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Abstract

The prediction of salient areas in images has been tra-
ditionally addressed with hand-crafted features based on
neuroscience principles. This paper, however, addresses the
problem with a completely data-driven approach by training
a convolutional neural network (convnet). The learning pro-
cess is formulated as a minimization of a loss function that
measures the Euclidean distance of the predicted saliency
map with the provided ground truth. The recent publication
of large datasets of saliency prediction has provided enough
data to train end-to-end architectures that are both fast and
accurate. Two designs are proposed: a shallow convnet
trained from scratch, and a another deeper solution whose
first three layers are adapted from another network trained
for classification. To the authors knowledge, these are the
first end-to-end CNN s trained and tested for the purpose of
saliency prediction.

1. Introduction

This work presents two approaches of end-to-end convo-
lutional neural networks (convnets or CNNs) for saliency
prediction. Our objective is to compute saliency maps that
represent the probability of visual attention on an image,
defined as the eye gaze fixation points. This problem has
been traditionally addressed with hand-crafted features in-
spired by neurology studies. In our case we have adopted a
completely data-driven approach, using a large amount of
annotated data for saliency prediction. Figure[I] provides an
example of an image together with its ground truth saliency
map and the two saliency maps predicted by the proposed
convnets: a shallow one and a deep one.

Convnets are popular architectures in the field of deep
learning and have been widely explored for visual pattern
recognition, ranging from a global scale image classifica-
tion [23] to a more local object detection [12] or semantic
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Figure 1. Input Image (top left) and saliency maps from the ground
truth (top right), our shallow convnet (bottom left) and our deep
convnet (bottom right).

segmentation [29]. The hierarchy of layers in convnets are
inspired by biological models, and some works have pointed
at a relation between the activity of certain areas in the brain
with hierarchy of layers in the convnets [l 8]]. Provided
with enough training data, convnets have shown impres-
sive results, often outperforming other hand-crafted methods.
The rise of convnets started from the computer vision task
where more annotated data can be easily collected, that is,
image classification [31]]. Large datasets like ImageNet [9]
or Places [48] have provided enough visual examples to train
the millions of parameters that most popular convnets con-
tain. These datasets provide thousands of images for each
discrete label typically associated to a semantic class.

The saliency prediction problem, however, poses two
specific challenges different from the classic image classi-



fication. First, collecting large amount of training data is
much more costly because it requires capturing the fixation
points of human observers instead of a textual label for each
image. Our work has benefited from recent publications
of two large datasets containing images and an annotation
of their salient points for humans [19, 43]]. Collecting this
level of of data has been possible thanks to crowdsourcing
approaches, the same strategy used to annotate the ImageNet
and Places datasets.

The second challenge to address when using convnets for
saliency prediction is that a saliency score must be estimated
for each pixel in the input image, instead of a global-scale
label for the whole image. The saliency map at the output
must present a spatial coherence and a smooth transition
between neighbouring pixels.

The main contribution of this work is addressing the
saliency prediction problem from an end-to-end perspec-
tive, by using convnets for regression rather than classifica-
tion. We apply this strategy with two different architectures
trained with two different approaches: a shallow convnet
trained from scratch, and a deep convnet that reuses param-
eters from the bottom three layer of a network previously
trained for classification. To the authors knowledge, these
were the first convnets that formulate saliency prediction as
an end-to-end regression problem.

This paper is structured as follows. Section [2] presents the
previous and recent works using convolutional networks for
saliency prediction and detection. Section [3]introduces the
shallow convnet, while Section [ presents the deep network.
Section [5] compares both networks in terms of memory re-
quirements. It also shows, prediction performance in the
MIT Saliency Benchmark and LSUN Saliency Prediction
Challenge 2015 and they are compared with other models.
Conclusions and future directions are outlined in Section

Our results can be reproduced with the source code
and trained models available at https://github.com/
imatge—upc/saliency—-2016-cvpr.

2. Related work

The proposed networks presents the next natural step
to two main trends in deep learning: using convolutional
neural networks for saliency prediction and training these
networks by formulating saliency prediction as an end-to-
end regression problem. This section reviews related work
in these directions.

