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Abstract [ I Original I Q-CNN]
15 Time Consumption (s) 400 Storage Consumption (MB)
Recently, convolutional neural networks (CNN) ha
demonstrated impressive performance in various compi 10 300
vision tasks. However, high performance hardware is t 200

ically indispensable for the application of CNN mode 5

due to the high computation complexity, which prohib 10

their further extensions. In this paper, we propose an € ——— ONNS Y ONNS
cient framework, namely Quantized CNN, to simultaneot

speed-up the computation and reduce the storageandn ,,  Memory Consumption (M) - Top-5 Error Rate (%)
ory overhead of CNN models. Both filter kernels in cc 2

volutional layers and weighting matrices in fully-conrextt w00 s

layers are quantized, aiming at minimizing the estimati

error of each layer’s response. Extensive experiments TZZ 1:

the ILSVRC-12 benchmark demonstrate- 6x speed-up
and 15 ~ 20x compression with merely one percenta 0 AlexNet CNN-S 0 AlexNet CNN-S
loss of classification accuracy. With our quantized CNN Figure 1. Comparison on the efficiency and classificationimy

model, even mobile devices can accurately classify imagesetween the original and quantized AlexNef]and CNN-S []
within one second. on a Huawe® Mate 7 smartphone.

1. Introduction and compress the memory consumption for CNN models.

For most CNNSs, convolutional layers are the most time-

In recent years, we have witnessed the great succesgqnsyming part, while fully-connected layers involve mas-
of convolutional neural networks (CNN)L{] in a wide g network parameters. Due to the intrinsical differ-

range of visual applications, including image classifati  once petween them, existing works usually focus on im-
[16, 27], object detection0, 9, age estimationd4, 2, proving the efficiency for either convolutional layers or
etc. This success mainly comes from deeper network arfylly-connected layers. In7 13, 32, 31, 18, 17], low-
chitectures as well as the tremendous training data. HOW-rn anproximation or tensor decomposition is adopted to
ever, as the network grows deeper, the model complexity iSgpeeq-up convolutional layers. On the other hand, param-
also increasing exponentially in both the training andiest  oter compression in fully-connected layers is explored in
stages, which leads to the very high demand in the computaI3 7,11, 30, 2, 12, 28] Overall, the above-mentioned al-
tion ability. For instance, the 8-layer AIexNétg involves  5rithms are able to achieve faster speed or less storage.
60M parameters and requires over 729M FLA®@slassify — oyever, few of them can achieve significant acceleration

a single image. Although the training stage can be offline 54 compression simultaneously for the whole network.
carried out on high performance clusters with GPU acceler- In this paper, we propose a unified framework for con-

ation, the testing clomputa:?on COS(;[ ma;tg_tlJe(ljma_ffordagle f(;rvolutional networks, namely Quantized CNN (Q-CNN), to
common persona’ computers and mobile devices. Due Osimultaneously accelerate and compress CNN models with
the limited computation ability and memory space, mobile

devices are almost intractable to run deep convolutiortalne ~ 1r| ops: number of FLoating-point OPerations required tesifg one

works. Therefore, itis crucial to accelerate the compaiati  image with the convolutional network.
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only minor performance degradation. With network pa- R%*?xC: and response feature maps ¢ R%*d:xCt,
rameters quantized, the response of both convolutional andvhered,, d; are the spatial sizes aidd,, C; are the number
fully-connected layers can be efficiently estimated via the of feature map channels. The response at the 2-D spatial
approximate inner product computation. We minimize the positionp, in the ¢;-th response feature map is computed
estimation error of each layer’s response during parameteras:

guantization, which can better preserve the model perfor- T, (ct) = Z
mance. In order to suppress the accumulative error while P (
guantizing multiple layers, an effective training scheme i dexd X )
introduced to take previous estimation error into consider wherelV,, € R%>@* s thec;-th convolutional kernel
ation. Our Q-CNN model enables fast test-phase compu-aNddx is the kernel size. We use andp; to denote the

tation, and the storage and memory consumption are als-D spatial positions in the input feature maps and convolu-
significantly reduced. tional kernels, and boti,, ,, andsS,  areC;-dimensional

We evaluate our Q-CNN framework for image classi- vectors. The layer response is the sum of inner products at

fication on two benchmarks, MNIST2{] and ILSVRC-  all positions within thel; x dj receptive field in the input
12 [26]. For MNIST, our Q-CNN approach achieves over €alure maps.

<W0tapk ) S;Ds> (1)

Pk»Ps)

12x compression for two neural networks (no convolu-  Similarly, for a fully-connected layer, we have:
tion), with lower accuracy loss than several baseline meth-
ods. For ILSVRC-12, we attempt to improve the test-phase T(ct) = (We,, ) (2)

efficiency of four convolutional networks: AlexNei ],

CaffeNet [L5), CNN-S [1], and VGG-16 P7]. Generally, whereS € R% andT € R are the layer input and layer

Q-CNN achieves 4 acceleration and5x compression — response, respectively, antl., € R is the weighting

(sometimes higher) for each network, with less than 1% vector for thec;-th neuron of this layer.

drop in the top-5 classification accuracy. Moreover, we im-  Product quantizationl[] is widely used in approximate

plement the quantized CNN model on mobile devices, andnearest neighbor search, demonstrating better perfonanc

dramatically improve the test-phase efficiency, as degicte than hashing-based methodsl[27]. The idea is to de-

in Figurel. The main contributions of this paper can be compose the feature space as the Cartesian product of mul-

summarized as follows: tiple subspaces, and then learn sub-codebooks for each sub-

space. A vector is represented by the concatenation of sub-
 We propose a unified Q-CNN framework to acceler- codewords for efficient distance computation and storage.

