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Abstract

Spectral embedding provides a framework for solving
perceptual organization problems, including image segmen-
tation and figure/ground organization. From an affinity
matrix describing pairwise relationships between pixels, it
clusters pixels into regions, and, using a complex-valued ex-
tension, orders pixels according to layer. We train a convo-
lutional neural network (CNN) to directly predict the pair-
wise relationships that define this affinity matrix. Spectral
embedding then resolves these predictions into a globally-
consistent segmentation and figure/ground organization of
the scene. Experiments demonstrate significant benefit to
this direct coupling compared to prior works which use ex-
plicit intermediate stages, such as edge detection, on the
pathway from image to affinities. Our results suggest spec-
tral embedding as a powerful alternative to the conditional
random field (CRF)-based globalization schemes typically
coupled to deep neural networks.

1. Introduction
Systems for perceptual organization of scenes are com-

monly architected around a pipeline of intermediate stages.
For example, image segmentation follows from edge de-
tection [12, 1, 2, 7, 4]; figure/ground, occlusion, or depth
layering follows from reasoning over discrete contours or
regions [27, 16, 21, 36, 18] with some systems also re-
liant on motion cues [30, 15, 32, 31]. This trend holds
even in light of rapid advancements from designs centered
on convolutional neural networks (CNNs). Rather than di-
rectly focus on image segmentation, recent CNN architec-
tures [14, 3, 28, 4] target edge detection. Turaga et al. [33]
make the connection between affinity learning and seg-
mentation, yet restrict affinities to be precisely local edge
strengths. Pure CNN approaches for depth from a single
image do focus on directly constructing the desired out-
put [9, 8]. However, these works do not address the problem
of perceptual grouping without fixed semantic classes.

We engineer a system for simultaneous segmentation and
figure/ground organization by directly connecting a CNN to
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Figure 1. System architecture. We send an image through a
CNN which is trained to predict the grouping and ordering re-
lations between each of the n pixels and its neighbors at k dis-
placements laid out in a fixed stencil pattern. We assemble these
n×2k pixel-centric relations into a sparse n×n complex affin-
ity matrix between pixels, each row indicating a pixel’s affinity
with others. Shown above is the row for the pixel at the center
of a log-polar sampling pattern; its positive/negative relations with
neighbors are marked by red/cyan squares overlaid on the image.
We feed the pairwise affinity matrix into Angular Embedding for
global integration, producing an eigenvector representation that re-
veals figure-ground organization: we know not only which pixels
go together, but also which pixels go in front.

an inference algorithm which produces a globally consis-
tent scene interpretation. Training the CNN with a target
appropriate for the inference procedure eliminates the need
for hand-designed intermediate stages such as edge detec-
tion. Our strategy parallels recent work connecting CNNs
and conditional random fields (CRFs) for semantic segmen-
tation [6, 20, 35]. A crucial difference, however, is that we
handle the generic, or class independent, image partitioning
problem. In this context, spectral embedding, and specifi-
cally Angular Embedding (AE) [37, 38], is a more natural
inference algorithm. Figure 1 illustrates our architecture.

Angular Embedding, an extension of the spectral relax-
ation of Normalized Cuts [29] to complex-valued affinities,
provides a mathematical framework for solving joint group-
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ing and ranking problems. Previous works established this
framework as a basis for segmentation and figure/ground or-
ganization [22] as well as object-part grouping and segmen-
tation [24]. We follow the spirit of [22], but employ major
changes to achieve high-quality figure/ground results:

• We reformulate segmentation and figure/ground layer-
ing in terms of an energy model with pairwise forces
between pixels. Pixels either bind together (group) or
differentially repel (layer separation), with strength of
interaction modulated by confidence in the prediction.

• We train a CNN to directly predict all data-dependent
terms in the model.

• We predict interactions across multiple distance scales
and use an efficient solver [23] for spectral embedding.

Our new energy model replaces the ad-hoc boundary-
centric interactions employed by [22]. Our CNN replaces
hand-designed features. Together they facilitate learning
of pairwise interactions across a regular stencil pattern.
Choosing a sparse stencil pattern, yet including both short-
and long-range connections, allows us to incorporate multi-
scale cues while remaining computationally efficient.

