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Abstract
We propose an approach for dense semantic 3D recon-

struction which uses a data term that is defined as po-
tentials over viewing rays, combined with continuous sur-
face area penalization. Our formulation is a convex re-
laxation which we augment with a crucial non-convex con-
straint that ensures exact handling of visibility. To tackle the
non-convex minimization problem, we propose a majorize-
minimize type strategy which converges to a critical point.
We demonstrate the benefits of using the non-convex con-
straint experimentally. For the geometry-only case, we set
a new state of the art on two datasets of the commonly used
Middlebury multi-view stereo benchmark. Moreover, our
general-purpose formulation directly reconstructs thin ob-
jects, which are usually treated with specialized algorithms.
A qualitative evaluation on the dense semantic 3D recon-
struction task shows that we improve significantly over
previous methods. Source code is available at https:
//github.com/nsavinov/ray_potentials/.

1. Introduction

One of the major goals in computer vision is to compute
dense 3D geometry from images. Recently, also approaches
that jointly reason about the geometry and semantic seg-
mentation have emerged [11]. Due to the noise in the input
data often strong regularization has to be performed. Op-
timizing jointly over 3D geometry and semantics has the
advantage that the smoothness for a surface can be chosen
depending on the involved semantic labels and the normal
direction to the surface. Eventually, this leads to more faith-
ful reconstructions that directly include a semantic labeling.

Posing the reconstruction task as a volumetric segmen-
tation problem [5] is a widely used approach. A volume
gets segmented into occupied and free space. In case of
dense semantic 3D reconstruction, the occupied space label
is replaced by a set of semantic labels [11]. To get smooth,
noise-free reconstructions, the final labeling is normally de-
termined by energy minimization. The formulation of the
energy comes with the challenge that the observations are

Figure 1: Left to right: example image, close-ups of [11],
[28] and our proposed approach.

given in the image space but the reconstruction is volumet-
ric. Therefore each pixel of an image contains information
about a ray composed out of voxels. This naturally leads
to energy formulations with potential functions that depend
on the configuration of a whole ray. Including such poten-
tials in a naive way leads to (on current hardware) infeasi-
ble optimization problems. Hence, many approaches try to
approximate such a potential. One often utilized strategy
is to derive a per-voxel unary potential (cost for assigning a
specific label to a specific voxel). However, this is only pos-
sible in a restricted setting and under a set of assumptions
that often do not hold in practice. By modeling the true ray
potential, more faithful reconstructions are obtained [28].
Thus, efficient ways to minimize energies with ray poten-
tials, while at the same time being able to benefit from the
joint formulation of 3D modeling and semantic segmenta-
tion, are desired.

In this work, we propose an energy minimization strat-
egy for ray potentials that can be directly used together with
continuously inspired surface regularization approaches and
hence does not suffer from metrication artifacts [13], com-
mon to discrete formulations on grid graphs. When using
our ray potential formulation for dense semantic 3D re-
construction, it additionally allows for the usage of class-
specific anisotropic smoothness priors. Continuously in-
spired surface regularization approaches are formulated as
convex optimization problems. We identify that a convex
relaxation for the ray potential is weak and unusable in
practice. We propose to add a non-convex term that han-
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dles visibility exactly and optimize the resulting energy by
linearly majorizing the non-convex part. By regularly re-
estimating the linear majorizer during the optimization, we
devise an energy minimization algorithm with guaranteed
convergence.

1.1. Related Work

Visibility relations in 3D reconstructions were studied
for computing a single depth map out of multiple images
[16, 17]. To generate a full consistent 3D model from many
depth maps, a popular approach is posing the problem in
the volume [5]. To handle the noise in the input data a sur-
face regularization term is added [21, 41]. A discrete graph-
based formulation is used in [21] and continuous surface
area penalization in [41]. One of the key questions is how
to model the data term. Starting from depth maps, [21, 41]
model the 2.5D data as per-voxel unary potentials. Such a
modeling utilizes information contained in the depth map
only partially. Using a discrete graph formulation [18, 36]
propose to model the free space between the camera center
and the measured depth with pairwise potentials.

Another approach to modeling the data term is to di-
rectly use a photo-consistency-based smoothness term [31,
12, 14]. To resolve the visibility relations, image silhouettes
are used. This is done either in the optimization as a con-
straint, meaning that the reconstruction needs to be consis-
tent with the image silhouettes [31, 14], or by deriving per-
voxel occupancy probability [12]. Silhouette consistency is
achieved through a discrete graph-cut optimization in [31],
and with a convex-relaxation-based approach in the contin-
uous domain in [14]. The resulting relaxed problem in the
latter case is not tight and hence does not generate binary
solutions. Therefore, to guarantee silhouette consistency a
special thresholding scheme is required. Handling visibility
has also been done in mesh-based photo-consistency mini-
mization [6].

