
in background. For instance, Parkhi et al. [42, 43] pro-
posed to detect some specific part (e.g., cat’s head) and
then performed a full-object segmentation through propaga-
tion. In another similar work, Angelova and Zhu [1] further
re-normalized objects after segmentation to improves the
recognition performance. However, better feature through
segmentation always comes with computational cost as seg-
mentation is often computationally expensive.

Recently, many other advances lead to improved results.
For instance, Wang et al. [53] and Qian et al. [44] showed a
more discriminative similarity can be learned through deep
ranking and metric learning respectively. Xie et al. [57]
proposed a novel data augmentation approach to better reg-
ularize the fine-grained problems. Deng et al. [13], Branson
et al. [8] and Wilber et al. [55] developed hybrid systems to
introduce human in the loop for localizing discriminative
regions for computing features. Focusing on different goal
on exploring label structures, our method can be potentially
combined with the above methods to further improve the
performance.

2.2. Structural label learning

While most existing works focus on single-label classi-
fication problem, it is more natural to describe real world
images with multiple labels like tags or attributes. Accord-
ing to the assumptions on label structures, previous work
on structural label learning can be roughly categorized as
learning binary, relative or hierarchical attributes.

Much of prior work focuses on learning binary attributes
that indicate the presence of a certain property in an image
or not. For instance, previous works have shown the ben-
efit of learning binary attributes for face verification [33],
texture recognition [19], clothing searching [14], and zero-
shot learning [34]. However, binary attributes are restrictive
when the description of certain object property is continu-
ous or ambiguous.

To address the limitation of binary attributes, comparing
attributes has gained attention in the last years. The relative-
attribute approach [41] learns a global linear ranking func-
tion for each attribute, offering a semantically richer way to
describe and compare objects. While a promising direction,
a global ranking of attributes tends to fail when facing fine-



grained visual comparisons. Yu and Grauman [60] fixed
this issue by learning local functions that tailor the compar-
isons to neighborhood statistics of the data. Recently, Yu
and Grauman [61] developed a Bayesian strategy to infer
when images are indistinguishable for a given attribute.

Our method falls into the third category where the rela-
tion between the fine-grained labels and attributes is mod-
eled in a hierarchical manner. In the past few years, ex-
tensive research has been devoted to learning a hierarchi-
cal structure over classes (see [51] for a survey). Previous
works have shown the benefits of leveraging the semantic
class hierarchy using either unsupervised [2, 50] or super-
vised [11, 18, 39] methods. Our work differs from previous
works in the CNN-based framework and the setting focus-
ing on multi-labeled object. The most similar works to ours
are [47] and [12], which show the advantages of explor-
ing the tree-like hierarchy in small-scale (e.g., CIFAR-100)
and graph-like structure in large-scale (e.g., ImageNet) cat-
egories respectively. Compared to [47], our method is able
to handle more general structure (e.g., attributes) among
fine-grained labels. Unlike [12] relying on approximated in-
ference, our method allows for efficient exact inference by
modeling the label dependence as a star-like combination
of bipartite graphs. In addition, we explore the hierarchical
regularization on the last fully connected layer, which could
further reduce the possibility of being overfitting.

Our work is also related to previous methods in multi-
task learning (MTL) [9]. To better learn multiple correlated
subtasks, previous work have explored various ideas in-
cluding, sharing hidden nodes in neural networks [9], plac-
ing a common prior in hierarchical Bayesian models [58]
and structured regularization in kernel methods [16], among
others. Our method differs from the MTL methods mainly
in the setting of multi-label setting for single objects.

3. CNN with Bipartite-Graph Labels
This section describes the proposed BGL method in a

common multi-class convolutional neural network (CNN)
framework, which is compatible to most popular archi-
tectures like, AlexNet [31], GoogLeNet [49] and VG-
GNet [46]. Our approach modifies their softmax layer as
well as the last fully connected layer to explicitly model
BGLs. The resulted CNN is optimized by a global back-
propagation.