Section 2 develops our model for segmentation and fig-
ure/ground while providing the necessary background on
Angular Embedding. Section 3 details the structure of our
CNN for predicting pairwise interaction terms in the model.

As our model is fully learned, it could be trained accord-
ing to different notions of segmentation and figure/ground.
For example, consistent definitions for figure/ground in-
clude true depth ordering as in [9], object class-specific
foreground/background separation as in [24], and bound-
ary ownership or occlusion as in [27, 13, 22]. We focus
on the latter and define segmentation as a region partition
and figure/ground as an ordering of regions by occlusion
layer. The Berkeley segmentation dataset (BSDS) provides
ground-truth annotation of this form [25, 13]. We demon-
strate segmentation results competitive with the state-of-
the-art on the BSDS benchmark [11], while simultaneously
generating high-quality figure/ground output.

The occlusion layering interpretation of figure/ground is
the one most likely to be portable across datasets; it corre-
sponds to a mid-level perceptual task. We find this to be pre-
cisely the case for our learned model. Trained on BSDS, it
generates quite reasonable output when tested on other im-
age sources, including the PASCAL VOC dataset [10]. We
believe this to be a significant advance in fully automatic
perceptual organization. Section 4 presents experimental
results across all datasets, while Section 5 concludes.

2. Spectral Embedding & Generalized Affinity
We abstract the figure/ground problem to that of assign-

ing each pixel p a rank θ(p), such that θ(·) orders pixels by

Given Pairwise:

Ordering Θ(·, ·)

Confidence C(·, ·)

Recover:

Global ordering θ(p)

p→ z(p) = eiθ(p)
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Figure 2. Angular Embedding [38]. Given (C,Θ) captur-
ing pairwise relationships between nodes, the Angular Embedding
task is to map those nodes onto the unit semicircle, such that their
resulting absolute positions respect confidence-weighted relative
pairwise ordering (Equation 1). Relative ordering is identified with
rotation in the complex plane. For node p, θ(p) = arg(z(p)) re-
covers its global rank order from its embedding z(p).

occlusion layer. Assume we are given estimates of the rel-
ative order Θ(p, q) between many pairs of pixels p and q.
The task is then to find θ(·) that agrees as best as possible
with these pairwise estimates. Angular Embedding [38] ad-
dresses this optimization problem by minimizing error ε:

ε =
∑
p

∑
q C(p, q)∑
p,q C(p, q)

· |z(p)− z̃(p)|2 (1)

where C(p, q) accounts for possibly differing confidences
in the pairwise estimates and θ(p) is replaced by z(p) =
eiθ(p). As Figure 2 shows, this mathematical convenience
permits interpretation of z(·) as an embedding into the com-
plex plane, with desired ordering θ(·) corresponding to ab-
solute angle. z̃(p) is defined as the consensus embedding
location for p according to its neighbors and Θ:

z̃(p) =
∑
q

C̃(p, q) · eiΘ(p,q) · z(q) (2)

C̃(p, q) =
C(p, q)∑
q C(p, q)

(3)

Relaxing the unit norm constraint on z(·) yields a gener-
alized eigenproblem:

Wz = λDz (4)

with D and W defined in terms of C and Θ by:

D = Diag(C1n) (5)

W = C • eiΘ (6)

where n is the number of pixels, 1n is a column vector of
ones, Diag(·) is a matrix with its vector argument on the
main diagonal, and • denotes the matrix Hadamard product.