ate and compress convolutional networks. We demon- |, this paper, we leverage product quantization to imple-

strate that better quantization can be learned by mini- et the efficient inner product computation. Let us con-
mizing the estimation error o_f (_each layer's response.  giger the inner product computation betweeg € R At

* We propose an effective training scheme to SUPPresStrst poths: andy are split intoM sub-vectors, denoted as
the accumulative error while quantizing the whole con- .(m) andy(™. Afterwards, each:"™ is quantized with a

volutional network. . sub-codeword from ther-th sub-codebook, then we have
e Our Q-CNN framework achieve$ ~ 6x speed-up

and15 ~ 20x compression, while the classification _ (m) (m)\ ~ (m) .(m) 3
accuracy loss is within one percentage. Moreover, the {y,) Zm<y ) Zm<y ) G)
guantized CNN model can be implemented on mobile

devices and classify an image within one second. which transforms thé (D) inner product computation to

M addition operationsi/ < D), if the inner products be-
tween each sub-vectgf™ and all the sub-codewords in
them-th sub-codebook have been computed in advance.

During the test phase of convolutional networks, the  Quantization-based approaches have been explored in
computation overhead is dominated by convolutional lay- several works 11, 2, 17]. These approaches mostly fo-
ers; meanwhile, the majority of network parameters are cus on compressing parameters in fully-connected layers
stored in fully-connected layers. Therefore, for bettst-te  [11, 2], and none of them can provide acceleration for the
phase efficiency, it is critical to speed-up the convolution test-phase computation. Furthermorgl,[12] require the
computation and compress parameters in fully-connectednetwork parameters to be re-constructed during the test-
layers. phase, which limit the compression to disk storage instead

Our observation is that the forward-passing process ofof memory consumption. On the contrary, our approach
both convolutional and fully-connected layers is domidate offers simultaneous acceleration and compression for both
by the computation of inner products. More formally, we convolutional and fully-connected layers, and can reduce
consider a convolutional layer with input feature maps the run-time memory consumption dramatically.

2. Preliminary



3. Quant'zed CN N tayer input Weighting Matrix Layer Response

In this section, we present our approach for accelerating /., = v |
and compressing convolutional networks. Firstly, we intro [/ Approximate
duce an efficient test-phase computation process with the /| -y : Response

i Computation
network parameters quantized. Secondly, we demonstrate,

Z*i

that better quantization can be learned by directly minimiz

ing the estimation error of each layer’s response. Finally,

we analyze the computation complexity of our quantized || “ereoc” R

CNN model. ‘ -— —e

3.1. Quantizing the Fully-connected Layer X _-—) = 5
For a fully-connected layer, we denote its weighting ma- . ; !

trix asW € R¢*C: whereC, andC; are the dimensions -_— X - —p ——

of the layer input and response, respectively. The weightin Inner Product

Pre-computation

vectorW,, is thec;-th column vector inV'.

We evenly split theCs-dimensional space (whefé’,,
lies in) into M subspaces, each 6f, = C,/M dimen-
sions. EachV,, is then decomposed intd/ sub-vectors,
denoted adV{™ . A sub-codebook can be learned for each 3.2. Quantizing the Convolutional Layer
subspace after gathering all the sub-vectors within this su
space. Formally, for the:-th subspace, we optimize:

Figure 2. The parameter quantization and test-phase caimput
process of the fully-connected layer.

Unlike the 1-D weighting vector in the fully-connected
layer, each convolutional kernel is a 3-dimensional tensor
W,, € RixdexCs Before quantization, we need to deter-
) mine how to split it into sub-vectors, i.e. apply subspace

splitting to which dimension. During the test phase, the in-
put feature maps are traversed by each convolutional kernel
with a sliding window in the spatial domain. Since these
sliding windows are partially overlapped, we split each-con
K sub-codewords, and each column&&™ is an indica- volutional kernel along the dimension of feature map chan-
tor vector (only one non-zero entry), specifying which sub- N€lS, so that the pre-computed inner products can be re-
codeword is used to quantize the corresponding sub-vectorUSed at multiple spatial locations. Specifically, we leden t

The optimization can be solved via k-means clustering. ~ duantization in each subspace by:
The layer response is approximately computed as:

min HD<m>B<m> - W<m>H2
D(m) B(m) F

s.t. D™ g ROXK Blm) ¢ o 1}KxCe

whereW (m) ¢ RC:xC: consists of then-th sub-vectors
of all weighting vectors. The sub-codebobk™) contains

2

T(ct) = Z <V[/C(:ﬂ)7 S(m)> ~ Z <D(m)B£1n)7s(m)> D(M),{ng)} Zpk b Sl (6)
h " ©) ,
=2, Dy 5™) st. D™ e REXK Blm) e {0, 1}Cr
whereB;" is thec, th column vector in5 ™), ands (" is where W™ € RCxC contains then-th sub-vectors of
them-th sub-vector of the layer input:,,,(c;) is the index  all convolutional kernels at positiop,. The optimization
of the sub-codeword used to quantize the sub-vd&/ﬁfj?). can also be solved by k-means clustering in each subspace.