3.1. Background

Suppose that we are given (see notation1) a set of n im-
ages X = {(x, y), · · · } for training, where each image x is

1Bold capital letters denote a matrix X, bold lower-case letters a col-
umn vector x. All non-bold letters represent scalars. xi represents the ith

column of the matrix X. xij denotes the scalar in the ith row and jth col-
umn of the matrix X. 1[i=j] is an indicator function and its value equals
to 1 if i = j and 0 otherwise.

annotated with one of k fine-grained labels, y = 1, · · · , k.
Let x ∈ Rd denote the input feature of the last fully-
connected layer, which generates k scores f ∈ Rk through
a linear function f = WTx defined by the parameters
W ∈ Rd×k. In a nutshell, the last layer of CNN is to mini-
mize the negative log-likelihood over the training data, i.e.,

min
W

∑
(x,y)∈X

− logP (y
∣∣x,W), (1)

where the softmax score,

P (i
∣∣x,W) =

efi∑k
j=1 e

fj

.
= pi, (2)

encodes the posterior probability of image x being classi-
fied as the ith fine-grained class.

3.2. Objective function with BGL modeling

Despite the great improvements achieved on base-class
recognition in the last few years, recognizing object classes
in ultra-fine granularity like the example shown in Fig. 1 is
still challenging mainly for two reasons. First, unlike gen-
eral recognition task, the amount of labels with ultra-fine
granularity is often limited. The training of a high-capacity
CNN model is thus more prone to overfitting. Second, it is
difficult to learn discriminative features to differentiate be-
tween similar fine-grained classes in the presence of large
within-class difference.

To address these difficulties, we propose bipartite-graph
labels (BGL) to jointly model the fine-grained classes with
pre-defined coarse classes. Generally speaking, the choices
of coarse classes can be any grouping of fine-grained
classes. Typical examples include bigger classes, attributes
or tags. For instance, Fig. 1 shows three types of coarse
classes defined on the fine-grained Tofu dishes (middle). In
the first case (Graph 1 in Fig. 1), the coarse classes are two
general Tofu food classes by neglecting the restaurant tags.
In the second and third cases (Graph 2 and 3 in Fig. 1), the
coarse classes are binary attributes according to the pres-
ence of some ingredient in the dishes. Compared to the orig-
inal softmax loss (Eq. 2) defined only on fine-grained labels,
the introduction of coarse classes in BGL has three benefits:
(1) New coarse classes bring in additional supervised in-
formation so that the fine-grained classes connected to the
same coarse class can share training data with each other.
(2) All fine-grained classes are implicitly ranked according
to the connection with coarse classes. For instance, Toy-
ota Camry 2014 and Toyota Camry 2015 are much closer to
each other compared to Honda Accord 2015. This hierar-
chical ranking guides CNN training to learn more discrim-
inative features to capture subtle difference between fine-
grained classes. (3) Compared to image-level labels (e.g.,
image attribute, bounding box, segmentation mask) that are
expensive to obtain, it is relatively cheaper and more natural



to define coarse classes over fine-grained labels. This fact
endows BGL the board applicability in real scenario.

Given m types of coarse classes, where each type j con-
tains kj coarse classes, BGL models their relations with the
k fine-grained classes as m bipartite graphs grouped in a
star-like structure. Take Fig. 1 for instance, where the three
types of coarse classes form three separated bipartite graphs
with the fine-grained Tofu dishes, and there is no direct con-
nection among the three types of coarse classes. For each
graph of coarse type j, we encode its bipartite structure in
a binary association matrix Gj ∈ {0, 1}k×kj , whose ele-
ment gjicj = 1 if the ith fine-grained label is connected with
coarse label cj . As it will become clear later, this star-like
composition of bipartite graphs enables BGL to perform ex-
act inference as opposed to the use of other general label
graphs (e.g., [12]).

To generate the scores fj = WT
j x ∈ Rkj for coarse

classes of type j, we augment the last fully-connected layer
with m additional variables, {Wj}j , where Wj ∈ Rd×kj .
Given an input image x of ith fine-gained class, BGL mod-
els its joint probability with any m coarse labels {cj}j as,

P (i, {cj}j
∣∣x,W, {Wj}j) =

1

z
efi

m∏
j=1

gjicj e
fjcj ,

where z is the partition function computed as:

z =

k∑
i=1

efi
m∏
j=1

kj∑
cj=1

gjicj e
fjcj .

