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Abstract

Interpretability of deep neural networks (DNNs) is es-
sential since it enables users to understand the overall
strengths and weaknesses of the models, conveys an un-
derstanding of how the models will behave in the future,
and how to diagnose and correct potential problems. How-
ever, it is challenging to reason about what a DNN actually
does due to its opaque or black-box nature. To address this
issue, we propose a novel technique to improve the inter-
pretability of DNNs by leveraging the rich semantic infor-
mation embedded in human descriptions. By concentrating
on the video captioning task, we first extract a set of se-
mantically meaningful topics from the human descriptions
that cover a wide range of visual concepts, and integrate
them into the model with an interpretive loss. We then pro-
pose a prediction difference maximization algorithm to in-
terpret the learned features of each neuron. Experimental
results demonstrate its effectiveness in video captioning us-
ing the interpretable features, which can also be transferred
to video action recognition. By clearly understanding the
learned features, users can easily revise false predictions
via a human-in-the-loop procedure.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated state-

of-the-art and sometimes human-competitive performance
in numerous vision-related tasks [19], including image
classification [18, 30], object detection [14, 28] and im-
age/video captioning [33, 34]. With such success, DNNs
have been integrated into various intelligent systems as a
key component, e.g., autonomous car [16, 5], medical im-
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Figure 1. An overview of our interpretation system (bottom) com-
pared with an opaque system (top). An opaque system often learns
abstract and incomprehensible features. Human users have to ac-
cept the decisions from the system passively, but are unable to
understand the rationale of the decisions and interact with it. To
address this issue, we incorporate topics embedded in human de-
scriptions as semantic information, to improve interpretability of
DNNs during the learning process. The learned features of each
neuron can be associated with a topic (e.g., topic “road” with top
related words like road, street, and drive can interpret the learned
features of the blue neuron). With the aids of these interpretable
features, human users can easily visualize and interact with the
system, which allows a human-in-the-loop learning procedure.

age analysis [15], financial investment [1], etc. The high-
performance of DNNs highly lies on the fact that they often
stack tens of or even hundreds of nonlinear layers, and en-
code knowledge as numerical weights of various node-to-
node connections.

Although DNNs offer tremendous benefits to various ap-
plications, they are often treated as “black box” models be-
cause of their highly nonlinear functions and unclear work-
ing mechanism [3]. Without a clear understanding of what
a given neuron in the complex models has learned and how
it interacts with others, the development of better models
typically relies on trial-and-error [37]. Furthermore, the ef-
fectiveness of DNNs is partly limited by its inabilities to ex-
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plain the reasons behind the decisions or actions to human
users. It is far from enough to provide eventual outcomes
to the users especially for highly regulated environments,
since they may also need to understand the rationale of the
decisions. For example, a driver of an autonomous car is
eager to recognize why obstacles are reported so that he/she
can decide whether to trust it; and radiologists also require
a clearly interpretable outcome from the system such that
they can integrate the decision with their standard guide-
line when they make diagnosis. As an extreme case in [24],
a DNN can be easily fooled, i.e., it is possible to produce
images that DNNs believe to be recognizable objects with
nearly certain confidence but are completely unrecogniz-
able to humans. In summary, the counter-intuitive prop-
erties and the black-box nature of DNNs make it almost
impossible for one to reason about what they do, foreseen
what they will do, and fix the errors when potential prob-
lems are detected. Therefore, it is imperative to develop sys-
tems with good interpretability, which is an essential prop-
erty for users to clearly understand, appropriately trust, and
effectively interact with the systems.

Recently, many research efforts have been devoted to
interpreting hidden features of DNNs [12, 25, 38, 37],
and have made several steps towards interpretability, e.g.,
the de-convolutional networks [37] to visualize the layers
of convolutional networks, and the activation maximiza-
tion [12] to associate semantic concepts with neurons of
a CNN. A few attempts have also been made to explore
the effectiveness of various gates and connections of re-
current neural networks (RNNs) [10, 17]. Interpretability
also bring us some benefits like weakly supervised detec-
tion [39]. However, these works often focus on analyzing
relatively simple architectures such as AlexNet [18] for im-
age classification. There still lack interpretation techniques
for more complex architectures that integrates both CNN
and RNN, in which the learned features are difficult to in-
terpret and visualize. More importantly, these methods per-
form interpretation and visualization after the training pro-
cess. It means that they can only explain a given model,
but are unable to learn an interpretable model. Such a de-
coupling between learning and interpretation makes it ex-
tremely hard (if possible at all) to get humans to interact
with the models (e.g., correct errors).