In Figure 2, we depict the parameter quantization and  With the convolutional kernels quantized, we approxi-
test-phase computation process of the fully-connectextlay mately compute the response feature maps by:
By decomposing the weighting matrix indd sub-matrices,
M sub-codebooks can be learned, one per subspace. During Ty, (ct) = Z( ) Zm<Wc(,Tp)k5 5;(72”)>

the test-phase, the layer input is split inté sub-vectors, Probs

denoted ass (™). For each subspace, we compute the inner ~ Z(pk 2] Zm@(m)BéngaSﬁ)) 7)
products betwees (™ and every sub-codeword iR("), (m) (m)
and store the results in a look-up table. Afterwards, ddly - Z(,,k,ps) Zm@km(ct,pk)’ pe )

addition operations are required to compute each response.

As aresult, the overall time complexity can be reduced from WhereSZE)T) is them-th sub-vector at positiop, in the in-
O(C,Cy) to O(CsK + CyM). On the other hand, only put feature maps, ankl,,(c;, pr) is the index of the sub-
sub-codebooks and quantization indices need to be storedgodeword to quantize the-th sub-vector at positiopy, in
which can dramatically reduce the storage consumption. thec;-th convolutional kernel.



Similar to the fully-connected layer, we pre-compute the and the above optimization can be solved by alternatively
look-up tables of inner products with the input feature maps updating the sub-codebook and sub-codeword assignment.
Then, the response feature maps are approximately com- Update D(™). We fix the sub-codeword assignment
puted with {7), and both the time and storage complexity B(™, and defineL, = {¢,|B")(k,¢;) = 1}. The opti-

can be greatly reduced. mization in (LO) can be re-formulated as:
3.3. Quantization with Error Correction : m)(.\ _ nmT o(m)2
Q min » quLk [R(™(cr) — D™ SU™1? (11)

(m)
So far, we have presented an intuitive approach to quan- D
tize parameters and improve the test-phase efficiency ofyhich implies that the optimization over one sub-codeword
convolutional networks. However, there are still two crit- goes not affect other sub-codewords. Hence, for each sub-

ical drawbacks. First, minimizing the quantization error codeword, we construct a least square problem frbintp
of model parameters does not necessarily give the optimal,pqate jt.

guantized network for the classification accuracy. In con- Update B(™. With the sub-codeboo®(™ fixed, it
trast, minimizing the estimation error of each layer's re- s easy to discover that the optimization of each column in
sponse is more closely related to the network’s classifica- p(m) s muytually independent. For the-th column, its
tion performance. Second, the quantization of one layer is gptimal sub-codeword assignment is given by:
independent of others, which may lead to the accumulation
of error when quantizing multiple layers. The estimation .« (cr) = argmmz [R(m)(ct) _pim
error of the network’s final response is very likely to be " k no " F
quickly accumulated, since the error introduced by the pre-
vious quantized layers will also affect the following lager ~ 3-3.2  Error Correction for the Convolutional Layer

To overcome these two limitations, we introduce the idea e adopt the similar idea to minimize the estimation error
of error correction into the quantization of network param- of the convolutional layer’s response feature maps, that is
eters. This improved quantization approach directly min-
imizes the estimation error of the response at each layer,
and can compensate the error introduced by previous lay- min () Z
ers. With the error correction scheme, we can quantize the (DUABY e
network with much less performance degradation than the
original quantization method.

)T

SV (12)

2

Tope = D Y (D™ BE)TST)

(Prps) ™

F
13)
The optimization also can be solved by block coordinate
descent. More details on solving this optimization can be

) found in the supplementary material.
3.3.1 Error Correction for the Fully-connected Layer

Suppose we hava/ images to learn the quantization of a 3.3.3 Error Correction for Multiple Layers
fully-connected layer, and the layer input and response of
imagel,, are denoted a$§,, andT,,. In order to minimize
the estimation error of the layer response, we optimize:

The above quantization method can be sequentially applied
to each layer in the CNN model. One concern is that the
estimation error of layer response caused by the previous

) ( (m\T () || layers will be accumulated and affect the quantization of
U R Zn T, — Zm(D ™ By Snm)HF the following layers. Here, we propose an effective tragnin
' (8) scheme to address this issue.

where the first term in the Frobenius norm is the desired W€ consider the quantization of a specific layer, assum-

layer response, and the second term is the approximatedd itS previous layers have already been quantized. The
layer response computed via the quantized parameters. optimization of parameter quantization is based on therlaye

A block coordinate descent approach can be applied to!NPUt and response of a group of training images. To quan-

minimize this objective function. For the-th subspace, its tize this layer, we take the layer input in the quantized net-
residual error is defined as: work as{S, }, and the layer response in the original net-

work (not quantized) a$7;,} in Eq. @) and (L3). In this
R™ =T, — Z (D(m/)B(m'))TS,(lm') Q) way, the optimization is guided by the actual input in the
m#Em guantized network and the desired response in the original

network. The accumulative error introduced by the previ-
ous layers is explicitly taken into consideration during op
timization. In consequence, this training scheme can effec
tively suppress the accumulative error for the quantizatio
of multiple layers.