For Θ everywhere zero (W = C), this eigenproblem is
identical to the spectral relaxation of Normalized Cuts [29],
in which the second and higher eigenvectors encode group-
ing [29, 2]. With nonzero entries in Θ, the first of the now
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Figure 3. Complex affinities for grouping and figure/ground.
An angular displacement, corresponding to relative figure/ground
or depth ordering, along with a confidence on that displacement,
specify pairwise local grouping relationships between pixels. A
single complex number encodes confidence as magnitude and dis-
placement as angle from the positive real axis. Four basic interac-
tion types span the space of possible pairwise pixel relationships.
Contiguous region: Pixels p and q lie in the same region. A vec-
tor along the positive real axis represents high confidence on zero
relative displacement. Ambiguous boundary: Pixels p and q lie in
different regions whose interface admits no cues for discriminating
displacement. The shared boundary could be a surface marking or
depth discontinuity with either of p or q in front. The origin of the
complex plane represents zero confidence on the correct relation-
ship. Figure transition: As boundary convexity tends to indicate
foreground, moving from p to q likely transitions from ground to
figure. We have high confidence on positive angular displacement.
Ground transition: In the reverse case, q is ground with respect to
p, and the complex representation has negative angle.

complex-valued eigenvectors is nontrivial and its angle en-
codes rank ordering while the subsequent eigenvectors still
encode grouping [22]. We use the same decoding procedure
as [22] to read off this information.

Specifically, given eigenvectors, {z0, z1, ..., zm−1}, and
corresponding eigenvalues, λ0 ≤ λ1 ≤ ... ≤ λm−1, solving
Equation 4, θ(p) = arg(z0(p)) recovers figure/ground or-
dering. Treating the eigenvectors as an embedding of pixels
into Cm, distance in this embedding space reveals percep-
tual grouping. We follow [2, 22] to recover both bound-
aries and segmentation from the embedding by taking the
(spatial) gradient of eigenvectors and applying the water-
shed transform. This is equivalent to a form of agglomera-
tive clustering in the embedding space, with merging con-
strained to be between neighbors in the image domain.

A remaining issue, solved by [24], is to avoid circular
wrap-around in angular span by guaranteeing that the solu-
tion fits within a wedge of the complex plane. It suffices to
rescale Θ by π

2 (1Tn |Θ|1n)−1 prior to embedding.
Having chosen Angular Embedding as our inference pro-

cedure, it remains to define the pairwise pixel relationships
C(p, q) and Θ(p, q). In the special case of Normalized Cuts,
C(p, q) represents a clustering affinity, or confidence on
zero separation (in both clustering and figure/ground). For
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Figure 4. Generalized affinity. Combining the base cases in Fig-
ure 3, we express generalized affinity W as the sum of a binding
force acting along the positive real axis, and figure and ground
displacement forces acting at angles. In absence of any strong
boundary, the binding force dominates, linking pixels together. In
presence of a strong and discriminative boundary, either the fig-
ure or ground force dominates, triggering displacement. Under
conditions of uncertainty, all forces are weak. Left: The plot for
|W | illustrates total force strength, while the plot for ∠W shows
the dominant force. Right: Complex-valued W varies smoothly
across its configuration space, yet exhibits four distinct modes
(binding, figure, ground, uncertain). Smooth transitions occur in
the region of uncertainty at the origin.

the more general case, we must also predict non-zero fig-
ure/ground separation values and assign them confidences.

Let us develop the model in terms of probabilities:

e(p) = Pr(p lies on a boundary) (7)
b(p, q) = Pr(seg(p) 6= seg(q)) (8)
f(p, q) = Pr(figural(p, q) | seg(p) 6= seg(q))) (9)
g(p, q) = Pr(figural(q, p) | seg(p) 6= seg(q))) (10)

where seg(p) is the region (segment) containing pixel p and
figural(p, q) means that q is figure with respect to p, ac-
cording to the true segmentation and figure/ground order-
ing. b(p, q) is the probability that some boundary separates
p and q. f(p, q) and g(p, q) are conditional probabilities of
figure and ground, respectively. Note g(p, q) = 1− f(p, q).