At first glance, computing z is infeasible in practice. Be-
cause of the bipartite structure of the label graph, however,
we could denote the non-zero element in ith row of Gj as
φji = cj where gjicj = 1. With this auxiliary function, the
computation of z can be simplified as

z =

k∑
i=1

efi
m∏
j=1

e
f
j

φ
j
i . (3)

Compared to general CRF-based methods (e.g., [12]) with
exponential number of possible states, the complexity
O(km) of computing z in BGL through Eq. 3 scales linearly
with respect to the number of fine-grained classes (k) as
well as the type of coarse labels (m). Given z, the marginal
posterior probability over fine-grained and coarse labels can
be computed as:

P (i
∣∣x,W, {Wj}j) =

1

z
efi

m∏
j=1

e
f
j

φ
j
i
.
= pi,

P (cj
∣∣x,W, {Wl}l) =

1

z

k∑
i=1

gjicj e
fi

m∏
l=1

e
fl
φl
i
.
= pjcj .

As discussed before, one of the difficulties in training
CNN is the possibility of being overfitting. One com-
mon solution is to add a l2 weight decay term, which is

equivalent to sample the columns of W from a Gaussian
prior. Given the connection among fine-grained and coarse
classes, BGL provides another natural hierarchical prior for
sampling the weights:

P (W, {Wj}j) =
k∏
i=1

m∏
j=1

kj∏
cj=1

e
−λ

2
g
j
icj
‖wi−wjcj

‖2 .
= pw.

This prior expects wi and wj
cj have small distance if ith

fine-grained label is connected to coarse class cj of type
j. Notice that this idea is a generalized version of the one
proposed in [47]. However, [47] only discussed a special
type of coarse label (big class), while BGL can handle much
more general coarse labels such as multiple attributes.

In summary, given the training data X and the graph la-
bel defined by {Gj}j , the last layer of CNN with BGL aims
to minimize the joint negative log-likelihood with proper
regularization over the weights:

min
W,{Wj}j

∑
(x,y)∈X

(
− log py −

m∑
j=1

log pj
φ
j
y

)
− log pw. (4)

3.3. Optimization

We optimized BGL using the standard back-propagation
with mini-batch stochastic gradient descent. The gradients
for each parameter can be computed2 all in closed-form:

∂ log py
∂fi

= 1[i=y] − pi,
∂ log py

∂f jcj
= 1

[g
j
ycj

=1]
− pjcj ,

∂ log pj
φ
j
y

∂fi
=

pi

pj
φ
j
y

1
[g
j

iφ
j
y

=1]
− pi,

∂ log pj
φ
j
y

∂f jcj
= 1

[cj=φ
j
y ]
− pjcj ,

∂ log pj
φ
j
y

∂f lcl
=

k∑
i=1

gj
iφ
j
y
glil

pi

pj
φ
j
y

− plcl , l 6= j, (5)

∂ log pw
∂wi

= −λ
m∑
j=1

kj∑
cj=1

gjicj (wi −wj
cj ), (6)

∂ log pw

∂wj
cj

= −λ
k∑
i=1

gjicj (w
j
cj −wi). (7)

Here we briefly discuss some implementation issues. (1)
Computing pi/p

j

φjy
by independently calculating pi and pj

φjy

is not numerically stable because pj
φjy

could be very small. It
is better to jointly normalize the two terms first. (2) Directly
computing Eq. 5 has a quadratic complexity with respect to
the number of coarse classes. But it can be reduced to lin-
ear because most computations are redundant. See supple-
mentary materials for more details. (3) So far (Fig. 2b) we
assume the same feature x is used for computing both the
fine-grained f = WTx and coarse scores fj = WT

j x. In

2See supplementary materials for detailed derivation.