In this paper, we address the above limitations by pre-
senting a method that incorporates the interpretability of
hidden features as an essential part during the learning pro-
cess. A key component of our method is to measure the in-
terpretability and properly regularize the learning. Instead
of pursuing a generic solution, we concentrate our attention
on the video captioning task [32], for which DNNs have
proven effective on learning highly predictive features while
the interpretability remains an issue as other DNNs do. In
this task, we leverage the provided text descriptions, which

include rich information, to guide the learning. We first ex-
tract a set of semantically meaningful topics from the cor-
pus, which cover a wide range of visual concepts including
objects, actions, relationships and even the mood or status
of objects, therefore suitable to represent semantic informa-
tion. Then we parse the descriptions of each video to get
a latent topic representation, i.e., a vector in the semantic
space. We integrate the topic representation into the train-
ing process by introducing an interpretive loss, which helps
to improve the interpretability of the learned features.

To further interpret the learned features, we present
a prediction difference maximization algorithm. We also
present a human-in-the-loop learning procedure, through
which users can easily revise false predictions and the
model based on the good interpretation of the learned fea-
tures. Our results on real-world datasets demonstrate the
effectiveness.

2. Methodology
In this section, we present the key components of our

interpretation system. We first overview the system on the
video captioning task. We then present an attentive encoder-
decoder network, which incorporates an interpretive loss
to learn interpretable features. Afterwards, we present a
prediction difference maximization algorithm to interpret
the learned features of each neuron. We will introduce a
human-in-the-loop learning procedure by leveraging the in-
terpretability in Section. 4.

2.1. Overview

Our goal is to improve the interpretability of DNNs with-
out losing efficiency. By designing proper learning ob-
jective, we expect to learn the hidden features with two
properties—discriminability and interpretability. Discrim-
inability defines the ability that the features can distinguish
different inputs and predict corresponding outputs. Inter-
pretability measures the extent that human users can under-
stand and manipulate the learned features. These two prop-
erties are often contradictory in DNNs. According to the
fundamental bias-variance tradeoff, a complex DNN can be
highly competitive in prediction performance but its hidden
features are often too abstract to be understandable for hu-
mans. On the other hand, a simple DNN can lead to more
interpretable features, but it may degrade the performance.
In order to break this dilemma, we introduce extra semantic
information to guide the learning process. In this paper, we
will concentrate on the video captioning task [32], although
the similar ideas can be generalized to other scenarios.

Specifically, the video captioning task aims to automat-
ically describe video content with a complete and natural
sentence. Recent works have demonstrated that video cap-
tioning can benefit from the discovery of multiple seman-
tics, including obejcts, actions, relationships and so on. Liu
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Figure 2. The attentive encoder-decoder framework for the video captioning task, which can automatically learn interpretable features. We
stack a CNN model and a bi-directional LSTM model as encoder to extract video features {v1, ...vn}, and then feed them to an LSTM
decoder to generate descriptions. The attention mechanism is used to let the decoder focus on a weighted sum of temporal features with
weight αt. We extract latent topics from human labeled descriptions as semantic information and introduce an interpretive loss to guide
the learning towards interpretable features, which is optimized jointly with the negative log-likelihood of training descriptions.

et al. [20, 21] proposed one original method for joint human
action modeling and grouping, which can provide compre-
hensive information for video caption modeling and explic-
itly benefit understanding what happens in the given video.
As a video is more than a set of static images, in which there
are not only the static objects but also the temporal relation-
ships and actions, video analysis often requires more com-
plex network architectures. For example, some works have
shown the effectiveness of DNNs on video analysis [2, 35]
when stacking a hierarchical RNN on top of some CNN lay-
ers. Such a complex network makes it more challenging to
learn interpretable hidden features and hinders the interac-
tion between the models and human users. To address this
issue, we propose a novel technique to improve the inter-
pretability of the learned features by leveraging the latent
topics extracted from video descriptions.

The overall framework is shown in Fig. 2, which con-
sists of an attentive encoder-decoder network for video cap-
tion generation and an interpretive loss to guide the learning
towards semantically meaningful features.