and then we attempt to minimize the residual error of this
subspace, which is:

min E
D(m) B(m) n

2
R(™ _ (D<m>B<m>)TS,<lm>HF (10)




Another possible solution is to adopt back-propagation the connection weights (or even network activations) with
to jointly update the sub-codebooks and sub-codeword as{ixed-point numbers, the computation can greatly benefit
signments in all quantized layers. However, since the sub-from hardware acceleration.
codeword assignments are discrete, the gradient-based op- Another parallel research trend is to compress parame-
timization can be quite difficult, if not entirely impossibl  ters in fully-connected layers. Ciresan et &) fandomly
Therefore, back-propagation is not adopted here, but couldremove connection to reduce network parameters. Matrix
be a promising extension for future work. factorization was adopted i [ 7] to decompose the weight-
ing matrix into two low-rank matrices, which demonstrated
that significant redundancy did exist in network parameters

Now we analyze the test-phase computation complex-Hinton et al. B] proposed to use dark knowledge (the re-
ity of convolutional and fully-connected layers, with or sponse of a well-trained network) to guide the training of
without parameter quantization. For our proposed Q-CNN a much smaller network, which was superior than directly
model, the forward-passing through each layer mainly con- training. By exploring the similarity among neurons, Srini
sists of two procedures: pre-computation of inner products vas et al. P& proposed a systematic way to remove redun-
and approximate computation of layer response. Both sub-dant neurons instead of network connections 3ltj,[mul-
codebooks and sub-codeword assignments are stored for théple fully-connected layers were replaced by a single tFas
test-phase computation. We report the detailed comparisorfood” layer, which can be trained in an end-to-end style with
on the computation and storage overhead in Table convolutional layers. Chen et al.2][randomly grouped

connection weights into hash buckets, and then fine-tuned
Table 1. .Comparison on the computation and storage oveidfead the network with back-propagation14] combined prun-
convolutional and fully-connected layers. ing, quantization, and Huffman coding to achieve higher

3.4. Computation Complexity

Conv. QC(IEINNN pEre ‘;g%‘é%gsdzM compression rate. Gong et all1] adopted vector quanti-
FLOPs _ 58 t %% zation to compress the weighing matrix, which was actually
FCnt. CNN CsCy a special case of our approach (apply Q-CNN without error
Q-CNN CK + GM correction to fully-connected layers only).
Conv CNN 4d:CsCy
Bytes "| Q-CNN | 4C, K + édﬁMCt logy K 5. Experiments
FCnt. CNN 4CCy _ _ _
Q-CNN | 4C,K + éMCt log, K In this section, we evaluate our quantized CNN frame-

work on two image classification benchmarks, MNIST]|[
As we can see from Tablg the reduction in the compu- and ILSVRC-12 pPg]. For the acceleration of convolutional
tation and storage overhead largely depends on two hyperl@yers, we compare with:

parameters) (number of subspaces) ard (number of e CPD[17): CP-Decomposition;

sub-codewords in each subspace). Large valuéd @ind e GBD [1]]: Group-wise Brain Damage;

K lead to more fine-grained quantization, but is less effi- ¢ LANR [31]: Low-rank Approximation of Non-linear
cient in the computation and storage consumption. In prac- Responses.

tice, we can vary these two parameters to balance the trade- _

off between the test-phase efficiency and accuracy loss ofd for the compression of fully-connected layers, we com-
the quantized CNN model. pare with the following approaches:

RER [3]: Random Edge Removal;

LRD [6]: Low-Rank Decomposition;

DK [8]: Dark Knowledge;

[ ]
4. Related Work .
[ ]
e HashNet[?]: Hashed Neural Nets;
[ ]
[ ]
[ ]

There have been a few attempts in accelerating the test-
phase computation of convolutional networks, and many are
inspired from the Io_w-rank decomposition. D_e_nton et_al. SVD [7]: Singular Value Decomposition:
[7] presented a series of low-rank decomposition designs ) .
for convolutional kernels. Similarly, CP-decompositioasv DFC [3(]: Deep Fried Convnets.

Y, p
adopted in [ 7] to transform a convolutional layer into mul-  For all above baselines, we use their reported results under
tiple layers with lower complexity. Zhang et al37, 31] the same setting for fair comparison. We report the theo-
considered the subsequent nonlinear units while learningretical speed-up for more consistent results, since the rea
the low-rank decomposition1 ] applied group-wise prun- istic speed-up may be affected by various facterg,CPU,
ing to the convolutional tensor to decompose it into the mul- cache, and RAM. We compare the theoretical and realistic
tiplications of thinned dense matrices. Recently, fixed¥po  speed-up in Sectioh.4, and discuss the effect of adopting
based approaches are exploredinZ5]. By representing  the BLAS library for acceleration.

DPP[28]: Data-free Parameter Pruning;



Our approaches are denoted as “Q-CNN” and “Q-CNN 16 [27]. The first two models have been adopted in several
(EC)", where the latter one adopts error correction whike th  related works, and therefore are included for comparison.
former one does not. We implement the optimization pro- CNN-S and VGG-16 use a either wider or deeper structure
cess of parameter quantization in MATLAB, and fine-tune for better classification accuracy, and are included here to
the resulting network with Caffel[]. Additional results of prove the scalability of our approach. We compare all these
our approach can be found in the supplementary material. networks’ computation and storage overhead in Tapte-