To fully address the 2.5D nature of the input data, the
true ray potential should be used, meaning the data cost
depends on the first occupied voxel along the ray. What
happens behind is unobserved and hence has no influence.
This was formulated in [27, 10, 23, 24, 33] as a problem
of finding a voxel labeling in terms of color and occupancy
such that the first occupied voxel along a ray has a similar
color as the pixel it projects to. One of the limitations all
these works share is that they only compare colors of sin-
gle pixels, which often does not give a strong enough sig-
nal to recover weakly textured areas. We use depth maps
that are computed based on comparing image patches and
interpret them as noisy input data containing outliers. We
use regularization to handle the noise and outliers in the in-
put data, but in contrast to other approaches with ray po-
tentials that use a purely discrete graph-based formulation
[10, 23, 24] our proposed method is the first one that com-

bines true ray potentials with a continuous surface regular-
ization term. This allows us to set a new state of the art on
two commonly used benchmark datasets. Unlike in any pre-
vious volumetric depth map fusion approach, thin surfaces
do not pose problems in our formulation, due to an accurate
representation of the input data.

Most earlier formulations of ray potentials are for purely
geometry-based 3D reconstruction. Ours is more general
and also allows to incorporate semantic labels. [28] shows
that by using a discrete graph-based approach the true multi-
label ray potential can be used as data term. Several artifacts
present in the unary potential approximation [11] can be re-
solved using a formulation over rays. However, utilizing
a discrete graph-based approach it is not directly possible
to use the class-specific anisotropic regularization proposed
in [11]. We bridge this gap and show how the full multi-
label ray potential can be used together with continuously
inspired anisotropic surface regularization [2, 40].

2. Formulation

In this section we will introduce the mathematical for-
mulation that we are using to represent the dense semantic
3D reconstruction as an optimization problem. The prob-
lem is posed over a 3D voxel volume Ω ⊂ N3. We denote
the label f = 0 as the free space label and introduce the
set L = {0, 1, . . . , L} of L semantic labels, which repre-
sent the occupied space, plus the free space label. The final
goal of our method is to assign a label ` ∈ L to each of
the voxels. The label assignment is formalized using indi-
cator variables x`s ∈ {0, 1} indicating if label ` is assigned
at voxel s ∈ Ω, (x`s = 1) or not.

We denote the vector of all per-voxel indicator variables
as x. Finally, the energy that we are minimizing in this
paper has the form

E(x) = ψR(x) + ψS(x)

subject to
∑
`∈L

x`s = 1, x`s ∈ {0, 1}, (1)

where
∑

`∈L x
`
s = 1 guarantees that exactly one label is

assigned to each voxel. The objective contains two terms.
The term ψR(x), the ray potential, contributes the data to
the optimization problem. This is in contrast to many other
formulations where the data term is specified as local per-
voxel preferences for the individual labels. The second
term ψS(x) is a smoothness term, which penalizes the sur-
face area of the transitions between different labels. For
this term, we utilize formulations originating from con-
vex continuous multi-label segmentation [2]. As we will
see in Sec. 4 this smoothness term allows for class-specific
anisotropic penalization of the interfaces between all labels.
Due to the continuous nature of the regularization term, it
does not suffer from metrication artifacts like most of the
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Figure 2: Variable Types: (left) the global x`s, indicate the
label assigned to each voxel, (right) the per-ray variables y`ri
describe the visible surface.

graph-based formulations. The straightforward way to uti-
lize such a smoothness term would be to use a convex relax-
ation of the ray potential. Unfortunately, convex relaxations
of the ray potential do not seem to lead to strong formu-
lations (c.f . Fig.4). In this paper we show how to resolve
this problem by adding a non-convex constraint. In Sec. 3
we introduce the convex relaxation formulation of the ray
potential and its non-convex extension. The regularization
term and optimization strategy are discussed in Sec. 4.

3. Ray Potential
The main idea of the ray potential [28] is that for each

ray, originating from an image pixel, a cost is induced that
only depends on the position of the first non-free space la-
bel along the viewing ray or the ray is all free space. This
means that the potential can take only linearly many (in the
number of voxels along a ray) values, which is the reason
why optimization of such potentials is tractable. Note that
this is not a restriction we impose, it represents the fact that
it is impossible to see behind occupied space. We denote
the cost of having the first occupied space label at position i
with label ` ∈ L as c`ri and the cost of having the whole ray
free space as cfr .

The vector of indicator variables x`s belonging to ray
r ∈ R is denoted as xr. To index positions along a ray,
we denote sri ∈ Ω as the positions of all the voxels be-
longing to ray r ∈ R, where i ∈ {0, · · · , Nr} denotes the
position index along the ray. Note that there exists only one
x`s variable per label for each voxel s ∈ Ω, if sri evaluates
to the same position for different rays it refers to the same
variable. Now we can state the ray potential part of the en-
ergy as a sum of potentials over rays

ψR(x) =
∑
r∈R

ψr(xr) (2)

ψr(xr) =

 ∑
`∈L\{f}

Nr∑
i=0

c`ri

(
min
j≤i−1

xfsrj

)
x`sri

+ cfr min
j≤Nr

xfsrj

with L\{f} meaning the set of all labels excluding the free
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Figure 3: Example of variable assignments along a single
viewing ray for a three-label problem.

space label. The term (minj≤i−1 x
f
sri)x

`
sri is 1 iff the first

occupied label along the ray r is ` at position i. Similarly,
minj≤Nr x

f
srj equals 1 iff the whole ray r is free space.