An early attempt of predicting saliency with a convnet
was the ensembles of Deep Networks (eDN) [40], which
proposed an optimal blend of feature maps from three dif-
ferent convnet layers, that were finally combined with a
simple linear classifier trained with positive (salient) or neg-
ative (non-salient) local regions. This approach inspired
DeepGaze [24] to adopt a deeper network. In particular,
DeepGaze used the existing AlexNet network [23]], where

the fully connected layers were removed to keep the feature
maps from the convolutional layers. The response of each
layer were fed into a linear model and its weights learned.
DeepGaze would be the first case of transfer learning from a
convnet for classification used for saliency, as we propose in
our deeper architecture. However, we do not train a linear
model to combine feature maps but directly train a stack
of new convolutional layers on top of the transferred ones.
Other recent works have explored the combination of dif-
ferent convnets working at different resolutions to capture
both global and local saliency. Liu ef al. [28] proposed an
architecture with three convnets working in parallel where
the three final fully connected layers are combined in a sin-
gle layer to obtain the saliency map. Unlike our work the
network is trained with image regions centered on fixation
and non-fixation eye locations. On the other hand, a related
preprint by Srinivas and Ayush [37] appeared during sub-
mission of our work. Their model captures information at
different scales by using very deep networks. Their work
is inspired by the VGG network architecture proposed by
Simonyan and Zisserman [34]. Very deep networks may
obtain richer information of image semantics. Some layers
use inception style convolutional blocks [38]] that capture
semantics at different scales. By using large receptive fields,
global context is also incorporated. As in the DeepGaze
proposal, the network needs to be trained with databases
that are not specific for eye fixation but are useful to capture
generic image features.

Other approaches introduce new architectures and im-
provements in salient object detection. Zhao et al. [47]] use
also two parallel networks to obtain local and global context
modeling. The input image consists of a superpixel-centered
window that is preprocessed differently to feed each of the
two convnets. Fully connected layers are combined at the
end to obtain the salient objects. The work by Li and Yu [25]]
proposes three nested windows as inputs to three different
convnet at different scales that are fused together to obtain an
aggregated saliency map. Wang et al. proposed a different
pipeline [41]]: local estimation is carried out and the resulting
information is used as input to obtain a global search. That is,
first, to detect local saliency, a deep neural network (DNN-L)
learns local patch features to determine the saliency value
of each pixel. Second, the local saliency map together with
global contrast and geometric information are used as global
features to obtain object candidate regions. A deep neural
network (DNN-G) is then trained to predict the saliency
score of each object region based on global features. Finally,
a very recent work introduced by Li ef al. [26], combines
semantic image segmentation and saliency detection, sharing
the first layers that exploit extraction of effective features
for object perception. Only the last layers are divided to
obtain the corresponding segmentation and saliency detec-
tion images. This proposal is also inspired by the VGG very


https://github.com/imatge-upc/saliency-2016-cvpr
https://github.com/imatge-upc/saliency-2016-cvpr

Inut size 96 x 96 x :

Convolution 1 (5 x5 x 32

Max ooI kernel 2 x 2 stride l
Convolution 2 ‘ x 3 x I
Max ool kernel 3 x 3 stride ‘
Convolution 3 I % 3 x 128
Max ool kernel 3x3 str.z

FC (4608

Slice 1 Slice 2

Max out
Lo

FC2304

Output

Figure 2. Architecture of the shallow convolutional network.

deep network introduced in [34]. In this case, 15 layers and
pretraining with the Imagenet dataset is used.

Fully Convolutional Networks (FCNs) addressed the
semantic segmentation task to predict the semantic label of
every individual pixel in the image. This approach dramati-
cally improved previous results on the challenging PASCAL
VOC segmentation benchmark [10]. The idea of an end-to-
end solution for a 2D problem as as semantic segmentation
was refined by DeepLab-CRF [[7]], where the spatial consis-
tency of the predicted labels is improved using a Conditional
Random Field (CRF), similarly to the hierarchical consis-
tency enforced in [11].

In our work we are interested in finding saliency maps
rather than salient object detection by training convnets end-
to-end. We also focus on novel databases that are annotated
for the purpose of saliency prediction.

3. Shallow Convnet

This section presents the first of our proposed convnets,
which is based on a lightweight architecture whose parame-
ters are trained from scratch.

3.1. Architecture

The network consists of five layers with learned weights:
three convolutional layers and two fully connected layers.
Each of the three convolutional layers is followed by a rec-
tified linear unit non-lineraity (ReLU) and a max pooling
layers. Figure 2] shows a detailed description of each layer.
The network has to a total of 64.4 million free parameters.