Formally, in the training set, each video x has n sam-
ple frames along with a set of Nd descriptions Y =
{y1,y2, ...,yNd}. For each y ∈ Y, let (x,y) denote a
training video-description pair, where y = {y1, y2, ..., yNs

}
is a description with Ns words. We first transform the in-
put x into a set of Dv-dimensional hidden features V =
{v1, ...,vn} by using an encoder network. Then, the hid-
den features are decoded to generate the description y. We
define the task-specific loss as the negative log-likelihood
of the correct description

LT (x,y) = − log p(y|x). (1)

We parse the text descriptions Y to get a semantically

meaningful representation (i.e., a topic representation in this
paper), which is denoted as s. Then, we introduce an in-
terpretive loss LI(V, s) to measure the compliance of the
learned features with respect to the semantic representation
s. Putting together, we define the overall objective function
as

L(x,y, s) = − log p(y|x) + λLI(V, s). (2)

The tradeoff between these two contradictory losses is cap-
tured by a balancing weight λ. An interpretation system
with high-quality can be realized based on an appropriate
λ, which can be obtained using the validation set.

After training (See the experimental section for details),
we use the prediction difference maximization algorithm to
interpret the learned features of each neuron by a topic. Be-
low, we elaborate each part.

2.2. Attentive Encoder-Decoder Framework

We adopt an attentive encoder-decoder framework sim-
ilar to [34] for video captioning. The attention mechanism
is used to let the decoder selectively focus on only a small
subset of frames at a time.

A key difference from previous works [32, 34, 26] which
use CNN features as video representations is that we stack
a bi-directional LSTM model [29] on top of a CNN model
to characterize the video temporal variation in both input
directions. Such an encoder network makes the vector rep-
resentation vi of the i-th frame capture temporal informa-
tion, and thus the interpretive loss (defined later in Eq. 8)
lets the internal neurons learn to detect latent topics in the
video. So the learned features are more likely to be both
discriminative and interpretable.

To generate the description sentences, we use an LSTM
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model as the decoder. At each time step, the input to
the LSTM decoder can be represented by [yt−1, φt(V )],
where yt−1 is the previous word and φt(V ) is the dynamic
weighted sum of temporal feature vectors

φt(V ) =

n∑
i=1

αt
ivi. (3)

The attention weight αt
i reflects the importance of the i-th

temporal features at time step t [34], which is defined as

αt
i =

exp(wa tanh(Uaht−1 +Tavi + ba))∑n
j=1 exp(wa tanh(Uaht−1 +Tavj + ba))

, (4)

where wa, Ua, Ta and ba are the parameters that are
jointly estimated with the other parameters. We adopt the
same strategy as [33] to initialize the memory state and hid-
den state as [

c0
h0

]
=

[
finit,c
finit,h

]
(
1

n

n∑
i=1

vi), (5)

where finit,c and finit,h are both multilayer perceptions,
which can also be jointly estimated.

At each time step, we use the LSTM hidden state ht to
predict the following word, and define a probability distri-
bution over the set of possible words by using a softmax
layer

pt = softmax(Wp[ht, φt(V ),yt−1] + bp). (6)

Therefore, we can predict the next word based on such prob-
ability distribution until the end sign is emitted. The log-
likelihood of the sentence is therefore the sum of the log-
likelihood over the words

log p(y|x) =
Ns∑
t=1

log p(yt|y<t,x; θ), (7)

where θ are the parameters of the attentive encoder-decoder
model.

2.3. Interpretive Loss

The above architecture for video captioning incorporates
both CNN and RNN to encode the spatial and temporal in-
formation. The complex architecture makes internal neu-
rons learn more abstract features than a single CNN or
RNN, and these features are typically hard to interpret by
human users. To improve the interpretability, we introduce
an interpretive loss, which makes the neurons learn to detect
semantic attributes in the text descriptions. For humans, it
is natural and easy to understand a concept in text descrip-
tions.