Thus, in Eq. 2 only one term is non-zero, and its coefficient
equals the desired cost of the ray configuration.

To make the derivations throughout the paper compact,
we omit the last term without loss of generality by shifting
the costs by a constant, c`ri ← c`ri − cfr and cfr ← 0.

3.1. Visibility Variables

Before we state a convex relaxation of the ray potential,
which we eventually augment with a non-convex constraint,
we rewrite the potential using visibility variables. First, we
introduce the visibility variables y`ri indicating that the ray
r only contains free space up to the position i − 1 and the
label assigned at position i is ` ∈ L.

y`ri = min(yfr,i−1, x
`
sri) (3)

To anchor the definition we assume that the -1st voxel of the
ray has free space assigned, yfr,−1 = 1. Note that if we in-
sert all the nested definitions for a free space variable we get
yfri = minj≤i x

f
srj . Note that this variables are per-ray local

variables and multiple ones can exist per voxel in case mul-
tiple rays cross that voxel in contrast to the global per-voxel
variables xs, which exist only once per voxel (c.f . Fig. 2).
In the remainder of Sec. 3 we will drop the index r at most
places for better readability. We now state a reformulation
of the ray potential as

ψr(xr) =
∑
`∈L

N∑
i=0

c`iy
`
i (4)

subject to y`i = min(yfi−1, x
`
si) ∀` ∈ L,∀i,

Here we introduced costs along the ray also for the free
space label cfi = 0, ∀i. This does not change the poten-
tial but is required for our next step, where we reformulate
the non-convex equality constraints as a series of inequality
constraints. To make sure that the corresponding equalities



Figure 4: Evaluation of the convex relaxation for two-label
problem: (left) a reconstruction of the model obtained by
our non-convex procedure, slices through the volume (0
black, 1 white, 0.5 grey) in the non-convex formulation
(middle) and the convex formulation (right).

are still satisfied in the optimum, we show that the costs c`i
can be replaced by non-positive ones without changing the
minimizer of the energy. This means that the y`i are bounded
from above by the linear inequality constraints and are tight
from below through the minimization of the cost function,
so the resulting constraints model the same optimization
problem. The inequality constraints read as follows

0 ≤ y`i ≤ y
f
i−1, y`i ≤ x`si ∀` ∈ L (5)

To derive the transformation to non-positive costs, we first
notice that after applying min(yfi−1, ·) to both sides of the
constraint

∑
`∈L x

`
si = 1 from Eq. 1, we can plug in the

constraints of Eq. 4 to obtain

yfi−1 =
∑
`∈L

y`i . (6)

Intuitively, this means if position i−1 is in the observed vis-
ible free space then the next position is either free space or
one of the occupied space labels and if i− 1 is in the occu-
pied space then all the y`i are 0 (see Fig. 3). The cost trans-
formation is done for every ray separately. Starting with the
last position i = N , we add the following expression, which
always evaluates to 0, to the ray potential.(

max
`′∈L

c`
′

i

)(
yfi−1 −

∑
`∈L

y`i

)
= 0 (7)

This moves one non-negative term to the previous position
and make all the c`i for the current position non-positive.

cfi−1 ← cfi−1 + max
`′∈L

c`
′

i

c`i ← c`i −max
`′∈L

c`
′

i ∀` ∈ L (8)

This is done iteratively for all i ∈ {N, . . . , 0}, leaving just
a constant, which can be omitted.

3.2. Convex Relaxation and Visibility Consistency

So far our derivation has been done using binary vari-
ables x`s ∈ {0, 1} and hence also all the y`i ∈ {0, 1}. To
minimize the energy, we relax this constraint by replacing
x`s ∈ {0, 1} with x`s ∈ [0, 1] in Eq. 1. This directly leads to

a convex relaxation of the ray potential. Unfortunately, this
relaxation is weak and therefore inapplicable in practice. In
Fig. 4 we evaluate the convex relaxation on a two-label ex-
ample (Lemon dataset), using surface area penalization via
a total variation (TV) smoothness prior. The convex relax-
ation fails entirely, producing variable assignments to the
x`s that are 0.5 up to machine precision and hence no mean-
ingful solution can be extracted. A comparison of the ener-
gies reveals that there is a significant difference between the
non-convex and the convex solution (626614 and 431893,
respectively), which indicates that the relaxed problem is far
from the original binary one. Most importantly, our earlier
convex formulation [28] shares this behavior of not making
a decision for any voxel, when run without initialization on
a two-label problem. The aspects of initialization, heuris-
tic assignment of unassigned variables, move making algo-
rithm, and a coarse-to-fine scheme are essential elements of
the algorithm in [28].