(a) (b) (c)
Figure 2. Comparison of output layers. (a) Softmax (SM). (b) BGL
with one feature (BGL1). (c) BGL with multiple features (BGLm).

fact, BGL can naturally combine multiple CNNs as shown
in Fig. 2c. This allows the model to learn different low-level
features xj for coarse labels fj = WT

j xj .

4. Experiments

This section evaluates BGL’s performance for fine-
grained object recognition on four benchmark datasets. The
first two datasets, Stanford cars [30], CUB-200-2011 [52],
contains fine-grained categories sharing one level of coarse
attributes. The last two datasets, Car-333 [57] and a new
Food-975 dataset, consist of ultra-fine grained classes and
richer class relationships. We wish the proposed BGL ap-
proach would be able to improve classification accuracy
even with simple BGLs and significantly improve perfor-
mance when richer class relationships are present.

BGL was implemented on the off-the-shelf Caffe [24]
platform. We test on three popular CNN frameworks,
AlexNet (AN) [31], GoogLeNet (GN) [49], and VGGNet
(VGG) [46]. For each of them, we compared three set-
tings: SM with the traditional softmax loss; BGL1 by mod-
ifying the softmax layer and the last fully connected layer
as the proposed BGL approach; and BGLm by combining
multiple networks3 that generate different features for fine-
grained and coarse classes.

Our models were trained for 100 epochs on a sin-
gle NVIDIA K40 GPU. We adopted the default hyper-
parameters as used by Caffe. In all experiments, we fine-
tuned from pre-trained ImageNet model as in [25] because
it always achieved better result. During training, we down-
sampled the images to a fixed 256-by-256 resolution, from
which we randomly cropped 224-by-224 patches for train-
ing. We also did their horizontal reflection for further data
augmentation. During testing, we evaluated the top-1 accu-
racy using two cropping strategies: (1) single-view (SV) by
cropping the center 224-by-224 patch of the testing image,
and (2) multi-view (MV) by averaging the center, 4 corners
and their mirrored versions. In the first three datasets, we
evaluated our methods using two protocols, without (w/o.
BBox) and with (w/. BBox) the use of ground-truth bound-
ing box to crop out the object both at training and testing.

3Limited by the GPU memory, we always combined two networks in
BGLm, one for fine-grained classes and the other for all coarse labels.

4.1. Stanford car dataset

The first experiment validates our approach on the Stan-
ford car dataset [30], which contains 16, 185 images of 196
car categories. We adopted the same 50-50 split as in [30]
by dividing the data into 8, 144 images for training and the
rest for testing. Each category is typically at the level of
maker, model and year, e.g., Audi A5 Coupe 12. Following
[27], we manually assigned each fine-grained label to one
of 9 coarse body types. Fig. 3a summarizes the distribution
of training images for fine-grained and coarse labels.

Fig. 3b-e compare between the original GN-SM and the
proposed GN-BGLm on a testing example. GN-SM con-
fused the ground-truth hatchback model (Acura Zdx Hatch-
back) with a very similar sedan one (Acura TI Sedan). By
jointly modeling with body type (Fig. 3c), however, GN-
BGLm was able to predict the correct fine-grained label.
Fig. 3f further compares BGL with several previous works
using different CNN architectures. Without using CNN, the
best published result, 69.5%, was achieved in [30] by using
a traditional LLC-based representation. This number was
beaten by ELLF [28] by learning more discriminative fea-
tures using CNN. The bilinear model [35] recently obtained
88.2% by combining two VGG nets. By exploring the la-
bel dependency, the proposed BGL further improves all the
three CNN architectures using either single-view (SV) or
multi-view (MV) cropping. This consistent improvement
demonstrates BGLs advantage in modeling structure among
fine-grained labels. Our method of VGG-BGLm beats all
previous works except [29], which leveraged the part infor-
mation in an unsupervised way. However, we believe BGL
can be combined with [29] to achieve better performance.
In addition, BGL has the advantage of predicting coarse la-
bel. For instance, GN-BGLm achieved 95.7% in predicting
the type of a car image.