In our method, instead of using the raw description
data which can be very sparse and high-dimensional vec-
tors (e.g., in bag-of-words or tf-idf format), we adopt a

people people, group, men, line, crowd
woman woman, lady, women, female, blond

man man, guy, unique, kind, bare
dance dancing, dance, stage, danced, dances
walk walking, walks, race, turtle, walk
eat eating, food, eats, eat, ate

play playing, plays, play, played, instrument
field grass, field, yard, run, garden
dog dog, tail, barking, wagging, small
cat cat, licking, cats, paws, paw

Table 1. Sampled latent topics with their high-probability words.
We have named the topics according to these words.

topic model to learn a semantic representation. As proven
in previous work [13, 7], topic models can extract se-
mantically meaningful concepts (or themes) that are use-
ful for visual analysis tasks. Furthermore, compared to
the raw text descriptions, the representations by topic mod-
els can better capture the global statistics in a corpus as
well as synonymy and polysemy [4]. Here, we adopt the
most popular topic model, i.e., Latent Dirichlet Alloca-
tion (LDA) [4], which has been applied to image/video/text
analysis tasks [13, 7, 6, 40]. Specifically, LDA is a hier-
archical Bayesian model, in which each document is rep-
resented as a finite mixture over topics and each topic is
characterized by a distribution over words. In our case,
we concatenate all of the single descriptions in Y together
to form a “document”. Here, we adopt WarpLDA [9] to
efficiently estimate the parameters for an Nt topics LDA
model, and set Nt to 100 in experiments. The top words
from the learned topics are illustrated in Table. 1. We can
see that each topic has a good correspondence to a mean-
ingful semantic attribute.

After training, we parse each description document to
get the latent topic representation, from which the words are
generated. We encode the topic representation for a video
as a binary vector s = [t1, t2, ..., tNt

] ∈ {0, 1}Nt , whose
i-th element ti is set to 1 when i-th topic occurs in the de-
scriptions, and 0 otherwise. This vector can be obtained by
running the Gibbs sampler in WarpLDA. We use a binary
vector here rather than a real-valued vector denoting the av-
erage probability of each topic, because it provides an easy
way to interpret the learned features of each neuron by a
topic, when applying the prediction difference maximiza-
tion algorithm described in Section. 2.4.

Given the topic representations, we define the interpre-
tive loss as

LI(V, s) = ‖f(
1

n

n∑
i=1

vi)− s‖22, (8)

where f : Dv → Nt is an arbitrary function mapping
video features to topics. This formulation can be individ-
ually viewed as a multi-label classification task, where we
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predict topics given a set of video features. The choice of
the function f is also a tradeoff between interpretability and
task performance. A complex function with a large number
of parameters will increase the interaction among different
neurons, leading to hard-to-interpret features again. On the
contrary, a too simple function will limit the discriminabil-
ity of the learned features. For example, an identity map-
ping will turn the hidden features into a replica of topics,
which may degrade the performance for caption generation.
Here, we adopt a two-layer perception as f . To avoid over-
fitting, we use “mean pooling” features over all frames as
input. We use l2-norm to define interpretive loss because
it’s simple and effective to build a correspondence between
neurons and topics and it performs well in practice. We will
see in Section. 3.2 how the interpretive loss help to learn
interpretable features.

2.4. Prediction Difference Maximization

To analyze the correspondence between neurons and top-
ics and semantically interpret the learned features, we pro-
pose a prediction difference maximization algorithm, which
is similar with a concurrent and independent work [41], to
represent the learned features of each neuron by a topic.
This method is different from the activation maximization
methods [12, 25], where they aim to find the input patterns
(e.g., image patches) that maximally activate a given neu-
ron. The reason why we do not use activation maximization
is that some neurons represent temporal actions (e.g., play-
ing, eating), which cannot be represented by static image
patches.

Specifically, in a video with topic representation s, for
each topic i that ti = 1 and i ∈ [1, ..., Nt], we expect to find
a neuron j∗i that

j∗i = argmax
j

([f(v)]i − [f(v\j)]i), (9)

where v = 1
n

∑n
i=1 vi are the average video features, v\j

denotes the set of all input features except that the j-th neu-
ron is deactivated (set to zero) and [f(·)]i is the i-th element
of the prediction f(·).

The purpose of Eq. 9 is to find a neuron which con-
tributes most to predicting a topic occurred in the video. We
can consider that the identified neuron j∗i “prefers” topic i,
which can then represent the learned features of j∗i . After
we go through all the videos in the training set, we can find
one or more neurons associated with each topic. Note that
previous work has shown that a neuron may respond to dif-
ferent facets [25], which is also true in our case, that is, a
neuron may prefer different topics. Here, we only choose
one for simplicity to represent the learned features of the
given neuron.

3. Experimental Results
3.1. Experimental Settings

Dataset: We use the YouTubeClips [8] dataset, which is
well suited for training and evaluating an automatic video
captioning model. The dataset has 1, 970 YouTube clips
with around 40 English descriptions per video. The video
clips are open-domain, containing a wide range of daily
subjects like sports, animals, actions, scenarios, etc. Fol-
lowing [32], we use 1, 200 video clips for training, 100
video clips for validation and 670 video clips for testing.