The reason for the weak relaxation is that Eq. 6 is unsat-
isfied for the solution of the convex relaxation. This equa-
tion ensures that the per camera local view is consistent
with the global model (c.f . Fig. 2). Concretely, the equation
states that the change in visibility is directly linked to the
cost that can be taken by the potential e.g. a surface can only
be placed iff the occupancy along the ray changes. Hence
we propose a formulation that directly enforces this con-
straint, which we will call visibility consistency constraint.
Eq. 6 can be reformulated using the definition of yfi as∑

`∈L\{f}

y`i = yfi−1 − y
f
i = yfi−1 −min(yfi−1, x

f
si)

= max(0, yfi−1 − x
f
si). (9)

This means that we can only have an occupied space label
` ∈ L\{f} assigned as the visible surface at position i, if
position i does not have free space assigned and yfi−1 =
1 and hence the whole ray from the camera center to the
position i− 1 has free space assigned (see Fig. 3).

Since we minimize the objective with non-positive c`i ,
the visibility consistency constraint is equivalent to the in-
equality ∑

`∈L\{f}

y`i ≤ max(0, yfi−1 − x
f
si). (10)

Our final formulation for the ray potential is

ψr(xr) =
∑
`∈L

N∑
i=0

c`iy
`
i (11)

s.t. y`i ≤ y
f
i−1, y

`
i ≤ x`si , y

`
i ≥ 0 ∀` ∈ L,∀i∑

`∈L\{f}

y`i ≤ max(0, yfi−1 − x
f
si) ∀i



The above potential is non-convex because of the non-
convex inequality which describes visibility consistency.
We follow the strategy of using a surrogate convex con-
straint for the non-convex one that majorizes the objective
of the non-convex program. The majorization, as we will
see in Sec. 4, happens during the iterative optimization.
Therefore, at each iteration, we have a current assignment
to the variables, which we denote by x(n) and y(n). Here
we introduced the notation that variable assignments at iter-
ation n are denoted with a superscript (n). Replacing∑

`∈L\{f}

y`i ≤ max{0, yfi−1 − x
f
si}

by
∑

`∈L\{f}

y`i ≤ g(xfsi , y
f
i−1|x

f,(n)
si , y

f,(n)
i−1 ) (12)

with the linear majorizer,

g(xfsi , y
f
i−1|x

f,(n)
si , y

f,(n)
i−1 )

=

{
0 if yf,(n)

i−1 ≤ x
f,(n)
si

yfi−1 − xfsi if yf,(n)
i−1 > x

f,(n)
si

(13)

leads to a surrogate linear (and therefore convex) ray po-
tential, which we will denote by ψ(n)

r (x,y|x(n),y(n)). The
variables x(n) and y(n) denote the position of the lineariza-
tion. We handle the corner case where both branches are
feasible to always take the first branch. In numerical exper-
iments we observed that this choice is not critical, it makes
no significant difference which branch is used in this case.

Next we state a Lemma that will be a crucial part of the
optimization strategy detailed in Sec. 4.

Lemma 1. Given x(n), with x(n) ≥ 0 point-wise, we can
find ỹ(n) such that all the constraints of the ray potential
Eq. 11 are fulfilled and the value of the potential is minimal.

Intuitively, the lemma states that given the global per-
voxel variable assignments x`s, an assignment to the per-ray
variables y`i can be found. This is not surprising given that
the whole information about the scene is contained in the
variables x`s (c.f . Fig. 2). We prove the lemma by giving a
construction.

Proof. We provide an algorithm that computes ỹ(n) for
each ray individually. First we set ỹf,(n)

i = minj≤i x
f,(n)
sj ,

which satisfies ỹ
f,(n)
i ≤ ỹ

f,(n)
i−1 , ỹ(n)

i` ≥ 0. Now we

iteratively increase ỹ
`,(n)
i such that

∑
`∈L\{f} ỹ

`,(n)
i ≤

max(0, ỹ
f,(n)
i−1 − xfsi) and ỹ`,(n)

i ≤ x`si . For an optimal as-
signment we do this procedure in an increasing order of c`i .
The observation holds by construction.

4. Energy Minimization Strategy
Before we discuss the proposed energy minimization,

we complete the formulation by including the regulariza-
tion term.

4.1. Regularization Term

There are several choices of regularization terms for con-
tinuously inspired multi-label segmentation that can be in-
serted into our formulation [39, 2, 32, 40]. They are all
convex relaxations and are originally posed in the con-
tinuum and discretized for numerical optimization. The
main differences are the strength of relaxation and general-
ity of the allowed smoothness priors. We directly describe
the strongest, most general version, which allows for non-
metric and anisotropic smoothness [40]. We only state the
smoothness term and explain the meaning of the individual
variables. For a thorough mathematical derivation we refer
the reader to the original publications [40, 11].

ψS(x, z) =
∑
s∈Ω

ψs(x, z) with (14)

ψs(x, z) =
∑

`,m:`<m

φ`ms (z`ms − zm`
s )

s.t. x`s =
∑
m

(
z`ms

)
k
, x`s =

∑
m

(
zm`
s−ek

)
k
,∀k, z`ms ≥ 0.