4.2. CUB-200-2011 dataset

In the second experiment, we test our method on CUB-
200-2011 [8], which is generally considered the most com-
petitive dataset within fine-grained recognition. CUB-200-
2011 contains 11, 788 images of 200 bird species. We used
the provided train/test split and reported results in terms
of classification accuracy. To get the label hierarchy, we
adopted the annotated 312 visual attributes associated with
the dataset. See Fig. 4a for the distribution of the fine-
grained class and attributes. These attributes are divided
into 28 groups, each of which has about 10 choices. Ac-
cording to the provided confidence score, we assigned each
attribute group with the most confident choice for each bird
specie. For instance, Fig. 4b shows an example of Scarlet
Tanger, most of which own black-color and pointed-shape
wings.

Fig. 4d compares the outputs between the baseline GN-
SM and the proposed GN-BGLm. GN-SM predicted the
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Figure 3. Comparison on the Stanford car dataset. (a) The number of training images for each fine-grained (top) and coarse (bottom)
category. (b) An example of testing images. (c) Type predicted by GN-BGLm. (d) Top-5 predictions generated by GN-SM approach (top)
and the proposed BGL approach GN-BGL respectively. (e) Similar training exemplars according to the input feature x. (f) Accuracy.

bird in Fig. 4b as a Summer Tanager, which is very close
to the actual class of Scarlet Tanager. By more closely
comparing the color and shape of the wings (Fig. 4c), how-
ever, GN-BGLm decreased its possibility of being Summer
Tanager. This challenging example demonstrates the ad-
vantages of BGL in capturing the subtle appearance differ-
ence between similar bird species. Fig. 4f further compares
BGL with state-of-the-arts approaches in different settings.
Early works such as DPD [63] performed poorly when only
using hand-crafted features. The integration with CNN-
based pose alignment techniques in PN-DCN [7] and PR-
CNN [62] greatly improve the overall performance. From
the experiments, we observed using BGL modules can con-
sistently improved AN-SM, GN-SM and VGG-SM. With-
out any pose alignment steps, our method GN-BGLm ob-
tained 76.9% without the use of bounding box, improving
the recent part-based method [62] by 3%. In addition, GN-
BGLm achieved 89.3% and 93.3% accuracy on predicting
attributes of wing color and shape. However, our method
still performed worse than the latest methods [35] and [29],
which show the significant advantage by exploring part in-
formation for bird recognition. It is worth to emphasize that
BGL improves the last fully connected and loss layer for
attribute learning, while [35] and [29] focus on integrating
object part information into convolutional layers. There-
fore, it is possible to combine these two orthogonal efforts
to further improve the overall performance.

4.3. Car-333 dataset

In the third experiment, we test our method on the
recently introduced Car-333 dataset [57], which contains
157, 023 training images and 7, 840 testing images. Com-
pared to the Stanford car dataset, the images in Car-
333 were end-user photos and thus more naturally pho-
tographed. Each of the 333 labels is composed by maker,
model and year range. Notice that two cars of the same
model but manufactured in different year ranges are con-

sidered different classes. To test BGL, we generated two
sets of coarse labels: 10 “type” coarse labels manually de-
fined according to the geometric shape of each car model
and 140 “model” coarse labels by aggregating year range
labels. Please refer to Fig. 5 for the distribution of the train-
ing images at each label level. The bounding box of each
image was generated by Regionlets [54], the state-of-the-art
object detection method.

Fig. 5b shows a testing example of Ford Ranchero 70-72.
GN-SM recognized it as Ford Torino 70-71 because of the
similar training exemplars as shown in the top of Fig. 5e.
However, these two confused classes can be well separated
by jointly modeling the type and model probability in GN-
BGLm. Fig. 5f summarizes the performance of our method
using different CNN architectures. The best published re-
sult on this dataset was 83.6% achieved by HAR [57],
where the authors augmented the original training data with
an additional car dataset labeled view point information. We
test BGL with three combinations of the coarse labels: us-
ing either model or type, and using model and type jointly.
In particular, BGL gains much more improvements using
the 140 model coarse labels than the 10 type labels. This
is because the images of the cars of the same “model” are
more similar than the ones in the same “type” and it defines
richer relationships among fine-grained classes. Neverthe-
less, BGL can still get benefit from putting the “type” labels
on top of the “model” labels to form a three-level label hi-
erarchy. Finally, GN-BGLm significantly improved the per-
formance of GN-SM from 79.8% to 86.4% without the use
of bounding box. For more result on AN and VGG, please
refer to the supplementary material.