There are three possible transitions between p and q:
none (same region), ground→ figure, and figure→ ground.
Selecting the most likely, the probabilities of erroneously
binding p and q into the same region, transitioning to fig-
ure, or transitioning to ground are respectively:

EB(p, q) = b(p, q) (11)
EF (p, q) = 1− (1− e(p))b(p, q)(1− e(q))f(p, q) (12)
EG(p, q) = 1− (1− e(p))b(p, q)(1− e(q))g(p, q) (13)

where (1 − e(p))b(p, q)(1 − e(q)) is the probability that
there is a boundary between p and q, but that neither p nor
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q themselves lie on any boundary. Figure/ground repulsion
forces act long-range and across boundaries. We convert to
confidence via exponential reweighting:

CB(p, q) = exp(−EB(p, q)/σb) (14)
CF (p, q) = exp(−EF (p, q)/σf ) (15)
CG(p, q) = exp(−EG(p, q)/σg) (16)

where σb and σf = σg control scaling. Using a fixed an-
gle φ for the rotational action of figure/ground transitions
(Θ(p, q) = ±φ), we obtain complex-valued affinities:

WB(p, q) = CB(p, q) (17)
WF (p, q) = CF (p, q) exp(iφ) (18)
WG(p, q) = CG(p, q) exp(−iφ) (19)

Figure 3 illustrates howWB (shown in green),WF (red),
and WG (blue) cover the base cases in the space of pairwise
grouping relationships. Combining them into a single en-
ergy model (generalized affinity) spans the entire space:

W (p, q) = WB(p, q) +WF (p, q) +WG(p, q) (20)

One can regard W (p, q) as a sum of binding, figure transi-
tion, and ground transition forces acting between p and q.
Figure 4 plots the configuration space of W (p, q) in terms
of b(p, q) and f(p, q). As the areas of this space in which
each component force is strong do not overlap, W behaves
in distinct modes, with a smooth transition between them
through the area of weak affinity near the origin.

Learning to predict e(p), b(p, q), and f(p, q) suffices to
determine all components of W . For computational effi-
ciency, we predict pairwise relationships between each pixel
and its immediate neighbors across multiple spatial scales.
This defines a multiscale sparse W . As an adjustment prior
to feeding W to the Angular Embedding solver of [23], we
enforce Hermitian symmetry by assigning:

W ← (W +W ∗)/2 (21)

3. Affinity Learning
Supervised training of our system proceeds from

a collection of images and associated ground-truth,
{(I0, S0, R0), (I1, S1, R1), . . .}. Here, Ik is an image de-
fined on domain Ωk ⊂ N2. Sk : Ωk → N is a segmentation
mapping each pixel to a region id, and Rk : Ωk → R is an
rank ordering of pixels according to figure/ground layering.
This data defines ground-truth pairwise relationships:

b̃k(p, q) = 1− δ(S(p)− S(q)) (22)

f̃k(p, q) = (sign(R(q)−R(p)) + 1)/2 (23)

As f(p, q) is a conditional probability (Equation 9), we only
generate training examples f̃k(p, q) for pairs (p, q) satisfy-
ing b̃k(p, q) = 1.
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Figure 5. Deep Affinity Network. Our CNN produces an output
feature map with spatial resolution matching the input image and
whose channels encode pairwise affinity estimates between each
pixel and 8 neighbors across 3 scales. Its internal architecture de-
rives from that of previous networks [9, 8, 26] for generating per-
pixel predictions using multiple receptive fields. At each stage, red
labels denote the spatial size ratio of feature map to input image.
Blue labels denote the number of channels in each feature map.

In all experiments, we sample pixel pairs (p, q) from a
multiscale stencil pattern. For each pixel p, we consider as q
each of its 8 immediate neighbors in the pixel grid, across 3
scales (distances of 1, 4, and 16 pixels). The stencil pattern
thus consists of 24 neighbors total. We train 48 predictors,
b(·, ·) and f(·, ·) at each of the 24 offsets, for describing
the pairwise affinity between a pixel and its neighbors. We
derive the predictor e(·) as a local average of b(·, ·):

e(p) =
1

8

∑
q∈N1(p)

b(p, q) (24)

where N1(p) consists of the 8 neighbors to p at fine-scale.
Choosing a CNN to implement these predictors, we re-

gard the problem as mapping an input image to a 48 channel
output over the same domain. We adapt prior CNN designs
for predicting output quantities at every pixel [9, 8, 26] to
our somewhat higher-dimensional prediction task. Specif-
ically, we reuse the basic network design of [26], which
first passes a large-scale coarse receptive field through an
AlexNet [19]-like subnetwork. It appends this subnetwork’s
output into a second scale subnetwork acting on a finer re-
ceptive field. Figure 5 provides a complete layer diagram.
In modifying [26], we increase the size of the penultimate
feature map as well as the output dimensionality.