The network was designed considering the a amount of
available saliency maps for training it from scratch. Different
strategies were considered to avoid overfitting the model.
First, we used three convolutional layers rather than the five
used in the classic AlexNet architecture (and far less
than very deep networks used recently such as the thirteen
used in VGG-16 [33]]). Second, the input images are resized
to [96 x 96], a much smaller dimension that the [227 x 227]
used in AlexNet [23]]. The three max pooling layers reduce

the initial [96 x 96] feature maps down to [10 x 10] by the
last of the three poolings.

Even with the above constraints, the network still overfits
significantly. We found that norm constraint regularization
for the maxout layers [[13]], which computes the max between
pairs of of the previous layers output, was essential to miti-
gate this overfitting. We also tested using dropout [13] after
the first fully connected layer, with a dropout ratio of 0.5
(50% of probability to set a neuron’s output value to zero),
but this did not improve overfitting much, and so was not
included in the final model.

Notice that the 2,304-dimensional vector at the output is
mapped into a 2D array of [48 x 48], which correspond to
the saliency map. This decrease in resolution is compensated
at test time by resizing the dimensions of the output to match
the input image and posterior filtering using a Gaussian
kernel with a standard deviation of 2.0.

This shallow convnet was implemented using Python,
NumPy, and the deep learning library Theano [3} 2]]. Pro-
cessing was performed on an NVIDIA GTX 980 GPU with
2048 CUDA cores and 4GB of RAM. It took between 6 and
7 hours to train for the SALICON dataset, and 5 to 6 hours
for the iSUN dataset. Saliency prediction requires 200 ms
per image.

3.2. Training

This shallow network was trained from scratch twice,
each time from a different dataset. A first model was built
using the 10, 000 saliency maps from the SALICON dataset
[19], and a second model using the 6,000 saliency maps
from the iSUN dataset. Both datasets are described in de-
tail in Section [5.2} Given the smaller amount of images
available in the iSUN dataset [43]}, a slight modification was
introduced in this second model: the depth of the third con-
volutional network was of 64 instead of 128, as depicted in
Figure[2]

The weights in all layers are initialized from a normal
Gaussian distribution with zero mean and a standard devi-
ation of 0.01, with biases initialized to 0.1. The network
was trained with stochastic gradient descent (SGD) and the
Nesterov momentum method, which we found helps conver-
gence. The learning rate changed over time, starting with a
higher learning rate 0.03 and decreased during training to
0.0001. We trained the network for 1,000 epochs. For valida-
tion purposes, we split the training data into 80% for training
and the rest for periodic validation. A data augmentation
technique was used by mirroring all images. All considered
saliency maps were normalized to [0, 1].

The filters learned in the first convolutional layer are
shown in Figure[3] They present a similar pattern to other
similar filters learned for classification convnets [44] 44],
where edge detectors can be identified. It is noticeable how
these type of filters arise also when training our network on



Figure 3. Filters learned for the first convolutional layer of the
shallow convnet (best viewed from a distance).
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Figure 4. Architecture of the deep convolutional network

saliency maps.

4. Deep Convnet

The second approach explored in this paper is the adap-
tation of an existing very deep convnet trained for image
classification for the task of saliency prediction. Previous
work [44] has noted how, in image classification tasks, the
model parameters from the lowest levels in the convnets
converge in a few epochs. This observation, together with
visualization of the filters learned at these layers [33]], sug-
gest that these layers perform low-level visual task in vision,
such as the detection of colors or textures. Our hypothesis
is that these lower layers trained for classification can also
be transferred for the task of saliency prediction. We pro-
pose a second convnet which adapts these pre-trained filters
and combines them with new layers specifically trained for
saliency.

4.1. Architecture

Figure [ illustrates the layer architecture of the network,
composed of 10 weight layers and a total of 25.8 million
parameters. The architecture of the first 3 weight layers is
compatible with that of the VGG network from [6]. Each
convolutional layer is followed by a rectified linear unit non-
linearity (ReLU). Pooling layers follow the first two convolu-
tional layers, effectively reducing the width and height of the
feature maps in the intermediate layers by a factor of four. A
deconvolution layer follows the final convolution to produce

a saliency map that matches the input width and height.