Since the Car-333 dataset is now big enough, we provide
more comparisons on the size of training data and time cost
between GN-SM and GN-BGL. Fig. 6a evaluates the per-
formance with respect to the different amounts of training
data. BGL is able to provide good improvement especially
when training data is relatively small. This is because the
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(b) An example of testing image. (c) Type and model predicted by GN-BGLm. (d) Top-5 prediction generated by GN (top) and the
proposed BGL (bottom) respectively. (e) Similar training exemplars according to the input feature x. (f) Accuracy.

BGL formulation provides a way to regularize CNN train-
ing to alleviate its overfitting issue. Fig. 6b-c show the time
cost for performing forward and backward passing respec-
tively given a 128-image mini-batch. Compared to GN-SM,
GN-BGL needs only very little additional computation to
perform exact inference in the loss function layer. This
demonstrates the efficiency of modeling label dependency
in a bipartite graphs. For the last fully connected (FC) layer,
BGL performs exactly the same computation as GN in the
forward passing, but needs additional cost for updating the
gradient (Eq. 6 and Eq. 7) in the backward passing. Because
both the loss and last FC layers take a very small portion of
the whole pipeline, we found the total time difference be-
tween BGL and GN was minor.

4.4. Food-975 dataset

Now, let’s come back to the task that we raised in the
beginning of the paper: given a food image from a restau-
rant, are we able to recognize it as “which restaurant which
dish”? Apparently, this is an ultra-fine grained image recog-
nition problem and is very challenging. As we mentioned
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Figure 6. More comparison on the Car-333 datasets. (a) Accuracy
as a function of the amount of data used in training. (b) Time cost
for forward passing given a 128-image mini-batch, where Loss
and FC denote the computation of the loss function and the last
fully-connected layers respectively. (c) Time cost for backward
passing.

before, such ultra-fine granularity brings along rich relation-
ships among the classes. In particular, different restaurants
may cook similar dishes with different ingredients.

We collected a high quality food dataset. We sent 6 data
collectors to 6 restaurants. Each data collector was in charge
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Figure 7. Comparison on the Food-975 dataset. (a) Distribution of training images for each fine-grained (top), dish (middle), and ingredient
(bottom) category. (b) An example of testing image. (c) 4 ingredients predicted by GN-BGLm. (d) Top-5 predictions generated by GN-SM
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of one restaurant and took the photo of almost every dish the
restaurant had cooked during a period of 1 ∼ 2 months. Fi-
nally, we captured 32, 135 high-resolution food photos of
975 menu items from the 6 restaurants for training. We
evaluated our method in two settings. To test in a controlled
setting, we took additional 4951 photos in different days.
To mimic a realistic scenario in the wild, we downloaded
351 images from yelp.com posted by consumers visiting
the same restaurants. To model the class relationship, we
created a three-level hierarchy. In the first level, we have
the 975 fine-grained labels; in the middle, we created 781
different dishes by aggregating restaurant tags; at last, we
came up a detailed list of 51 ingredient attributes4 that pre-
cisely describes the food composition.

Fig. 7 compared the proposed BGL approach with dif-
ferent baselines. Fig. 7e compares our method with AN-
SM, GN-SM and VGG-SM in both the controlled and wild
settings. We noticed that BGL approach consistently out-
performed AN and GN in both settings. This indicates the
effectiveness of exploring the label dependency in ultra-fine
grained food recognition. Interestingly, by using both the
dish and ingredient labels, BGL can gain a much larger im-
provement than only using one of them. This implies the
connections between the dish labels and the ingredient la-
bels have very useful information. Overall, by exploring
the label dependency, the proposed BGL approach achieved
6 ∼ 7% improvement from GN baseline at the wild condi-
tion.