The variables z`ms ∈ R3 describe the transitions between
the assigned labels. They indicate how much change there
is from label ` to label m along the direction they point to
and are hence called label transition gradients. For exam-
ple, if there is a change from label ` to label m at voxel s
along the first canonical direction, the corresponding z`ms is
[1, 0, 0]T . The z`ms need to be non-negative in order to al-
low for general, non-metric smoothness priors [40]. There-
fore the difference z`ms − zm`

s is used to allow for arbitrary
transition directions. The variable ek denotes the canonical
basis vector for the k-th component, i.e. e1 = [1, 0, 0]T .
φ`ms : R3 → R+

0 are convex positively 1-homogeneous
functions that act as anisotropic regularization of a surface
between label ` and m. Note that the regularization term
takes into account label combinations. This enables us to
select class-specific smoothness priors, which depend on
the surface direction and the involved labels and are inferred
from training data [11]. For example, a surface between
ground and building is treated differently from a transition
between free space and building. The following lemma will
be necessary for our optimization strategy.

Lemma 2. Given x(n), z(n), with x`,(n)
s ≥ 0 ∀s, ` an as-

signment z̃(n) can be determined that fulfills the constraints
of the regularization term.

For the full proof of the lemma we refer the reader to the
supplementary material, here we only state the main idea of



the proof. In a first step we project our current solution onto
the space spanned by the equality constraints. This leads to
an initialization of the z̃(n) which fulfills the equality con-
straints but might lead to negative assignments to the z`ms .
To get a non-negative solution, we notice that as long as
there is a z`

′,m′

s which is negative we can find `′′ and m′′

such that we can increase z`
′,m′

s by ε along with changing
z`

′′,m′

s , z`
′,m′′

s , z`
′′,m′′

s by the same ε in order not to affect
the equality constraints.

4.2. Optimization

The goal of this section is to minimize the proposed en-
ergy using the non-convex ray potential Eq. 11. Optimizing
non-convex functionals is an inherently difficult task. One
often successfully utilized strategy is the so called majorize-
minimize strategy (for example [20]). The idea is to ma-
jorize the non-convex functional in some way with a surro-
gate convex one. Alternating between minimizing the sur-
rogate convex energy, which we will call the minimization
step in the following, and recomputing the surrogate con-
vex majorizer, which we will denote the majorization step,
leads to an algorithm that decreases the energy at each step
and hence converges.

Note that we already discussed the majorization step of
the ray potential in Sec. 3, Eq. 13. Together with the regu-
larizer we end up with a surrogate convex but non-smooth
program.

E(n)(x,y, z) = ψ
(n)
R (x,y|x(n),y(n)) + ψS(x, z) (15)

s.t.
∑
`∈L

x`s =1 ∀s, x`s ∈ [0, 1] ∀s ∈ Ω, ∀` ∈ L.

This energy can be globally minimized using the iterative
first order primal-dual algorithm [26]. However, there is
no guarantee that the energy during the iterative minimiza-
tion decreases monotonically nor that the constraints are
fulfilled before convergence. One solution is to run the con-
vex optimization until convergence however in practice this
leads to slow convergence. Therefore, we follow a different
strategy where we regularly run the majorization step dur-
ing the optimization of the energy. Before we can state the
final algorithm we present the following lemma.

Lemma 3. Given x(n),y(n), z(n), in the optimization prob-
lem Eq. 15, which do not necessarily fulfill the constraints.
A feasible solution x̃(n), ỹ(n), z̃(n) to the ray potential
Eq. 11 and the regularization term Eq. 14 can be con-
structed in a finite number of steps.

Proof. To fulfill the constraints
∑

`∈L x
`
s = 1 and x`s ∈

[0, 1] we project the variables x(n) individually per voxel s
to the unit probability simplex [7]. Subsequent application
of Lemma 1 and 2 leads to the desired result.

Our final majorize-minimize optimization strategy can
now be stated as follows.

Majorization step Using the current variables
x(n),y(n), z(n) and Lemma 3 a feasible solution
x̃(n), ỹ(n), z̃(n) can be found. If the new energy
is lower or equal than the last known energy the
linearization Eq. 13 is applied and the new opti-
mization problem is passed to the minimization step.
Otherwise the whole majorization step is skipped and
the old variables x(n),y(n), z(n) are passed to the
minimization step.

Minimization step The primal-dual algorithm [26] is run
on the surrogate convex program for a fixed number of
p iterations. For guaranteed convergence, the primal
dual gap η can be evaluated and the minimization step
can be restarted until we have η ≤ f(n) with a func-
tion f(n)→ 0 for n→∞. In practice, we get a good
convergence behavior without a restart.