To choose the final network architectures, we experi-
mented with many different different variants, testing each
on a held-out validation set of 1,000 images. In general
we found that: 1) adding more layers improves accuracy;
2) adding more feature maps per layer usually improves
accuracy too; and 3) using dropout regularization did not
significantly improve accuracy but did increase training time.
The final network design was primarily constrained in reso-
lution, number of layers, and layer depth by the amount of
available GPU memory.

We used transfer learning to initialize the weights for the
first three convolutional layers with the pre-trained weights
from the VGG_CNN_M network from [6]]. This acts as a
regularizer and improves the final network result. The re-
maining weights were initialized randomly using the strategy
from [22]].

4.2. Training

We trained our network on 9,000 of the 10,000 training
images in the SALICON dataset, setting aside 1,000 images
for validation (ground truth for the SALICON validation
set had not yet been released when this network was first
trained). We used several standard pre-processing techniques
on both the input images and the target saliency maps. We
subtracted the mean pixel value of the training set from the
image pixels to zero center them and rescaled the resulting
values linearly to be in the interval [—1,1]. We similarly
preprocessed the saliency maps by subtracting the mean and
scaling to [—1, 1]. Both the input images and the saliency
maps were downsampled by half to 320 x 240 prior to train-
ing.

The network was trained using stochastic gradient de-
scent with Euclidean loss using a batch size of 2 images for
24,000 iterations. During training, the network was validated
against the validation set after every 100 iterations to mon-
itor convergence and overfitting. We used the standard L?
weight regularizer (weight decay), and halved the learning
rate every 100 iterations. The network took approximately
15 hours to train on a NVIDIA GTX Titan GPU running the
Caffe framework [18]. We normalized the base learning rate
by the number of predictions per image, to give a learning
rate of 0.01/(320 x 240) =~ 1.3 x 10~7. Using a larger
learning rate causes the learning to diverge.

The network was trained on inputs of size 320 x 240, but
in principle, it can handle images of any size, since it only
consists of convolutional and pooling layers. In practice, the
input size is constrained by the amount of GPU memory (or
RAM) needed to store the outputs of the intermediary layers.
Nevertheless, the network has the advantage that it can be
sized to match the aspect ratio of any image, and indeed use
this approach for the images in the MIT300 benchmark in
the next section.



Shallow Deep
Data 229MB 123.65 MB
Parameters 244.64 MB 98.44 MB
Total (train) 24922 MB 345.74 MB
Total (test) 246.93 MB 222.09 MB

Table 1. Approximate memory requirements for each convnet.

5. Experiments
5.1. Memory requirements

The architectures of the two networks present different
requirements in terms of memory resources. These resources
are dedicated to two different tasks: the parameters that de-
fine the network, and the blob data that characterizes network
response at the different processing stages.

The parameters that define the network are fit during train-
ing, and, together with the architecture layout, correspond
to the actual characterization of the network. These parame-
ters characterize the output of each neuron in the net, which
can be defined as f(w”'z + b), where w describes the filter
parameters in the convolutional layers, b corresponds to the
biases and f is the non-linearity. Each neuron, therefore, has
parameters w and b, which are fit during backpropagation.

The data associated to the input image is the second
source of memory requirements. The input image is hi-
erarchically process in the convnet, creating multiple inter-
mediate feature maps (or data blobs) after each processing
stage.

Table [I] presents the complementary memory require-
ments for each of the two convnets. These values have been
obtained from the architectures of the shallow and very deep
networks described in Figures [2| and |4 respectively. The
estimation assumes 32-bit floating points to store parameters
and layer output (4 bytes per value). The memory estimate
for blob data assumes test time (forward pass only): at train
time this value is doubled to account for the error signal
during backpropagation.

The number of parameters for both networks are much
lower than the very deep networks used in classification. For
example, the 19 layers version of VGG net requires 144
million parameters [36].

Our shallow network requires far less memory for the
layer outputs, but has significantly more parameters (due
to the fully connected layers). This explains why our deep
network does not overfit, whereas stronger regularization is
necessary to fit the shallow one. Since the shallow network
needs less memory for the layer outputs, it is possible to
make batch size on this network very large at test time,
allowing it to process many more images at once.

5.2. Datasets

The two convnets were assessed using images and met-
rics considered in the public MIT Saliency Benchmark [21]]
LSUN challenge 2015 [46]].