For modularity at training time, we separately train two
networks, one for b(·, ·) and one for f(·, ·), each with the
layer architecture of Figure 5. We use modified Caffe [17]
for training with log loss between truth ỹ and prediction y
applied to each output pixel-wise:

Llog (ỹ, y) = −ỹ log(y)− (1− ỹ) log(1− y) (25)

4



Image Segmentation Local F/G Labels Globalized F/G

Ground-truth

b̃(p, p+ d) b(p, p+ d) f̃(p, p+ d) f(p, p+ d)

Training

Figure 6. Affinity learning for segmentation and figure/ground. Ground-truth assembly (left): Given only ground-truth segmenta-
tion [25] and local figure/ground labels in the form of boundary ownership [13], we infer a global ground-truth figure/ground order by
running Angular Embedding with pairwise interactions defined by the local ground-truth. Affinity training (right): The ground-truth seg-
mentation serves to train pairwise grouping probability b(·, ·), while the globalized ground-truth figure/ground trains f(·, ·). Shown are
ground-truth training targets b̃, f̃ , and model predictions b, f , for one component of our stencil: the relationship between pixel p and its
neighbor at relative offset d = (−16, 0). Ground-truth b̃ is binary (blue=0, red=1). f̃ is also binary, except pixel pairs in the same region
(shown green) are ignored. As f is masked by b at test time, we require only that f(p, q) be correct when b(p, q) is close to 1.

making the total loss for b(·, ·):

L =
1

|Ω||N (p)|
∑
p∈Ω

∑
q∈N (p)

Llog (b̃(p, q), b(p, q)) (26)

with an analogous loss applied for f(·, ·). Here N (p) de-
notes all 24 neighbors of p according to the stencil pattern.

Using stochastic gradient descent with random initializa-
tion and momentum of 0.9, we train with batch size 32 for
5000 mini-batch iterations. Learning rates for each layer are
tuned by hand. We utilize data augmentation in the form of
translation and left-right mirroring of examples.

4. Experiments

Training our system for the generic perceptual task of
segmentation and figure/ground layering requires a dataset
fully annotated in this form. While there appears to be re-
newed interest in creating large-scale datasets with such an-
notation [39], none has yet been released. We therefore use
the Berkeley segmentation dataset [25] for training. Though
it consists of 500 images total, only 200 have been anno-
tated with ground-truth figure/ground [13]. We resplit this
subset of 200 images into 150 for training and 50 for testing.

The following subsections detail, how, even with such
scarcity of training data, our system achieves substantial im-
provements in figure/ground quality over prior work.

4.1. BSDS: Ground-truth Figure/Ground

Our model formulation relies on dense labeling of pixel
relationships. The BSDS ground-truth provides a dense seg-
mentation in the from of a region map, but only defines lo-
cal figure/ground relationships between pixels immediately
adjacent along a region boundary [13]. We would like to
train predictors for long-range figure/ground relationships
(our multiscale stencil pattern) in addition to short-range.

Figure 6 illustrates our method for overcoming this limi-
tation. Given perfect (e.g. ground-truth) short-range predic-
tions as input, Angular Embedding generates an extremely
high-quality global figure/ground estimate. In a real set-
ting, we want robustness by having many estimates of pair-
wise relations over many scales. Ground-truth short-range
connections suffice as they are perfect estimates. We use
the globalized ground-truth figure/ground map (column 4 in
Figure 6) as our training signalR in Equation 23. The usual
ground-truth segmentation serves as S in Equation 22.

4.2. BSDS: Segmentation & Figure/Ground Results

Figure 7 shows results on some examples from our 50
image test set. Compared to the previous attempt [22]
to use Angular Embedding as an inference engine for fig-
ure/ground, our results are strikingly better. It is visually
apparent that our system improves on every single example
in terms of figure/ground.