The majorization step either does no changes to the opti-
mization state or finds a better or equal solution with a new
linearization of the non-convex part because the lineariza-
tion does not change the energy. If no changes are done this
can be due to two reasons. Either the current solution was
worse than the last known one, or the majorization stayed
the same. In the latter case the primal-dual gap could reveal
convergence and as a consequence we know that we arrived
at a critical point or corner point of the original non-convex
energy. In any other case the minimization step is run again
and due to the convexity of the surrogate convex function
a better solution or the optimality certificate will be found.
The above procedure could stop at a non-critical point1 due
to the kink in the maximum in Eq. 12. To guarantee conver-
gence to a critical point, the visibility consistency constraint
Eq. 6 can be smoothed slightly e.g. using [25]. Again, in our
experiments this was unnecessary to achieve good conver-
gence behavior.

5. Experiments
Before we discuss the experiments, we describe the input

data and state the costs c`ri used for the ray potentials.

5.1. Input Data

We are using our approach for two different tasks: stan-
dard dense 3D reconstruction and dense semantic 3D re-
construction. In both cases, the initial input is a set of im-
ages with associated camera poses. Those camera poses
are either provided with the dataset (as in the Middlebury
Benchmark [29] or in the Thin Road Sign dataset [34]) or
computed via structure from motion algorithm [3] (as in

1similar to block-coordinate descent based message passing algorithms



Temple Full
Acc / Comp

Temple Ring
Acc / Comp

Temple S. Ring
Acc / Comp

Dino Full
Acc / Comp

Dino Ring
Acc / Comp

Dino S. Ring
Acc / Comp

Our Method 0.41 / 99.7 0.5 / 99.5 0.69 / 97.8 0.26 / 99.8 0.25 / 99.9 0.34 / 99.7
Galliani et al.[9] 0.39 / 99.2 0.48 / 99.1 0.53 / 97.0 0.31 / 99.9 0.3 / 99.4 0.38 / 98.6
Zhu et al.[42] 0.4 / 99.2 0.45 / 95.7 0.38 / 98.3 0.48 / 95.4
Li et al.[22] 0.73 / 98.2 0.66 / 97.3 0.28 / 100 0.3 / 100
Wei et al. [37] 0.34 / 99.4 0.42 / 98.1
Xue et al. 0.3 / 99.1
Furukawa et al. [8] 0.49 / 99.6 0.47 / 99.6 0.63 / 99.3 0.33 / 99.8 0.28 / 99.8 0.37 / 99.2

Figure 5: Middlebury Multi-View Stereo Benchmark: (left) Reconstructions of the Dino Ring and Temple Ring datasets
computed by our algorithm, (left-most) view 1, (right-most) view 2, (right, top) benchmark’s competitive methods in inverse
chronological order (smaller Acc and higher Comp numbers are better), (right, bottom) Acc vs. Ratio (lower curve better)
and Comp vs. Error (higher curve better) plots for the Dino Full dataset (for details on these plots see [29]).

the semantic reconstruction experiments). We computed
the depth maps using plane sweeping stereo for Middlebury
Benchmark and semantic reconstruction datasets, while uti-
lizing those already provided with the dataset for the exper-
iment with Thin Road Sign. The patch similarity measure
for stereo matching was zero-mean normalized cross cor-
relation. For the dense semantic 3D reconstruction exper-
iments, we computed per-pixel semantic labels using [19],
trained on the datasets from [1], [30] and [11].

5.2. Ray Potential Costs

In case of a two-label problem, there exists only one sin-
gle label ` ∈ L. This allows us to directly insert the visi-
bility consistency, Eq. 9, into the objective. In this case the
majorization can directly be done on the objective instead
of the visibility constraint, leading to a more compact op-
timization problem with a smaller memory footprint. Like
[11], we assume exponential noise on the depth maps and
define the assignments to the costs c`ri, given the position of
the depth measurement along the ray r as i′ as

c`ri := min{0, λ|i− i′| −K}. (16)

The parameters λ ≥ 0 and K are chosen such that the po-
tential captures the uncertainty of the depth measurement.

For the multi-class case we also assume exponential
noise on the depth data and independence between the depth
measurement and the semantic measurement. Therefore the
combined costs read as

c`ri := min{0, λ|i− i′| −K}+ σ`, (17)

with σ` being the response of the semantic classifier for the

respective pixel. This is the same potential that [11] approx-
imates with unary potentials.

5.3. Middlebury Multi-View Stereo Benchmark

We evaluate our method for dense 3D reconstuction on
the Middlebury benchmark [29]. We ran our algorithm on
all 6 datasets (using the same parameters). Two quantita-
tive measures are defined in this benchmark paper: accu-
racy (Acc) and completeness (Comp). In terms of accuracy
our algorithm sets a new state-of-the-art for the Dino Full
and Dino Ring datasets (c.f . Fig. 5). An actual ranking of
the benchmark is difficult because there is no default, com-
monly accepted, way to combine the two measures. Taking
into account both measures we are close to the state-of-the-
art on all datasets (results can be found online 2).