These four datasets capture a broad range of image types
and experimental set ups. The MIT300 and CAT2000
datasets are smaller in size, but provide fixations points
captured in a controlled environment of expert users. On the
other hand, the iISUN and SALICON datasets have a large
amount of saliency maps corresponding to images from the
existing SUN and MS CoCo dataset, but these maps were
collected via crowdsourcing on Amazon Mechanical Turk,
exposing them to crowdsourcing loss [15].

SALICON [19] This is the largest dataset available for
saliency prediction and was used to train our models. It
was built from images of the Microsoft CoCo: Common
Objects in Context [|277]] dataset, which inspired the SAL-
ICON naming: SALIency in CONtext. The pixel-wise
semantic annotations provided by CoCo allow combin-
ing and comparing saliency data with semantic ones.
However, the saliency maps in SALICON were not col-
lected with eyetrackers as in most popular datasets for
saliency prediction, but with mouse clicks captured in
a crowdsourcing campaign.

iSUN [43] The iSUN dataset has been built with an on-
line game using webcams to track player eye gaze.
The dataset uses natural scene images from the SUN
database [42]], a large dataset organized in 397 scene
categories.

MIT1003 and MIT300 [21] This dataset is the most well-
known among saliency prediction researchers. It is
accompanied by an online benchmark maintained by its
authors. The MIT1003 dataset consists of both images
and fixation points that can be used for training. The
fixation points for the MIT300 dataset are not public:
the dataset can only be used for benchmarking. The
stimuli images in these datasets consist of indoor and
outdoor natural scenes from the Flickr Creative Com-
mons and LabelMe [32] datasets. The MIT datasets are
the smallest of the considered datasets, so results on
these sets have the most potential for overfitting.

5.3. Results

Saliency prediction evaluation has received the atten-
tion of several researchers, resulting in various proposed
approaches. Our experiments consider several of these, in a
similar way to the MIT saliency benchmark [20]. Some of
these metrics compare the predicted saliency maps with the
maps generated from the fixation points of the ground truth,
while some other metrics directly compare with the fixation



Dataset Description Capture device Observers Train Validation  Test
SALICON [19] Microsoft CoCo [27] Mouse clicks Crowd 10,000 5,000 5,000
iSUN [43] SUN [42] Eyetracker Crowd 6,000 926 2,000
MIT300 [4]] Flickr and LabelMe [32] Eyetracker 39 - - 300
Table 2. Description of the three datasets used in our experiments.
AUC Shuffled Borji  Judd of the table. The shallow convnet performs worse but still in
the upper part of a table which, in its full version, compares
Deep Convnet 0.63 0.78 0.80 :
47 different models.
Shallow Convnet 064 077 0.79

Table 3. Comparison of AUC measures for our deep and shallow
convnets on iSUN validation.

points. In the result tables that follow, we have sorted the
different techniques based on the AUC Judd metric.

Where not otherwise stated, our convnets were trained
with images from the SALICON [19] dataset and tested
on images from iSUN [43] and MIT300 datasets to avoid
overfitting. The one exception to this is our submission for
the LSUN 2015 challenge, where our shallow network was
trained with training and validation data from iSUN, and
assessed on the test partition.

The presented shallow and deep convnets were compared
quantitatively on the validation partition of the iSUN dataset.
The results (Table 3) show a similar performance of both
networks in the the 926 images of this dataset.

Figure [5] presents a qualitative comparison of the two
networks, showing the predicted saliency maps alongside the
ground truth fixation maps. These examples show a different
behaviour between the two networks, with the shallow one
presenting a bias towards the central part of the image. The
deep network, on the other hand, offers a higher spatial
resolution thanks to its architecture with larger feature maps.

Our shallow convnet was the winner of the 2015 LSUN
saliency prediction challenge [46]]. This challenge required
participants to evaluate their algorithms on the test partitions
of the iSUN and the SALICON datasets. Our network was
trained only with images from the training and validation
partitions of each dataset separately, so images from different
datasets were never mixed for these experiments. Table [4]
and Table[5|include the results provided by the organizers
of the challenge for the iSUN and SALICON datasets. The
scores obtained for every measure considered demonstrate
the superior performance of our shallow network compared
with the other participants.