Training: In the attentive encoder-decoder framework,
we select n = 28 equally sampled frames in each video
and feed each frame into GoogLeNet [30] to extract a 1024
dimensional frame-wise representation from the pool5/7×
7 s1 layer. The parameters of GoogLeNet are fixed during
training.

The overall objective function for caption generation is

L =
1

N

N∑
k=1

(
λ‖f(vk)− sk‖22 −

Nk
s∑

t=1

log p(yk
t |yk

<t,x
k)
)
,

where there areN training video-description pairs (xk,yk).
vk = 1

n

∑n
i=1 v

k
i are the average video features and sk is

the topic representation for video xk.
We use Adadelta [36] to jointly estimate the model pa-

rameters for bi-directional LSTM of the encoder, attentive
LSTM of the decoder and two-layer perception of f . After
training, we apply the prediction difference maximization
algorithm to interpret the learned features of each neuron.

Baseline: In the experiment, we call our model LSTM-I
which jointly models the interpretability of the learned fea-
tures and video captioning. The hyperparameter λ is set
to 0.1 by maximizing the performance on the validation
set. To compare the results, we also test a baseline model
named LSTM-B without interpretive loss—it is only opti-
mized with respect to the sum of negative log-likelihood
over the words. These two models have the same encoder-
decoder architecture.

3.2. Feature Visualization

We visualize the learned representations of test videos in
Fig. 3. The top and bottom rows show the results of LSTM-I
and LSTM-B, respectively. We randomly choose some top-
ics, and for each topic, we find a subset of videos containing
this topic and plot the neuron activations by averaging the
features from these videos. It can be seen that the entries
of LSTM-I representations are very peaky at some specific
neurons, indicating a strong correspondence between top-
ics and neurons. Therefore we can rely on the prediction
difference maximization algorithm to represent the learned
features of neurons by the corresponding semantic topics.
The interpretability of the learned features in LSTM-I is
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Figure 3. Examples of learned video representations using LSTM-
I model (top) and LSTM-B model (bottom). Each histogram indi-
cates an average of activations of a subset of videos, which have
the same topic. (a) representations for topic “dog”; (b) represen-
tations for topic “girl”; (c) representations for topic “walk”; (d)
representations for topic “dance”. The top words for topics are
shown in Table. 1.

better than that in LSTM-B because the correspondence be-
tween neurons and topics decouples the interaction of dif-
ferent neurons, which makes human users easily understand
and manipulate video features (See Section. 4).

To further visualize the variation of the learned features
for a video through time, we randomly choose some videos
for presentation as shown in Fig. 4. For each video, we
select some relevant topics existing in the descriptions and
some irrelevant topics which are unimportant or easily con-
fusing1. We have named the topics according to their high-
probability words (See Table. 1 for the top words with re-
spect to topics). We plot the activations of one neuron as-
sociated with each topic. We can see that the neurons as-
sociated with the salient topics in videos have high activa-
tions through time, which suggests the strong compliance
between neuron activations and video contents.

It should be noted that the relevant topics are mapped
from average video features in Eq. 8, so the associated neu-
rons may not be activated in every frame. For example, in
Fig. 4 (c), the neuron with respect to topic “horse” is not
activated in the first frame, but the average video features
can be mapped to predict topic “horse” correctly. The fact is
also true in Fig. 4 (d), where the neuron with respect to topic
“woman” is only activated in the third frame. It proves that
the neurons are able to detect corresponding topics when
they appear without severe overfitting.

3.3. Performance Comparison

To validate whether the interpretability of the learned
features will affect the task performance, we test the qual-
ity of the generated sentences measured by BLEU [27] and
METEOR [11] scores, which compute the similarity be-
tween a hypothesis and a set of references. In the first block
of Table. 2, we compare the performance with the baseline
model. We can see that LSTM-I significantly outperforms

1A video demo is available at http://ml.cs.tsinghua.edu.
cn/˜yinpeng/papers/demo-cvpr17.mp4

