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Abstract

Surveillance video parsing, which segments the video
frames into several labels, e.g., face, pants, left-leg, has
wide applications [38 9]. However, pixel-wisely annotat-
ing all frames is tedious and inefficient. In this paper, we
develop a Single frame Video Parsing (SVP) method which
requires only one labeled frame per video in training stage.
To parse one particular frame, the video segment preceding
the frame is jointly considered. SVP (i) roughly parses the
frames within the video segment, (ii) estimates the optical
flow between frames and (iii) fuses the rough parsing re-
sults warped by optical flow to produce the refined parsing
result. The three components of SVP, namely frame pars-
ing, optical flow estimation and temporal fusion are inte-
grated in an end-to-end manner. Experimental results on
two surveillance video datasets show the superiority of SVP
over state-of-the-arts.

1. Introduction

In recent years, human parsing [18] is receiving increas-
ing owning to its wide applications, such as person re-
identification [16} [38]] and person attribute prediction [9].
Most existing human parsing methods [[17, 18, |37] target at
segmenting the human-centric images in the fashion blogs.
Different from fashion images, parsing surveillance videos
is much more challenging due to the lack of labeled data.
It is very tedious and time-consuming to annotate all the
frames of a video, for a surveillance video usually contains
tens of thousands of frames per second.

In this paper, we target at an important, practically ap-
plicable yet rarely studied problem: how to leverage the
very limited labels to obtain a robust surveillance video
parsor? More specifically, we mainly consider an extreme
situation, i.e., only one frame in each training video is an-
notated. Note that labeling is unnecessary in testing phase.
As shown in Figure[T] the labeled frame per training video
(red bounding box) is fed into the proposed Single frame
supervised Video Parsing (SVP) network. Insufficient la-
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Figure 1. During training, only a single frame per video (red check
mark) is labeled, while others (blue x mark) are unlabeled. A Sin-
gle frame supervised video Parsing (SVP) network is learned from
the extremely sparsely labeled videos. During testing, a parsing
window is slided along the video. The parsing result of testing
frame I, (orange box) is determined by itself, the long-range frame
I;_; (green box) and the short-range frame frame I;_ (blue box).
For better viewing of all figures in this paper, please see original
zoomed-in color pdf file.

beled data always lead to over-fitting, especially in the deep
learning based method. The rich temporal context among
video frames can partially solve this problem. By build-
ing the dense correspondences, i.e., optical flow, among
video frames, the single labeled frame can be viewed as the
seed to indirectly expand (propagate) to the whole video.
Most state-of-the-art optical flow estimation methods, such
as EpicFlow [29], DeepFlow [34], LDOF [34] etc, suffer
from relatively slow speed. Because the video parsing task
requires extensive online optical flow computation, a real-
time, accurate optical flow estimation is essential. Thus, it
is a challenging but essential problem to build an end-to-
end, efficient video parsing framework by only utilizing the
limited (e.g, only one) labeled images and large amount of
unlabeled images with online estimated dense correspon-
dences among them.

To tackle these challenges, we propose the SVP network.
As shown in Figure [I] to parse a test frame I;, a parsing
window which contains I; and several frames preceding it
{li—p,k = 0,...,1}, is slided along the video. Consider-
ing the computation burden and cross-frame redundancies,
a triplet {I;_;, Iy, I; } is selected to represent the sliding



window. The long-range frame I;_; lies | frames ahead of
I; while short-range frame I;_ lies s frames ahead of I;.
Usually, [ > s. They complement each other in that the
short-range optical flows are more accurate, while the long-
range frames bring more diversities. The triplet is fed into
SVP to collaboratively produce the parsing result.

SVP contains three sub-networks. The image parsing
sub-network parses the three frames respectively, while the
optical flow estimation sub-network builds the cross-frame
pixel-wise correspondences. In order to decrease the inter-
ference of imperfect optical flow, a pixel-wise confidence
map is calculated based on the appearance differences be-
tween one image and its counterpart wrapped from the other
image. Based on the mined correspondences and their con-
fidences, the temporal fusion sub-network fuses the parsing
results of the each frame, and then outputs the final parsing
result. Extensive experiments in the newly collected indoor
and outdoor datasets show the superior performance of SVP
than the state-of-the-arts.

The contributions of this work are summarized as fol-
lows. (i) To the best of our knowledge, it is the first at-
tempt to segment the human parts in the surveillance video
by labeling single frame per training video. It has extensive
application prospect. (ii) The proposed SVP framework is
end-to-end and thus very applicable for real usage. More-
over, the feature learning, pixelwise classification, corre-
spondence mining and the temporal fusion are updated in a
unified optimization process and collaboratively contribute
to the parsing results. (iii) We will release the collected in-
door and outdoor video parsing dataset, which is expected
to server as a benchmark for the further studies.