5.4. Street Sign Dataset

A challenging case for volumetric 3D reconstruction are
thin objects. When approximating the data term, which is
naturally given as a ray potential in the 2.5D input data, by
unary or pairwise potentials the data terms from both sides
are prone to cancel out. Similarly, when using visual hulls
a slight misalignment of the two sides might generate an
empty visual hull. These are the reasons why thin objects
are considered to be a hard case in volumetric 3D recon-
struction. We evaluate the performance of our algorithm
for such objects on the street sign dataset from [34]. The
dataset consists 50 images of a street sign with correspond-
ing depth maps. As depicted in Fig 6 the thin surface does
not pose any problem to our method, thanks to an accurate

2http://vision.middlebury.edu/mview/eval/

http://vision.middlebury.edu/mview/eval/


Example Images TV-Flux (high) TV-Flux (medium) TV-Flux (low) Our Method

Figure 6: Reconstructions of the street sign dataset from [34] using the TV-Flux fusion from [38] with three different
smoothness settings (high/medium/low), and our proposed method.

Input Image Häne et al. 2013 [11] Savinov et al. 2015 [28] Proposed Method

Figure 7: Semantic 3D Reconstructions: we improve in weakly observed areas and resolve unary potential artifacts at the
same time. Five semantic labels are used: ground, building, vegetation, clutter, free space.

representation of the input data in the optimization problem.
To illustrate the result obtained with a standard volumetric
3D reconstruction algorithm we ran our implementation of
the TV-Flux fusion from [38] on the same data. Note that
this dataset is particularly hard because the two sides actu-
ally interpenetrate as detailed in [34].

5.5. Multi-Label Experiments
We evaluate our formulation for dense semantic 3D re-

construction on several real-world datasets. We show our
results side-by-side with the method of [11] and [28] in
Figs. 7 and 1. Our method uses the same smoothness prior
as [11]. For all the datasets we observe that the approxi-
mation of the data cost with a unary potential in [11] arti-
ficially fattens corners and thin objects (e.g. pillars or tree
branches). In the close-ups (c.f . Fig. 1) we see that such
a data term recovers significantly less surface detail with
respect to our proposed method. This problem has been
addressed in [28], but their discrete graph-based approach

suffers from metrication artifacts, cannot be combined with
the class-specific anisotropic smoothness prior and does
not lead to smooth surfaces (c.f . Fig. 1). Moreover, their
coarse-to-fine scheme produces artifacts in the reconstruc-
tions. Our approach takes the best of both worlds, the ray
potential part ensures an accurate position of the observed
surfaces, while the anisotropic smoothness prior faithfully
handles weakly observed areas.

6. Conclusion
In this paper we proposed an approach for using ray po-

tentials together with continuously inspired surface regular-
ization. We demonstrated that a direct convex relaxation is
too weak to be used in practice. We resolved this issue by
adding a non-convex constraint to the formulation. Further,
we detailed an optimization strategy and gave an extensive
evaluation on two-label and multi-label datasets. Our algo-
rithm allows for a general multi-label ray potential, at the
same time it achieves volumetric 3D reconstruction with



high accuracy. In semantic 3D reconstruction we are able
to overcome limitations of earlier methods.
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A. Supplementary Material
First, we provide the proof of Lemma 2 from the main

text. Then we give additional experimental evaluation
which did not fit into the main text of the paper: the addi-
tional experiments are shown for semantic 3D reconstruc-
tion as well as for classic 3D reconstruction. Afterwards,
we give an intuition why the convex formulation, which was
introduced in Section 3.2 of the main text, provides a very
weak solution. Eventually, we show convergence experi-
ments for our algorithm.

A.1. Proof of Lemma 2

Proof. For readability we drop the iteration index (n). First
we note the following. If we fix k and s each (z`ms )k only
appears in two linear equation systems with L equations.

x`s =
∑
m

(
z`ms

)
k
, x`s+ek

=
∑
m

(
zm`
s

)
k
∀`∈L (18)

Hence, this constraints can be written in the form Awk
s = b

for each k and s, where wk
s is a vector containing the vari-

ables (zm`
s )k ∀`,m. b contains the values of x`s and x`s+ek

.
The variables z̃ are initialized by projecting the variables z
to the affine space defined by the equation systemAwk

s = b
for each s,k combination individually. To also ensure that
the non-negativity constraints on the z`ms are fulfilled, the
following substitution is applied until there are no more
negative z̃`ms . Assuming z̃`

′,m′

s < 0, from x`s ≥ 0 it fol-
lows that there are z̃`

′,m′′

s > 0 and z̃`
′′,m′

s > 0. Hence, we
update

z̃`
′,m′

s ← z̃`
′,m′

s + ε z̃`
′′,m′′

s ← z̃`
′′,m′′

s + ε (19)

z̃`
′,m′′

s ← z̃`
′,m′′

s − ε z̃`
′′,m′

s ← z̃`
′′,m′

s − ε. (20)

Note that this substitution does not affect the original con-
straints if we choose ε such that non-negative variables stay
non-negative. The above substitution is iteratively applied
until no more non-negative variables are left. By always
choosing ε as big as possible, meaning such that either the
non-positive variable z̃`

′,m′

s or one of the positive variables
gets 0, the number of iterations of the algorithm is bounded
by O(L2). This holds because for each negative variable
there is a maximum of O(L) steps that can be made to in-
crease it.