5 1. Results on MNIST gether with their classification error rates on ILSVRC-12.
. . . Table 3. Comparison on the test-phase computation overhead
. The MNIST dataset f:(?ntalns 70kimages (_)f hand-written (FLOPs), storrfge consumption (ByF‘ses), and cFI)assificatimre
digits, 60k used fqr training and 10k for testlng. To evalu- [4tes (Top-1/5 Err.) of AlexNet, CaffeNet, CNN-S, and VG6-1
ate the compression performance, we pre-train two neural ~ Model [ FLOPs | Bytes | Top-LErr. | Top-5 Err.
networks, one is 3-layer and another one is 5-layer, where =Nt | 7.20e+8 | 2.446+8| 42.78% | 19.74%
each hidden layer contains 1000 units. Different compres- ~caffeNet | 7.27e+8 | 2.446+8| 42.53% | 19.59%
sion techniques are then adopted to compress these two net=cNN-S | 2.94e+9 | 4.12e+8| 37.31% | 15.82%
work, and the results are as depicted in Téble VGG-16 | 1.55e+10| 553e+8| 28.89% 10.05%

Table 2. Comparison on the compression rates and clasiificat
error on MNIST, based on a 3-layer network (784-1000-10)and

5-layer network (784-1000-1000-1000-10). 5.2.1 Quantizing the Convolutional Layer
Method 3-layer S-layer To begin with, we quantize the second convolutional layer
Compr.| Error | Compr.| Error S . ) )
— of AlexNet, which is the most time-consuming layer during
Original | - [135%[ - [112% the test-phase. In Table we report the performance un-
RER [3] 8x 2.19% | 8x 1.24% der severalC’, K) settings, comparing with two baseline
LRD [6] 8x 1.89% | 8x 1.77% methods, CPD17] and GBD [.g].
DK 4] 8 1.71% 8 1.26% Table 4. Comparison on the speed-up rates and the incretge of
0 0 : -
HashNets{] Bx 1.43% Bx 1.22% 1/5 error rates for accelerating the second convoluticagd in
Q-CNN 12.1x | 1.42% | 13.4x | 1.34% AlexNet, with or without fine-tuning (FT). The hyper-paraiees
Q-CNN (EC) | 12.1x | 1.39% | 13.4x | 1.19% of Q-CNN, C% and K, are as specified in the “Para.” column.
Method ‘ Para. ‘ Speed—upl N(;I"(iEl)_—llErr.'IT I NoTIS'IF')_5| Err.":rT
In our Q-CNN framework, the trade-off between accu- - > 1o - - 094% | 044%
racy and efficiency is controlled by/ (number of sub- CPD - 4.52% - - 3.20% | 1.22%
. - 6.5Ix - - 69.06% | 18.63%
spaces) and< (number of sub-codewrods in each sub- - 333 | 2A3% 0% | - -
space). Sincd/ = C,/C, is determined oncé€’, is given, GBD - 5.00x | 21.93% | 0.43%

10.00x 48.33% | 1.13%

we tune(C”, K) to adjust the quantization precision. In Ta- - -
464 | 3./0x | 10.55% | 1.63% | 8.97% | 1.37%
ble 2, we set the hyper-parameterﬂs: 4 andK = 32. O-CNN 6/64 5.36x 15.93% | 2.90% | 14.71% | 2.27%
From Table2, we observe that our Q-CNN (EC) ap- G128 | 484x | 10.62% | 157% | 9.10% | 1.28%
. . . 8/128 6.06x 18.84% | 2.91% | 18.05% 2.66%
proach offers higher compression rates with less perfor- /64 T 3.70x 035% [ 020% 1 0279% 1 0.17%

mance degradation than all baselines for both networks. QCNN | 6/64 | 5.36x 0.64% | 0.39% | 0.50% | 0.40%
. . S . (EC) [6/128| 4.84x | 0.27% | 0.11% | 0.34% | 0.21%
The error correction scheme is effective in reducing the ac- 87128 | 6.06% 055% | 033% | 050% | 031%
curacy loss, especially for deeper networks (5-layer)oAls
we find the performance of both Q-CNN and Q-CNN (EC)  From Table4, we discover that with a large speed-up
quite stable, as the standard deviation of five random runs israte (over 4), the performance loss of both CPD and GBD
merely 0.05%. Therefore, we report the single-run perfor- become severe, especially before fine-tuning. The naive
mance in the remaining experiments. parameter quantization method also suffers from the sim-
ilar problem. By incorporating the idea of error correction
5.2. Results on ILSVRC-12 our Q-CNN model achieves up toGspeed-up with merely
The ILSVRC-12 benchmark consists of over one million 0.6% drop in accuracy, even without fine-tuning. The ac-
training images drawn from 1000 categories, and a disjoint curacy loss can be further reduced after fine-tuning the sub-
validation set of 50k images. We report both the top-1 and sequent layers. Hence, it is more effective to minimize the
top-5 classification error rates on the validation set, gisin estimation error of each layer’s response than minimize the
single-view testing (central patch only). guantization error of network parameters.
We demonstrate our approach on four convolutional net-  Next, we take one step further and attempt to speed-up
works: AlexNet [L6], CaffeNet [L5], CNN-S [1], and VGG- all the convolutional layers in AlexNet with Q-CNN (EC).




Table 5. Comparison on the speed-up/compression ratefiamacrease of top-1/5 error rates for accelerating all thewalutional layers
in AlexNet and VGG-16.