2. Related Work

Image, video and part semantic segmentation: Long
et al. [21] build a FCN that take input of arbitrary size and
produce correspondingly-sized output. Chen et al. [5]] intro-
duce atrous convolution in dense prediction tasks to effec-
tively enlarge the field of view of filters to incorporate larger
context without increasing the number of parameters. Dai et
al. [8] exploit shape information via masking convolutional
features. Hyeonwoo et al. [25] propose Deconvolution Net-
work for Semantic Segmentation to identify detailed struc-
tures and handles objects in multiple scales naturally. Shel-
hamer et al. [31]] define a clockwork fully convolutional
network for video semantic segmentation. Fragkiadaki er
al. [12] segment moving objects in videos by multiple seg-
ment proposal generation and ranking.

Part segmentation is more challenging since the object
regions are smaller. For human parsing, Yamaguchi et al.
[37] tackle the clothing parsing problem using a retrieval
based approach. Luo et al. [22] propose a Deep Decom-
positional Network for parsing pedestrian images into se-
mantic regions. Liang et al. [17] formulate the human pars-

ing task as an Active Template Regression problem. Liang
et al. [18] propose a Contextualized Convolutional Neural
Network to tackle the problem and achieve very impress-
ing results. Xia et al. [35] propose the “Auto-Zoom Net”
for human paring. Some other works explore how to jointly
object and part segmentation using deep learned potentials
[33]. Although great success achieved, these methods can
not be directly applied in our setting where only one la-
beled frame per training video is available. In contract, SVP
can effectively explore the extremely few labeled data and
a large amount of unlabeled data.

Weakly/semi-supervised semantic segmentation:
Chen et al. [26] develop Expectation-Maximization (EM)
methods to solve the semantic image segmentation from
either weakly annotated training data or a combination of
few strongly labeled and many weakly labeled images.
Dai et al. [1] propose a method called “Boxsup” which
only requires easily obtained bounding box annotations.
Dai ef al. [19] develop an algorithm to train convolutional
networks for semantic segmentation supervised by scrib-
bles. Bearman et al. [3|] incorporate the point supervision
along with a novel objectness potential in the training loss
function of a CNN model. Xu et al. [36] propose a unified
approach that incorporates image level tags, bounding
boxes, and partial labels to produce a pixel-wise labeling.
Hong et al. [[13]] decouple classification and segmentation,
and learn a separate network for each task based on the
training data with image-level and pixel-wise class labels,
respectively. These methods have achieved competitive
accuracy in weakly/semi supervised semantic segmentation
but are not designed for video parsing task.

Optical flow v.s. semantic segmentation: Sevilla-Lara
et al. [30] segment a scene into things, planes, and stuff
and then pose the flow estimation problem using localized
layers. Bai et al. [2]] estimate the traffic participants us-
ing instance-level segmentation. The epipolar constraints is
then used on each participant to govern each independent
motion. In these methods, optical flow estimation benefits
from semantic segmentation. However, SVP utilizes optical
flow for better video parsing.

Pfister et al. [27] investigate a video pose estimation ar-
chitecture that is able to benefit from temporal context by
combining information across the multiple frames using op-
tical flow. The key differences is that the optical flow is es-
timated offlined using dense optical flow [34] while DVP is
an end-to-end framework.

3. Approach

In this section, we first introduce the SVP network. Then
we will elaborate three sub-networks sequentially.
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Figure 2. The proposed single frame supervised video paring (SVP) network. The network is trained end-to-end.

3.1. Framework

Suppose that we have a video V = {I,--- ,In}, where
N is the number of frames. The single labeled frame is Iy,
and its corresponding groundtruth is G;. The pixel j of the
labelmap P; is denoted as P and takes the value within
the range [1, K], where K is the number of labels, such as
“face”, “bag” and “background”.

The SVP network is shown in Figure 2] The input is
a triplet {I;—;, I;_s, I+ }, among which only I; is labeled.
[l and s are set empirically. The output is the parsing re-
sult P,. SVP contains three sub-networks. As a pre-
processing step, we use Faster R-CNN [28§]] to extract the
human region. Then, the triplet are fed into Conv1~Conv5
for discriminative feature extraction. The frame parsing
sub-network (Section [3.2) produces the rough labelmaps
for the triplet, denoted as {Pt—h P,_,, Pt}. The optical
flow estimation sub-network aims to estimate the dense cor-
respondence between adjacent frames (Section 3.3). The
temporal fusion sub-network (Section [3.4) applies the ob-
tained optical flow F};_; and F;;_, to Pt—l and ]5t_s,
producing Pt,l,t and Pt,s’t. To alleviate the influence
of imperfect optical flow, the pixel-wise flow confidences
Ci—1+ and Ci_,, are estimated. The quintet including
{Pt, If’t_u, 15,5_87,5, Ci—1, Ct_s7t} are fused to produce the
final P, upon which the softmax loss are defined. Extra su-
pervision is also applied on Pt_u and I:’t_s,t for better per-
formance. Our detailed SVP configuration is listed in the
supplementary material.