Model BLEU METEOR
LSTM-B (GoogLeNet) 0.416 0.295
LSTM-I (GoogLeNet) 0.446 0.297
LSTM-YT (AlexNet) [32] 0.333 0.291
S2VT (RGB + Optical Flow) [31] - 0.298
SA (GoogLeNet) [34] 0.403 0.290
LSTM-E (VGG) [26] 0.402 0.295
h-RNN (VGG) [35] 0.443 0.311
SA (GoogLeNet + C3D) [34] 0.419 0.296
LSTM-E (VGG + C3D) [26] 0.453 0.310
h-RNN (VGG + C3D) [35] 0.499 0.326

Table 2. BLEU and METEOR scores comparing with the state-of-
the-art results of description generation on YouTubeClips dataset.

the baseline LSTM-B in BLEU score and achieves better
performance in METEOR score. These results suggest that
our model benefits from the proper way of incorporating ex-
ternal semantic information into the training process, which
makes the features capture more useful temporal informa-
tion (e.g., actions, relationships) and thus generates more
accurate descriptions. So the proposed LSTM-I with better
interpretability also helps to improve the performance for
captioning.

To fully evaluate the performance on the video cap-
tioning task, we compare our approach with five state-
of-the-art methods, namely, LSTM-YT [32], S2VT [31],
SA [34], LSTM-E [26], and h-RNN [35]. LSTM-YT
translates videos to descriptions with a single network us-
ing mean pooling of AlexNet [18] features over frames;
S2VT directly maps a sequence of frames to a sequence of
words; SA incorporates a soft attention mechanism into the
encoder-decoder framework; LSTM-E considers the rela-
tionship between the semantics of the entire sentence and
video content by embedding visual-semantic; and h-RNN
exploits the temporal dependency among sentences in a
paragraph by a hierarchical-RNN framework.

We only use 2-D CNN features for simplicity in this
work. For fair comparison, we also show the extensive
results of SA, LSTM-E and h-RNN which only incorpo-
rate 2-D CNN features. By comparing our baseline method
LSTM-B to SA, which only uses a single CNN model as
encoder and a similar decoder architecture, we can see that
our baseline model achieves higher BLEU and METEOR
scores, suggesting that the bi-directional LSTM can help us
capture temporal variation and lead to better video represen-
tations. On the other hand, our LSTM-I achieves state-of-
the-art performance and gets higher BLEU score than other
methods. These results further demonstrate the effective-
ness of our method, and we can conclude that integrating
the interpretability of latent features by leveraging seman-
tic information during training is a feasible way to simulta-
neously improve interpretability and achieve better perfor-
mance.
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Figure 4. Neuron activations with respect to relevant and irrelevant topics in sampled videos. Topics(R) are relevant topics extracted from
video descriptions. Topics(I) are irrelevant topics which are unimportant or easily confusing topics. We plot the activations of one neuron
related to each topic through time.

Model LSTM-B LSTM-I LSTM-R
Accuracy(%) 88.50 91.13 90.13

Table 3. Video action recognition performance of different models.

3.4. Video Action Recognition

We also demonstrate the generalization ability of the
learned interpretable features. Specifically, interpretable
features usually contain more general information than the
features learned by optimizing a task-specific objective,
because task-specific features may overfit the particular
dataset, while interpretable features reach a good balance
between task-specific fitting and generalization. We test this
hypothesis by examining a transfer learning task—we eval-
uate the performance on video action recognition by trans-
ferring the learned features from video captioning.

We use the UCF11 dataset [22], a YouTube action dataset
consisting of 1600 videos and 11 actions, including bas-
ketball shooting, biking, diving, golf swinging, horse rid-
ing, soccer juggling, swinging, tennis swinging, trampoline
jumping, volleyball spiking, and walking. Each video has
only one action associated with it. We randomly choose 800
videos for training and 800 videos for testing. We use the
same encoder architecture as in the video captioning task.
The decoder is a two-layer perception and we minimize the
cross-entropy loss.

Table. 3 presents the results, where we adopt three model
variants. We do not compare with other state-of-the-art ac-
tion recognition models due to the lack of standard train-test
splits. In LSTM-B and LSTM-I, the parameters of the en-

coder are fixed, which are initialized with the trained cap-
tioning model. We can consider that the features for ac-
tion recognition are extracted from the trained captioning
encoder. We only optimize the parameters of the two-layer
decoder. LSTM-R has the same architecture but all the pa-
rameters are initialized randomly and then optimized.