5. Conclusion

This paper proposed BGL to exploit the rich class re-
lationships in the very challenging ultra-fine grained tasks.
BGL improves the traditional softmax loss by jointly mod-

4Find ingredient and restaurant list in the supplementary materials.

eling fine-grained and coarse labels through bipartite-graph
labels. The use of a special bipartite structure enables BGL
to be efficient in inference. We also contribute Food-975, an
ultra-fine grained food recognition benchmark dataset. We
show that the proposed BGL approach improved previous
work on a variety of datasets.

There are several future directions to our work. (1) For
the ultra-fine grained image recognition, we may soon need
to handle many more classes. For example, we are con-
structing a large food dataset from thousands of restaurants
where the number of ultra-fine grained food classes can
grow into hundreds of thousands. We believe that the re-
search in this direction, ultra-fine-grained image recogni-
tion (recognizing images almost on instance-level), holds
the key for using images as a media to retrieve informa-
tion, which is often called search by image. (2) Although
currently the label structure is manually defined, it can po-
tentially be learned during training (e.g., [47]). On the other
hand, we are designing a web interface to scale up the at-
tribute and ingredient labeling. (3) This paper mainly dis-
cusses discrete labels in BGL. It is also interesting to study
the application with continuous labels (e.g., regression or
ranking). (4) Instead of operating only at class level, we
plan to generalize BGL to deal with image-level labels. This
can make the performance of BGL more robust in the case
when the attribute label is ambiguous for fine-grained class.
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6. Gradients of BGL’s objective
In the main submission, we have formulated the BGL’s

objective as optimizing the following structural logistic
likelihood over the weights:

min
W,{Wj}j

∑
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Below we derived the gradients of each component.

6.1. ∂ log pi/∂fi′

Given the definition of pi (Eq. 9), if i′ = i, then,
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Putting the result together, we have
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6.2. ∂ log pi/∂f jcj
Given the definition of pi (Eq. 9), if gjicj = 1 or equiva-
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Figure 8. A synthetic example for illustrating the fast computation
of gradient, where the fine-grained labels i1 and i2 are connected
with three coarse types j1, j2 and j3 of size 1.

Putting the result together, we have
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j
cj

According to the definition of pw (Eq. 12), we have

log pw =

k∑
i=1

m∑
j=1

kj∑
cj=1

−λ
2
gjicj‖wi −wj

cj‖
2.

Then,

∂ log pw
∂wi

= −λ
m∑
j=1

kj∑
cj=1

gjicj (wi −wj
cj ).

Similarly,

∂ log pw

∂wj
cj

= −λ
k∑
i=1

gjicj (w
j
cj −wi).

7. Fast computation of gradient
Given a training sample of fine-grained class y associ-

ated with m coarse labels {φjy}mj=1, we need compute the
gradient ∂ log pj

φjy
/∂f lcl for each coarse label φjy of type j

and the ones cl = 1, · · · , kl of any different type l, where
l 6= j. As mentioned in the main submission, computing



the gradient directly using Eq. 13 has the large complexity
of O(km

∑m
j=1 kj). Here we show how to reduce the com-

plexity by an order of magnitude to O(km+ k
∑m
j=1 kj).

To have a better understanding of the problem, let’s con-
sider the synthetic example shown in Fig. 8, where two fine-
grained labels i1 and i2 are connected with three coarse
types j1, j2 and j3 of size 1, i.e., kj1 = kj2 = kj3 = 1. Sup-
pose that we have a training example of fine-grained class
i1. According to Eq. 13, we can compute the gradients for
the input features f j11 , f j21 and f j31 respectively as,

∂ log pj21
∂f j11

=
pi1
pj21

+
pi2
pj21
− pj11 ,

∂ log pj31
∂f j11

=
pi1
pj31

+
pi2
pj31
− pj11 ,

∂ log pj11
∂f j21

=
pi1
pj11

+
pi2
pj11
− pj21 ,

∂ log pj31
∂f j21

=
pi1
pj31

+
pi2
pj31
− pj21 ,

∂ log pj11
∂f j31

=
pi1
pj11

+
pi2
pj11
− pj31 ,

∂ log pj21
∂f j31

=
pi1
pj21

+
pi2
pj21
− pj31 .