Our segmentation, as measured by boundary quality, is

5



Image Ground-truth F/G Spectral F/G

Maire [22]

Spectral F/G Spectral Boundaries Segmentation + F/G

Our System

Figure 7. Image segmentation and figure/ground results. We compare our system to ground-truth and the results of Maire [22].
Spectral F/G shows per-pixel figure/ground ordering according to the result of Angular Embedding. The colormap matches Figure 2,
with red denoting figure and blue denoting background. Spectral boundaries show soft boundary strength encoded by the eigenvectors.
These boundaries generate a hierarchical segmentation [2], one level of which we display in the final column with per-pixel figure/ground
averaged over regions. Note the drastic improvement in results over [22]. While [22] reflects a strong lower-region bias for figure, our
system learns to use image content and extracts foreground objects. All examples are from our resplit figure/ground test subset of BSDS.
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comparable to that of similar systems using spectral cluster-
ing for segmentation alone [2]. On the standard boundary
precision recall benchmark on BSDS, our spectral bound-
aries achieve an F-measure of 0.68, identical to that of the
spectral component (“spectral Pb”) of the gPb boundary de-
tector [2]. Thus, as a segmentation engine our system is
on par with the previous best spectral-clustering based sys-
tems.

As a system for joint segmentation and figure/ground or-
ganization, our system has few competitors. Use of Angular
Embedding to solve both problems at once is unique to our
system, and [22, 24]. Figure 7 shows an obvious huge jump
in figure/ground performance over [22].

4.3. BSDS: Figure/Ground Benchmark

To our knowledge, there is not a well-established bench-
marking methodology for dense figure/ground predictions.
While [34] propose metrics coupling figure/ground classi-
fication accuracy along boundaries to boundary detection
performance, we develop a simpler alternative.

Given a per-pixel figure/ground ordering assignment,
and a segmentation partitioning an image into regions, we
can easily order the regions according to figure/ground lay-
ering. Simply assign each region a rank order equal to the
mean figure/ground order of its member pixels. For robust-
ness to minor misalignment between the figure/ground as-
signment and the boundaries of regions in the segmentation,
we use median in place of mean.

This transfer procedure serves as a basis for comparing
different figure/ground orderings. We transfer them both
onto the same segmentation. In particular, given predicted
figure/ground ordering θ(·), ground-truth figure/ground or-
dering θ̃(·), and ground-truth segmentation S, we transfer
each of θ(·) and θ̃(·) onto S. This gives two orderings of
the regions in S, which we compare according to the fol-
lowing metrics:

• Pairwise region accuracy (R-ACC): For each pair of
neighboring regions in S, if the ground-truth fig-
ure/ground assignment shows them to be in different
layers, we test whether the predicted relative ordering
of these regions matches the ground-truth relative or-
dering. That is, we measure accuracy on the classifica-
tion problem of predicting which region is in front.

• Boundary ownership accuracy (B-ACC): We define
the front region as owning the pixels on the com-
mon boundary of the region pair and measure the
per-pixel accuracy of predicting boundary ownership.
This is a reweighting of R-ACC. In R-ACC, all region
pairs straddling a ground-truth figure/ground boundary
count equally. In B-ACC, their importance is weighted
according to length of the boundary.

Segmentation: Figure/Ground Prediction Accuracy
Ground-truth R-ACC B-ACC B-ACC-50 B-ACC-25

F/G: Ours 0.62 0.69 0.72 0.73
F/G: Maire [22] 0.56 0.58 0.56 0.56

Segmentation: Figure/Ground Prediction Accuracy
Ours R-ACC B-ACC B-ACC-50 B-ACC-25

F/G: Ours 0.66 0.70 0.69 0.67
F/G: Maire [22] 0.59 0.62 0.61 0.58

Table 1. Figure/ground benchmark results. After transferring
figure/ground predictions onto either ground-truth (upper table)
or our own (lower table) segmentations, we quantify accuracy of
local relative relationships. R-ACC is pairwise region accuracy:
considering all pairs of neighboring regions, what fraction are cor-
rectly ordered by relative figure/ground? B-ACC is boundary own-
ership accuracy: what fraction of boundary pixels have correct fig-
ure ownership assigned? B-ACC-50 and B-ACC-25 restrict mea-
surement to the boundaries of the 50% and 25% most foreground
regions (a proxy for foreground objects). Our system dramatically
outperforms [22] across all metrics.