. Top-1 Err.t Top-5 Err.t
Model Method Para. | Speed-up| Compressio NoFT[ FT NoFT| FT
4/64 3.32x 10.58x 1.33% - 0.94% -
AlexNet Q-CNN 6/64 4.32x 14.32« 2.32% - 1.90% -
(EC) 6/128 | 3.71x 10.27x 1.44% | 0.13%| 1.16% | 0.36%
8/128 | 4.27x 12.08x 2.25% | 0.99% | 1.64% | 0.60%
VGG-16 LANR [3]] - 4.00x 2.73x - - 0.95% | 0.35%
Q-CNN (EC) | 6/128| 4.06x 14.40x 3.04% | 1.06% | 1.83% | 0.45%

We fix the quantization hyper-parametéfé , K) across all Table 6. Comparison on the compression rates and the imcoéas
f top-1/5 error rates for compressing the first fully-coneddayer

layers. From Tabl®, we observe that the loss in accuracy . _ ) )
. . in CaffeNet, without fine-tuning.
grows mildly than the single-layer case. The speed-up rates Method | Para. | Compression] Top-TET | Top5EM T

reported here are consistently smaller than those in Fable T.10% 0.16% -
since the acceleration effect is less significant for some la DPP - 1-3? 411'322;0 -
. - 91X . (J
ers (i.e. “conv4” and “conv5”). For AlexNet, our Q-CNN - > 75x 5.68% -
model (C, = 8, K = 128) can accelerate the computation - ;ggx 8-8?2;0 -8-8?://0
. . - . X . (] B (]
of all the convolutional layers by a factor of 4.27while SvD - 5 5% 036% 0-19%
the increase in the top-1 and top-5 error rates are no more - 11.08x 1.23% 0.86%
than 2.5%. After fine-tuning the remaining fully-connected 216 | 15.06¢ 0.19% 0.19%
_CNN 3716 21.94x 0.35% 0.28%
layers, the performance loss can be further reduced to less Q 3132 T6.70x 0.18% 0.12%
than 1%. 732 21.33x 0.28% 0.16%
. . 2/16 15.06x 0.10% 0.07%
In Table5, we also report the comparison against LANR Q-CNN [ 3716 21.94% 0.18% 0.03%
. imi . i (EC) [3732 16.70x 0.14% 0.11%
[31] on VGG-16. For the similar speed-up ratex(4 their s e il I

approach outperforms ours in the top-5 classification error
(anincrease of 0.95% against 1.83%). After fine-tuning, the
performance gap is narrowed down to 0.35% against 0.45%setting C. = 1,K = 16) for this layer. Although the
At the same time, our approach offers ovérx compres-  speed-up effect no longer exists, we can still achieve atoun
sion of parameters in convolutional layers, much largentha 8x compression for the last layer.

theirs2.7x compressiof Therefore, our approach is effec-

tive in accelerating and compressing networks with many Table 7. Comparison on the compression rates and the ircoéas

convolutional layers, with only minor performance loss.  top-1/5 error rates for compressing all the fully-connddegyers
in CaffeNet. Both SVD and DFC are fine-tuned, while Q-CNN

and Q-CNN (EC) are not fine-tuned.

5.2.2 Quamizmg the Fully—connected Layer Method [ Para. | Compression] Top-1Err.T [ Top-5 Err.t
: , . . SVD - T.26x 0.14% -
For demonstration, we first compress parameters in a single - 250% 122% -
fully-connected layer. In CaffeNet, the first fully-conned DEC - g-;gx 836f;/°
e - 00X . (J -
layer possesses over 37 million parametégd § x 4096), =T o S W)
more than 60% of whole network parameters. Our Q-CNN o-cnn [ 16 T19.14x 0.70% 0.47%

; ; : 3132 15.25¢ 0.44% 0.34%
approachis _adopted to quantize this layer and the reselts ar — —— —— —
as reported in Tablé. The performance loss of our Q-CNN 2716 13.96x 0.31% 0.30%

i - it 0 ioh i Q-CNN [3716 19.14x 0.59% 0.47%
model is n_egllglble (within 0.4%), which is much smaller £0) 3 e R iy
than baseline methods (DPP and SVD). Furthermore, error 732 18.71x 057% 0.39%
correction is effective in preserving the classificationwac
racy, especially under a higher compression rate. From Table7, we discover that with less than 1% drop in

Now we evaluate our approach’s performance for com- accuracy, Q-CNN achieves high compression rat@s~
pressing all the fully-connected layers in CaffeNet in Ta- 20x), much larger than that of SViand DFC g 4x).
ble 7. The third layer is actually the combination of 1000 Again, Q-CNN with error correction consistently outper-
classifiers, and is more critical to the classification agcur  forms the naive Q-CNN approach as adopted.if.[

Hence, we adopt a much more fine-grained hyper-parameter

3In Table6, SVD means replacing the weighting matrix with the multi-
2The compression effect of their approach was not explidisgussed plication of two low-rank matrices; in Tablé SVD means fine-tuning the
in the paper; we estimate the compression rate based ordgsaription. network after the low-rank matrix decomposition.




Table 9. Comparison on the time, storage, memory consumptio
and top-5 classification error rates of the original and tjgad

So far, we have evaluated the performance of CNN modelsAlexNetM%r(lngCNN-S-

5.2.3 Quantizing the Whole Network

. . . [ Time | Storage [ Memory [ Top-5Err
Wlth either convolutional or fuIIy—conn(_acte_d layers quan- — T om 5035 | 230 56m5 | 264 7ame | 19 740
tized. Now we demonstrate the quantization of the whole Q-CNN | 005s| 12.60MB | 74.65MB | 20.70%

i . i CNN | 10.58s | 392.57MB | 468.90MB | 15.82%
network with a three-stage strategy. Firstly, we quantize a CNN-S | NN ——Z8Ts T 20-13WB | T2040ME | T6-65%

the convolutional layers with error correction, while full
connected layers remain untouched. Secondly, we fine-tune

fully-connected layers in the quantized network with the quired run-time memory is only one quarter of the original
ILSVRC-12 training set to restore the classification accu- ygdel. At the same time, the loss in the top-5 classification
racy. Finally, fu_lly-con_nected layers in_the fine-tuned-net accuracy is no more than 1%. Therefore, our proposed ap-
work are quantized with error corr_ectlon. We report the proach improves the run-time efficiency in multiple aspects
performance of our Q-CNN models in Talile making the deployment of CNN models become tractable

Table 8. The speed-up/compression rates and the increasp-of on mobile platforms.