We can see that LSTM-I achieves higher accuracy than
LSTM-B, which verifies our hypothesis that the inter-
pretable features contain more general information than
the task-specific features and lead to higher performance
in other tasks. Another fact is that LSTM-I outperforms
LSTM-R, which indicates that the interpretable features
learned by captioning task are more effective than the fea-
tures learned by action recognition. This is because that the
interpretive loss makes the neurons learn to detect semantic
attributes in LSTM-I model and these features are general
and transferable for other tasks.

4. Human-in-the-loop Learning
An important advantage of the interpretable features is

that they provide a natural interface to get human users in-
volved in the learning process, and make them understand
how the system works, what is going wrong and how to
correct errors (if any). Although previous works [37, 23]
have provided some applications on human interaction and
architecture selection, they still need expert-level users to
join the procedure because non-expert users get little in-
sight about potential problems. They also lack a human-
in-the-loop learning procedure, which helps models inte-
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Figure 5. We show the second half (unseen part) of four videos
and the predicted captions before and after refining the model. By
providing the missing topics (“dance”, “motorcycle”, “swim” and
“polar bear”) for the first half of these four videos and refining the
model, the predictions for the second half are more accurate.

grate human knowledge into the training process to refine
their shortcomings. Here, we present an easy way to allow
a human-in-the-loop learning procedure by clearly under-
standing the learned features without requiring expert-level
experience of human users. In our case, when the model
outputs an inaccurate description, human users only need to
provide the missing topics. The human-in-the-loop learn-
ing procedure can diagnose potential problems in the model
and refine the architecture, so the similar errors will never
occur in future unseen data.

Specifically, the human-in-the-loop learning procedure
can be divided into two steps—activation enhancement and
correction propagation. First, when it receives a topic t
from human users for an inaccurate output, it retrieves a
set of neurons associated with t, which are already found by
the prediction difference maximization algorithm. For these
neurons, it adds the average activations of them in a subset
of training videos containing topic t and turns the original
features v to v∗. The purpose of activation enhancement
is to let the neurons associated with the missing topic have
higher activations, so the decoder propobably maps the new
features to more accurate descriptions. Second, to general-
ize the specific error to future unseen data, we use the cor-
rection propagation to fine-tune the parameters of the en-
coder. We expect to let the encoder learn to generate v∗

instead of v, so we minimize

Lhuman = ‖v′ − v∗‖22 + µ‖θ′ − θ‖22, (10)

where v′ are the outputs of the refined encoder, θ and θ′

are the parameters of the original and the refined encoders,
respectively. The first term aims to let features v′ approx-
imate the optimal features v∗, and the second term forces
the model to have little variations. The balancing weight µ
makes the refined model not overfit to this sample.

In our experiments, it’s hard to find a similar error oc-
curred in two videos in the test set due to its small size and
rich diversity. So we find 20 videos with inaccurate predic-
tions in the test set and split each of them into two parts. We
optimize Eq. 10 using the first half of each video and use the

second half as future unseen data to test. We get more accu-
rate captions for 17 videos (second half), which can capture
the missing topics. Fig. 5 shows four cases. Taking the po-
lar bears video for example, the model doesn’t capture the
salient object “polar bear” for every parts of the video. By
providing the missing topic and refining the model using
the first half, the model can accurately capture “polar bear”
and produce more accurate captions for the second half. It
proves that the model learns to solve its potential problems
with the aid of human users.

We also examine whether this procedure could affect the
overall performance. We test the performance of the new
model after refining for these 20 videos in turn. We get
BLEU score 0.449 and METEOR score 0.298, which are
sightly better than those in Table. 2 to prove that refined
model does not affect the captioning ability while it makes
more accurate predictions for the selected 20 videos.

5. Conclusions
In this work, we propose a novel technique to improve

the interpretability of deep neural networks by leveraging
human descriptions. We base our technique on the challeng-
ing video captioning task. In order to simultaneously im-
prove the interpretability of the learned features and achieve
high performance, we extract semantically meaningful top-
ics from the corpus and introduce an interpretive loss dur-
ing the training process. To interpret the learned features in
DNNs, we propose a prediction difference maximization al-
gorithm to represent the learned features of each neuron by
a topic. We also demonstrate a human-in-the-loop training
procedure which allows humans to revise false predictions
and help to refine the network.

Experimental results show that our method achieves bet-
ter performance than various competitors in video caption-
ing. The learned features in our method are more inter-
pretable than opaque models, which can be transferred to
video action recognition. Several examples prove the effec-
tiveness of our human-in-the-loop learning procedure.
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