• Boundary ownership of foreground regions (B-ACC-
50, B-ACC-25): Identical to B-ACC, except we only
consider boundaries which belong to the foreground-
most 50% or 25% of regions in the ground-truth fig-
ure/ground ordering of each image. These metrics em-
phasize the importance of correct predictions for fore-
ground objects while ignoring more distant objects.

Note that S need not be the ground-truth segmentation.
We can project ground-truth figure/ground onto any seg-
mentation (say, a machine-generated one) and compare to
predicted figure/ground projected onto that segmentation.

Table 1 reports a complete comparison of our fig-
ure/ground predictions and those of [22] against ground-
truth figure/ground on our 50 image test subset of
BSDS [25]. We consider both projection onto ground-truth
segmentation and onto our own system’s segmentation out-
put. For the latter, as our system produces hierarchical seg-
mentation, we use the region partition at a fixed level of the
hierarchy, calibrated for optimal boundary F-measure. Fig-
ures 8 and 9 provide visual comparison on 10 test images.

Across all metrics, our system significantly outper-
forms [22]. We achieve 69% and 70% boundary ownership
accuracy on ground-truth and automatic segmentation, re-
spectively, compared to 58% and 62% for [22].

4.4. Additional Datasets

Figure 10 demonstrates that our BSDS-trained system
captures generally-applicable notions of both segmentation
and figure/ground. On both PASCAL VOC [10] and the
Weizmann Horse database [5], it generates figure/ground
layering that respects scene organization. On the Weizmann
examples, though having only been trained for perceptual
organization, it behaves like an object detector.
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Image F/G: Ground-truth F/G: Maire [22] F/G: Ours

Figure/Ground Transferred onto Ground-truth Segmentation

Maire [22] Ours

Boundary Ownership Correctness

Figure 8. Figure/ground predictions measured on ground-truth segmentation. We transfer per-pixel figure/ground predictions
(columns 2 through 4 of Figure 7) onto the ground-truth segmentation by taking the median value over each region. For boundaries
separating regions with different ground-truth figure/ground layer assignments, we check whether the predicted owner (more figural re-
gion) matches the owner according to the ground-truth. The rightmost two columns mark correct boundary ownership predictions in green
and errors in red for both the results of Maire’s system [22] and our system. Note how we correctly predict ownership of object lower
boundaries (rows 6, 8, 10) and improve on small objects (row 7). Table 1 gives quantitative benchmarks.
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Image F/G: Ground-truth F/G: Maire [22] F/G: Ours

Figure/Ground Transferred onto Our Segmentation

Maire [22] Ours

Boundary Ownership Correctness

Figure 9. Figure/ground predictions measured on our segmentation. As in Figure 8, we transfer ground-truth figure/ground, Maire’s
figure/ground predictions [22], and our predictions onto a common segmentation. However, instead of using the ground-truth segmentation,
we transfer onto the segmentation generated by our system. The ground-truth figure/ground transferred onto our regions defines the
boundary ownership signal against which we judge predictions. Comparing with Figure 8, our boundary ownership predictions are mostly
consistent regardless of the segmentation (ground-truth or ours) to which they are applied. However, row 3 shows this is not the case
for [22]; here, its predicted correct ownership for the lower boundary relies on averaging out over a large ground-truth background region.
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Image F/G Boundaries Seg + F/G Image F/G Boundaries Seg + F/G

PASCAL VOC

Image F/G Boundaries Seg + F/G Image F/G Boundaries Seg + F/G

Weizmann Horses

Figure 10. Cross-domain generalization. Our system, trained only on the Berkeley segmentation dataset, generalizes to other datasets.
Here, we test on images from the PASCAL VOC dataset [10] and the Weizmann Horse database [5]. On PASCAL, our figure/ground
reflects object attention and scene layering. On the Weizmann images, our system acts essentially as a horse detection and segmentation
algorithm despite having no object-specific training. Its generic understanding of figure/ground suffices to automatically pick out objects.
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5. Conclusion
We demonstrate that Angular Embedding, acting on