1/5 error rates for the whole CNN model. Particularly, foe th
quantization of the third fully-connected layer in eachweak,

we letC! = 1andK = 16.
Para.

5.4. Theoretical vs. Realistic Speed-up

In Table 10, we compare the theoretical and realistic

Model | —~o-——Fcnt Speed-up‘ Compression| Top-1/5 Err.t speed-up on AlexNet. The BLAS{] library is used in
8/128 | 3/32 | 4.05x 15.40x 1.38%/0.84% Caffe [15] to accelerate the matrix multiplication in con-
AlexNet |\ —gros a2 T 415« 18.76x | L.46%/0.97% : ;
o St e el volutional and fully-connected layers. However, it may not
CafteNet —grrg a2 | 4.14x 18.76< | 1.54%/1.12% always be an option for mobile devices. Therefore, we mea-
CNN-s | 8128 | 8732 | 5.69x 1632 | 148%/0.81% sure the run-time speed under two settirigs with BLAS
87128 4732 5.78x 20.16x 1.64% 70.85% . .. . .
VGG.16 | 6128 [ 3732 | 405¢ 16.55 1.02%70.53% enabled or disabled. The realistic speed-up is slightlyelow
67128 [ 4/32 | 4.06x 20.34¢ 1.35%70.58% with BLAS on, indicating that Q-CNN does not benefit as

much from BLAS as that of CNN. Other optimization tech-
niquese.g SIMD, SSE, and AVX{], may further improve
our realistic speed-up, and shall be explored in the future.

For convolutional layers, we let! = 8 and K = 128
for AlexNet, CaffeNet, and CNN-S, and lét. = 6 and
K = 128 for VGG-16, to ensure roughly ~ 6x speed-
up for each network. Then we vary the hyper-parameter Table 10. Comparison on the theoretical and realistic sjgenh
settings in fully-connected layers for different compiess  AlexNet (CPU only, single-threaded). Here we use the ATLAS
levels. For the former two networks, we achieve<i@m-  library, which is the default BLAS choice in Caffe].

. . . . . FLOP! Ti S d-
pression with about 1% loss in the top-5 classification accu- BLAS I CNN | S_CNN | CNN'me| ('B?;NN I Thecfef EEaL
racy. For CNN-S, we achieve 5.%8peed-up and 20.16 OF | 7 20e+8| 1.750+g | 22110 | 7562 | , o | 4.25¢
compression, while the top-5 classification accuracy dsop i On 167.7 55.35 3.03x

merely 0.85%. The result on VGG-16 is even more encour-

aging: with 4.06< speed-up and 20.34 the increase of

top-5 error rate is only 0.58%. Hence, our proposed Q-CNN 6. Conclusion
framework can improve the efficiency of convolutional net-

works with minor performance loss, which is acceptable in
many applications.

5.3. Results on Mobile Devices

We have developed an Android application to fulfill
CNN-based image classification on mobile devices, base
on our Q-CNN framework. The experiments are carried
out on a Huawé? Mate 7 smartphone, equipped with an

In this paper, we propose a unified framework to si-
multaneously accelerate and compress convolutional heura
networks. We quantize network parameters to enable ef-
ficient test-phase computation. Extensive experiments are
conducted on MNIST and ILSVRC-12, and our approach

qachieves outstanding speed-up and compression rates, with

only negligible loss in the classification accuracy.

1.8GHz Kirin 925 CPU. The test-phase computation is car- /- Acknowledgement

ried out on a single CPU core, without GPU acceleration.
In Table9, we compare the computation efficiency and
classification accuracy of the original and quantized CNN
models. Our Q-CNN framework achieves 3peed-up for
AlexNet, and 4 speed-up for CNN-S. What's more, we
compress the storage consumption by 20and the re-

This work was supported in part by National Natural Sci-
ence Foundation of China (Grant No. 61332016), and 863
program (Grant No. 2014AA015105).

4This is Caffe’s run-time speed. The code for the other thegtings is
onhttps://github.conljiaxiang-wi/ quantized-cnn.


https://github.com/jiaxiang-wu/quantized-cnn
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Appendix A: Additional Results Table 13. Comparison on the compression rates and the §ecoéa
top-1/5 error rates for compressing all the fully-connddeeyers
In the submission, we report the performance after quan-in AlexNet, without fine-tuning.