Both of the proposed convnets were also evaluated on the
MIT300 dataset [21]] of the MIT Saliency Benchmark [20]].
Table [6] compares our results with some other top performers
in this benchmark. Our deep convnet achieves similar results
to the ones obtained by Deep Gaze 1 [24] at the upper part

A detailed analysis of the MIT300 results suggests a
potential dataset bias [39] in these benchmarks. Notice how
while GBVS [14] clearly outperforms our shallow convnet
for MIT300 (Table [6), its results are much lower than our
shallow convnet or Rare 2012 Improved [30] for the iSUN
(Table ) and SALICON datasets (Table[5). Unlike many
of the other top performing results on the MIT benchmark
(DeepFix [37]], Deep Gaze 1 [24], eDN [40], and Judd [21]),
our networks were not trained or fine-tuned on the MIT1003
dataset, but trained purely on SALICON data. Our strong
results across multiple datasets and benchmarks demonstrate
the generality of our models.

6. Conclusions

We propose a novel end-to-end approach for training con-
vnets in the task of saliency prediction. The excellent results
of both architectures in state-of-the-art benchmarks demon-
strate the superior performance of our convnets with respect
to hand-crafted solutions and highlight the importance of an
end-to-end formulation of saliency prediction.

The comparison between our shallow and deep networks
trained on SALICON data has provided similar results for
the iISUN dataset, but a better result for the deep network on
MIT300. On the other hand, the shallow network requires
less memory at train time and generates saliency maps much
faster because it has fewer layers. Both networks rank highly
in the MIT300 benchmark despite not being trained on this
dataset. This clearly demonstrates the generalization perfor-
mance of the networks and robustness to dataset biases.
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Figure 5. Saliency maps generated by our shallow and deep network on the SALICON and iSUN validation data.

Similarity CC AUC shuffled AUC Borji AUC Judd

Shallow Convnet (iSUN) 0.6833  0.8230 0.6650 0.8463 0.8693
Xidian 0.5713 0.6167 0.6484 0.7949 0.8207
WHU IIP 0.5593 0.6263 0.6307 0.7960 0.8197
LCYLab 0.5474 0.5699 0.6259 0.7921 0.8133
Rare 2012 Improved [30] 0.5199 0.5199 0.6283 0.7582 0.7846
Baseline: BMS [45] 0.5026  0.3465 0.5885 0.6560 0.6914
Baseline: GBVS [14] 0.4798  0.5087 0.6208 0.7913 0.8115
Baseline: Itti [17] 0.4251 0.3728 0.6024 0.7262 0.7489

Table 4. Results for the iSUN test set, according to the LSUN Challenge 2015.



Similarity CC AUC shuffled AUC Borji AUC Judd
Shallow Convnet 0.5198  0.5957 0.6698 0.8291 0.8364
WHU IIP 0.4908 0.4569 0.6064 0.7759 0.7923
Rare 2012 Improved [30] 0.5017 0.5108 0.6644 0.8047 0.8148
Xidian 0.4617 0.4811 0.6809 0.7990 0.8051
Baseline: BMS [43] 0.4542  0.4268 0.6935 0.7699 0.7899
Baseline: GBVS [14] 0.4460 0.4212 0.6303 0.7816 0.7899
Baseline: Itti [[17]] 0.3777  0.2046 0.6101 0.6603 0.6669

Table 5. Results for the SALICON test set, according to the LSUN Challenge 2015.

Similarity CC AUC shuffled  AUC Borji AUC Judd
Baseline: Infinite Humans 1.00 1.00 0.80 0.87 0.91
SALICON [16] (*) 0.60 0.74 0.74 0.85 0.87
DeepFix [37] (**) 0.67 0.78 0.71 0.80 0.87
Deep Gaze 1 [24] 0.39 0.48 0.66 0.83 0.84
Deep Convnet 0.52 0.58 0.69 0.82 0.83
BMS [45] 0.51 0.55 0.65 0.82 0.83
eDN [40] 0.41 0.45 0.62 0.81 0.82
GBVS [14] 0.48 0.48 0.63 0.80 0.81
Judd [21]] 0.42 0.47 0.60 0.80 0.81
Shallow Convnet 0.46 0.53 0.64 0.78 0.80
Mr-CNN [28] 0.48 0.48 0.69 0.75 0.79
Rare 2012 Improved [30] 0.46 0.42 0.67 0.75 0.77
Baseline: One human 0.38—-0.46 0.52—10.65 0.63 —0.67 0.66 —0.71 0.80—0.83

Table 6. Results of the MIT300 dataset. (*-to be published, (**-non-peer reviewed
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