CNN predictions about pairwise pixel relationships, pro-
vides a powerful framework for segmentation and fig-
ure/ground organization. Our work is the first to formulate
a robust interface between these two components. Our re-
sults are a dramatic improvement over prior attempts to use
spectral methods for figure/ground organization.
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[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. PAMI, 2011.
[3] G. Bertasius, J. Shi, and L. Torresani. DeepEdge: A multi-

scale bifurcated deep network for top-down contour detec-
tion. CVPR, 2015.

[4] G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-
for-high: Efficient boundary detection from deep object fea-
tures and its applications to high-level vision. ICCV, 2015.

[5] E. Borenstein and S. Ullman. Combined top-down/bottom-
up segmentation. PAMI, 2008.

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. arXiv:1412.7062,
ICLR, 2015.

[7] P. Dollár and C. L. Zitnick. Fast edge detection using struc-
tured forests. PAMI, 2015.

[8] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. CVPR, 2015.

[9] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. NIPS,
2014.

[10] M. Everingham, L. van Gool, C. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes (VOC)
challenge. IJCV, 2010.

[11] C. Fowlkes, D. Martin, and J. Malik. The Berke-
ley Segmentation Dataset and Benchmark (BSDB).
http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.

[12] C. Fowlkes, D. Martin, and J. Malik. Learning affinity func-
tions for image segmentation: Combining patch-based and
gradient-based approaches. CVPR, 2003.

[13] C. Fowlkes, D. Martin, and J. Malik. Local figure/ground
cues are valid for natural images. Journal of Vision, 2007.

[14] Y. Ganin and V. S. Lempitsky. N4-fields: Neural network
nearest neighbor fields for image transforms. ACCV, 2014.

[15] X. He and A. Yuille. Occlusion boundary detection using
pseudo-depth. ECCV, 2010.

[16] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Re-
covering occlusion boundaries from a single image. ICCV,
2007.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv:1408.5093,
2014.

[18] Z. Jia, A. Gallagher, Y.-J. Chang, and T. Chen. A learning
based framework for depth ordering. CVPR, 2012.

[19] A. Krizhevsky, S.Ilya, and G. E. Hinton. ImageNet classifi-
cation with deep convolutional neural networks. NIPS, 2012.

[20] G. Lin, C. Shen, I. Reid, and A. van den Hengel. Efficient
piecewise training of deep structured models for semantic
segmentation. CVPR, 2016.

[21] Y. Lu, W. Zhang, H. Lu, and X. Xue. Salient object detection
using concavity context. ICCV, 2011.

[22] M. Maire. Simultaneous segmentation and figure/ground or-
ganization using angular embedding. ECCV, 2010.

[23] M. Maire and S. X. Yu. Progressive multigrid eigensolvers
for multiscale spectral segmentation. ICCV, 2013.

[24] M. Maire, S. X. Yu, and P. Perona. Object detection and seg-
mentation from joint embedding of parts and pixels. ICCV,
2011.

[25] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. ICCV, 2001.

[26] T. Narihira, M. Maire, and S. X. Yu. Direct intrinsics: Learn-
ing albedo-shading decomposition by convolutional regres-
sion. ICCV, 2015.

[27] X. Ren, C. Fowlkes, and J. Malik. Figure/ground assignment
in natural images. ECCV, 2006.

[28] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deep-
Contour: A deep convolutional feature learned by positive-
sharing loss for contour detection. CVPR, 2015.

[29] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 2000.

[30] A. N. Stein and M. Hebert. Occlusion boundaries from mo-
tion: Low-level detection and mid-level reasoning. IJCV,
2009.

[31] D. Sun, C. Liu, and H. Pfister. Local layering for joint motion
estimation and occlusion detection. CVPR, 2014.

[32] P. Sundberg, T. Brox, M. Maire, P. Arbeláez, and J. Malik.
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