tizing all the convolutional layers in AlexNet, and quan- ~_Msthod | Para. | Compression| Top-1Er.t [ Top-5Err.{
tizing all the full-connected layers in CaffeNet. Here, we 2116 | 13.96¢ 0-253/4’ 8'32?
present experimental results for some other settings. Q-CNN ggg ig;gﬁ g:gmf 0:330/3
Quantizing Convolutional Layers in CaffeNet gﬁg 12;65 g:ﬁzﬁ 8:23;‘:
We quantize all the convolutional layers in CaffeNet, and Q(-é:é\l)N ggg R R 02
the results are as demonstrated in Table Furthermore, 132 18 71x 0.46% 0.38%

we fine-tune the quantized CNN model learned with error

H !/ — i -
g(r)rrcr)?(;gfenscasr e_18]’_5[§ y ;;3%)'%%? ﬂ;gr':i?:j?;{;g%rl./snalTabIe 14. Comparison on the compression rates and the gecoéa
) 0 ) o P gt top-1/5 error rates for compressing all the fully-connddeeyers

CaffeNet. in CNN-S, without fine-tuning.
Table 11. Comparison on the speed-up rates and the incréase o _Method [ Para. | Compression[ Top-1Err.f [ Top-5Err.t
top-1/5 error rates for accelerating all the convolutidiagkrs in 2/16 14.37x 0-223@ 0-07;%
CaffeNet, without fine-tuning. Q-CNN ggg ig%‘gxx g'gi;’ 8ﬁ;’
. . 0 . 0
Method | Para. | Speed-up| Top-1Err.t [ Top-5Err.t A0 10.66¢ 0.35% 007T%
o-cNN |64 | 4.82¢ 32-842/0 33-552/0 Q-CNN [ 3716 20.15¢ 0.43% 0.24%
6/128 | 3.71x 20.08% 18.31% (EC) [3B2 | 15.7% 0.29% 0.11%
8128 | 4.27% 35.48% 37.82% A3 T 10.66¢ 0550 027%
4/64 3.32x 1.22% 0.97%
Q-CNN | 6/64 4.32x 2.44% 1.83%
(EC) [6/128] 3.71x 1.57% 1.12%
8128 | 4.27x 2.30% L71% Appendix B: Optimization in Section 3.3.2

Assume we havéV images to learn the quantization of a
convolutional layer. For imagg,, we denote its input fea-

We quantize all the convolutional layers in CNN-S, and ture maps as,, € R¢:xd-xC and response feature maps
the results are as demonstrated in Talte Furthermore, ~ asT;, € R%>4*C whered,, d, are the spatial sizes and
we fine-tune the quantized CNN model learned with error Cs, C: are the number of feature map channels. We use
correction (. = 8, K = 128), and the increase of top-1/5 ps andp; to denote the spatial location in the input and re-
error rates are 1.24% and 0.63%, compared to the originalsponse feature maps. The spatial location in the convolu-
CNN-S. tional kernels is denoted ag.

To learn quantization with error correction for the con-

volutional layer, we attempt to optimize:

Quantizing Convolutional Layers in CNN-S

Table 12. Comparison on the speed-up rates and the incréase o
top-1/5 error rates for accelerating all the convolutioiagkrs in
CNN-S, without fine-tuning.

Method | Para. | Speed-up| Top-1Err.t [ Top-5Err.t 2
4/64 | 3.69x 19.87% 16.77% min DB TS
o-onn | B84 | 517 45.74% 48.67% {D<m>},{3<m>}nzp:t (pz]; )z,,; e .
6/128 | 4.78x 27.86% 25.09% mre (112)
8/128 | 5.92x 46.18% 50.26% ) (m) ;
2764 | 3.69% 1.60% 0.92% whereD™ is them-th sub-codebook, an8;, "’ is the cor-
Q-CNN [ 6/64 | 5.17x 3.49% 2.32% responding sub-codeword assignment indicator for the con-
(EC) | 6128 | 4.78x 2.07% 1.32% volutional kernels at spatial locatign.
8/128 | 5.92x 3.42% 2.17%

Similar to the fully-connected layer, we adopt a block co-
ordinate descent approach to solve this optimization prob-
Quantizing Fully-connected Layers in AlexNet lem. For them-th subspace, we firstly define its residual

. . feature map as:
We quantize all the fully-connected layers in AlexNet, b

and the results are as demonstrated in TaBle ) D)
R = . m™)'B G 15
Quantizing Fully-connected Layers in CNN-S ey (p%; )m;m s 49
We quantize all the fully-connected layers in CNN-S,

and the results are as demonstrated in Table and then the optimization in the-th subspace can be re-



formulated as:

2
min Z Z (D(m)Bz()T))TS,(l R(”;)t
D(m) {B(m)} mpe || (prpe) P ?
(16)
Update D(™). With the assignment indicatdiBS™}
fixed, we let:

Ly, = {ct|B{™ (k,cr) = 1} (17)

We greedily update each sub-codeword intixh sub-
codebookD(™) in a sequential style. For the-th sub-
codeword, we compute the corresponding residual feature
map as:

7 7 T m
QU () =R ()~ S 3 > pist

(Props) K/ #k ct €Ly

(18)
and then we can alternatively optimize:
2
min > D0 D0 DS - QU e
D, .0t || (pr,ps) ctE€ELK Py »
(19)

which can be transformed into a least square problem. By
solving it, we can update theth sub-codeword.

Update { B{™}. We greedily update the sub-codeword
assignment at each spatial location in the convolutional ke
nels in a sequential style. For the spatial locatiqn we
compute the corresponding residual feature map as:

P, =R — >~ (D™BE)TSM (20)
(Ph-P%)
PrFPk

and then the optimization can be re-written as:

min 3 |0 BTG - PG|, @)
Pr mn,pt

Sincerf,f) e {0,1}" is an indicator vector (only one non-
zero entry), we can exhaustively try all sub-codewords and
select the optimal one that minimize the objective function