In the final step of back propagation, we need to aggregate
the above gradients at each coarse label, that is,

∂ log pj21 + ∂ log pj31
∂f j11

=
pi1
pj21

+
pi2
pj21

+
pi1
pj31

+
pi2
pj31
− 2pj11 ,

(14)

∂ log pj11 + ∂ log pj31
∂f j21

=
pi1
pj11

+
pi2
pj11

+
pi1
pj31

+
pi2
pj31
− 2pj21 ,

(15)

∂ log pj11 + ∂ log pj21
∂f j31

=
pi1
pj11

+
pi2
pj11

+
pi1
pj21

+
pi2
pj21
− 2pj31 .

(16)

We found the above aggregation of gradients have many re-
dundant computations. For instance, by accumulating the
scores {pi/pj1}i,j at the two fine-grained labels as,

qi1 =
pi1
pj11

+
pi1
pj21

+
pi1
pj31

, qi2 =
pi2
pj11

+
pi2
pj21

+
pi2
pj31

,

we can compute the cumulative gradients in an alternative
way:

Eq. 14 = qi1 −
pi1
pj11

+ qi2 −
pi2
pj11
− 2pj11 ,

Eq. 15 = qi1 −
pi1
pj21

+ qi2 −
pi2
pj21
− 2pj21 ,

Eq. 16 = qi1 −
pi1
pj31

+ qi2 −
pi2
pj31
− 2pj31 .

Following this intuition, given a training sample of fine-
grained class y, we first pre-computed k auxiliary variables
that accumulated all active5 scores pi/p

j

φjy
at each fine-

grained label, i.e.,

qi =

m∑
j=1

gj
iφ
j
y

pi

pj
φ
j
y

,

5Each training example activates a sub-set (m) of all coarse labels
(
∑
j kj ).

which takes O(km) for computing all {qi}ki=1. Then we
computed the cumulative gradient of each coarse label as,

∂
∑
j 6=l log p

j

φ
j
y

∂f lcl
=

k∑
i=1

(
qi −

pi
plcl
− plcl

)
. (17)

Solving Eq. 17 for all {f lcl}l,cl takesO(k
∑m
j=1 kj). There-

fore, the total complexity is O(km+ k
∑m
j=1 kj).

8. Car-333’s VGG-BGL result
Fig. 9 summarizes the result of using BGL with VGG for

the Car-333 dataset.

9. Food-975’s restaurant list and ingredient la-
bels

Food-975 consists of 6 Chinese restaurants in the bay
area: Chef Yu, Golden Garlic, Nutrition Restaurant, Lei
Garden, Shanghai Dumpling and Shanghai Restaurant.

Fig. 10 provides a detailed list of ingredient labels for the
new Food-975 dataset.

10. More results
Fig. 11-14 provide additional result for each dataset.

Figure 9. Accuracy of Car-333 using VGG.
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Figure 10. Distribution of training images in Food-975 for all 51 ingredient attributes.
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Figure 11. More results on the Stanford car dataset. (a) An example of testing image. (b) Type and model predicted by GN-BGLm. (c)
Top-5 predictions generated by GN-SM (top) and the proposed GN-BGLm (bottom) respectively. (d) Similar training exemplars according
to the input feature x.
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Figure 12. More results on the Car-333 dataset. (a) An example of testing image. (b) Type and model predicted by GN-BGLm. (c) Top-5
predictions generated by GN-SM (top) and the proposed GN-BGLm (bottom) respectively. (d) Similar training exemplars according to the
input feature x.
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Figure 13. More results on the CUB-200-2011 dataset. (a) An example of testing image. (b) Type and model predicted by GN-BGLm. (c)
Top-5 predictions generated by GN-SM (top) and the proposed GN-BGLm (bottom) respectively. (d) Similar training exemplars.
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Figure 14. More results on the Food-975 dataset. (a) An example of testing image. (b) Type and model predicted by GN-BGLm. (c) Top-5
predictions generated by GN-SM (top) and the proposed GN-BGLm (bottom) respectively. (d) Similar training exemplars.