A.2. Semantic 3D Reconstruction: Additional Re-
sults

Additional reconstructions are shown in Fig. 8. We refer
the reader to the supplementary video where renderings of
our models can be found.

A.3. Dataset "Head"

We test our algorithm on a challenging specular ”Head”
dataset from [4]. It was shown in that paper that the re-
sults of traditional dense 3D reconstruction methods can be

improved by utilizing the silhouette information. This in-
formation was included in their formulation as energy over
rays. We show even more improvement by using our non-
convex ray potential formulation in Fig. 9.

A.4. Middlebury: Additional Analysis

We provide accuracy (Acc) and completeness (Comp)
plots for Dino Ring dataset in Fig. 10. We also show ad-
ditional renderings of reconstructions in Fig. 11.

Overall, besides being accurate (as shown in the paper),
our algorithm produces reconstructions with very high com-
pleteness: for 5 out of 6 datasets our reconstructions have
completeness above 99.5%.

A.5. Why is Convex Formulation so Weak?

In this section we give a small intuitive example why the
convex relaxation gives a solution which is far from binary.
We give this example for a 2-label problem without regu-
larization and use the following notation for the labels: o
means occupied, f means free-space. Consider one ray of
the length N = 3 with costs co0 = −2, co1 = −3, co2 = −2
and the rest of the costs are 0. This is a realistic example
since it corresponds to allowing the uncertainty around the
estimated depth position i = 1 (for example, camera sees
the wall and stereo matching provides an estimate of depth,
but this estimate is noisy in practice, so the uncertainty win-
dow along the ray is very desirable). Since we only consider
single ray, the ray index r is omitted and the voxel space in-
dexing function si simplifies to just position i along the ray.
The exact problem, which we are solving, would be (as a
reminder, yf−1 is always set to be 1):

ψ =− 2yo0 − 3yo1 − 2yo2 → min
x,y

(21)

s.t. yoi ≤ y
f
i−1, y

f
i ≤ y

f
i−1,

yoi ≤ xoi , y
f
i ≤ 1− xoi ,

xoi ∈ [0, 1], ∀i.

The desired solution to this problem would be

xo0 = 0, xo1 = 1, xo2 = 0, (22)
yo0 = 0, yo1 = 1, yo2 = 0,

yf0 = 1, yf1 = 0, yf2 = 0.

This means taking the best position in the uncertainty win-
dow. This solution has the cost cbinary = −3. Unfortu-
nately, the solution where all the variables above take value
0.5 has a better cost: c0.5 = −3.5.

Our preliminary investigations indicate that the ”all-0.5”
solution will always be the optimal solution to the convex
relaxation as long as the best cost comin = min

i
coi is larger

than the sum of other occupied costs (as it is the case in the
example above, −3 versus −4).



A.6. Convergence Analysis

In this section we analyze the convergence behavior of
our method.

First, we evaluate how fast the algorithm converges using
different minimization intervals in between the majorization
steps. In Fig. 12 we can see that a frequent execution of the
majorization step has a very beneficial effect on the conver-
gence. Additionally, we see that for a broad range of values
we reach similar (in energy) critical points of our cost func-
tion. This is a strong indication that our method is robust
against bad solutions.

Second, we analyze tie handling in Eq. 13 of the main
text. As a reminder, this equation describes linear majorizer
as

g(xfsi , y
f
i−1|x

f,(n)
si , y

f,(n)
i−1 )

=

{
0 if yf,(n)

i−1 ≤ x
f,(n)
si

yfi−1 − xfsi if yf,(n)
i−1 > x

f,(n)
si

(23)

In that equation the tie case is yf,(n)
i−1 = x

f,(n)
si and it is pos-

sible to choose any of the two branches in this case: 0 or
yfi−1 − xfsi . Our experiment in Fig. 13 shows that the dif-
ference in final energies between these two choices is very
small, 0.25% of their values.



Input Image Häne et al. 2013 [11] Savinov et al. 2015 [28] Proposed Method

Figure 8: Semantic 3D Reconstructions.

Original Images [35] [12], [15] [4] Our Method

Figure 9: Rendering of the results on the ”Head” dataset. The columns from two to four are reported by [4]. It has been
shown in [4] that ray information can help in reconstructing the thin pole on which the head is mounted. Our algorithm
successfully reconstructs this pole as well.



Figure 10: Acc vs. Ratio (lower curve better) and Comp vs. Error (higher curve better) plots for the Dino Ring dataset of
the Middlebury benchmark (for details on these plots see [29]).

Dino Full Dino Sparse Temple Full Temple Sparse

Figure 11: Rendering of Middlebury results.
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Figure 12: Evolution of the energy over time for different numbers of iterations the convex minimization algorithm is run in
between the execution of the majorization step.

Figure 13: Evolution of the energy over iterations for two different re-majorization strategies. ”Linear” means that the tie
case is handled with the linear branch, ”zero” means that constant branch with 0 value is taken.