The image parsing and optical flow estimation sub-
networks share first several convolution layers because the

two tasks are implicitly correlated. More specifically, only
pixels with the same labels can be matched by optical
flow. Besides, both sub-networks make per pixel predic-
tions. Frame parsing classifies each pixel while optical flow
is the offset/shift of each pixel. Therefore, the optimal re-
ceptive fields of the two tasks are similar, which provides a
prerequisite for feature sharing. The other benefit is to save
a lot of computation.

3.2. Frame Parsing Sub-network

As shown in Figure[2} the frame parsing sub-network has
three duplications with shared weights to deal with [;_;,
I;_s and I; respectively. The input is the 3-channel RGB
image, and the output is the K channel confidence maps
of the same resolution. In our experiments, DeepLab [3] is
used. Our SVP framework is quite generic and is not lim-
ited to any specific image parsing method, other semantic
segmentation methods [8, 20, 20} [1} 21]] can also be used.

3.3. Optical Flow Estimation Sub-network

We resort to optical flow F,;, : B> — R? to build the
pixel-wise correspondences between frames. The flow field
F{f, » = (¢z — Pz, @y —py) computes the relative offsets from
each point p in image [, to a corresponding point ¢ in image
I,. The optical flow estimation sub-network estimates the
flow Fy ;—; = o (I, I;—;), where o (a, b) is the operation of
predicting the optical flow from a to b. F} ;s is estimated
similarly. One feasible approach is to off-line calculate the
optical flow via the state-of-the-art methods [34} |4, 4]] and
load them into the network during optimization. It makes
training and testing be a multi-stage pipeline, and thus very



expensive in space and time. However, SVP computes the
optical flow on the fly.

Network architecture: After the shared Convl~Conv5
layers, a “correlation layer” [11} 23| 24] (denoted as “Corr”
in Figure [2) performs multiplicative patch comparisons be-
tween two feature maps. After that, several “upconvolu-
tional” layers are introduced to obtain the optical flow with
the same resolution as the input image pairs. Since our
surveillance dataset has no groundtruth optical flow, we use
flying chairs dataset [24] for training.

3.4. Temporal Fusion Sub-network

Optical flow confidence estimation: The optical flow
estimated via the above mentioned method is imperfect. To
suppress noisy P,_,;, we estimate the confidence of the es-
timated optical flow F; ;_; of each pixel. The flow F} ;_
can be handled in similar manners.

The flow confidence is defined based on the appearance
reconstruction criterion [4]. Mathematically, for each pixel
¢ in the optical flow F} ;_;, its confidence Cti,t_z is:

i i _ 7
Ct—l,t = ||l — I}

- HIg —w' (Ittht,t*l)Hv (1

|||, denoted the L; norm. I} is the wrapped counterpart
of I}. w(a,b) is the operation of applying the estimated
optical ﬂow_b to warp image a. The coordinates of pixel
iin I is (2%, y"), while the mapped coordinates in ;_; is
(mi/7yi') = («,y") + F{,_;. When (xi/,yi/) falls into
sub-pixel coordinate, we rewrite the IAZ of Equation 1] via
bilinear interpolation:

ftl = U)i (It—l, Ft,t—l)
= >

qe{neighbors of (z ,yi')}

v -y
2
where ¢ denotes the 4-pixel neighbors (top-left, top-right,
bottom-left, bottom-right) of (2, y").
The confidence defined in Equation [T}is the distance be-
tween the orignal image and its warped counterpart. The
similaritiy is calcualted via:

I, (1- a — a9

)(1 -

),

szl,t = eafp(—CLz,t/%g), 3)

where o is the mean value of C;_; ;. Higher value indicates
more confident optical flow estimation.

Temporal fusion: As shown in Figure 2] the estimated
parsing results P,_; and P,_, are warped according to the
optical flow F; ;_; and F} ,_ via:

Pitfl,t = w(ijh Ft,t7l>7 (4)
Ptfs,t = w(Ptfsy Ft,tfs)~

They are further weighted by the confidence map of
Equation|[I]to reduce the influence of inaccurate optical flow

by: Pt,l’t - Cy_1+ and Pt,syt - Cy_s+, where - denotes dot
product. They are fused with P, via a temporal fusion layer
with several 1 x 1 filters to produce the final P;. To enforce
accurate model training, we add extra/deep [15]] supervision
to Pt—l,t’ Pt—s,t and Pt.

3.5. Training Strategies

Like the Faster R-CNN [28]], we adopt a 4-step alternat-
ing training algorithm for optimization. (i) we train the op-
tical flow sub-network via the strategies in Section with
flying chairs dataset [[11}[24]]. (ii) we train the frame parsing
sub-network and the temporal fusion sub-network together
using the optical flow estimated in step (i). Both optical flow
and frame parsing sub-networks are initialized with VGG
model [32]]. The temporal fusion sub-network is initial-
ized via standard Gaussian distribution (with zero mean and
unit variance). At this point the two networks do not share
convolutional layers. (iii) We fix the Conv1~Conv5 layers
of optical flow estimation sub-network by those of frames
parsing sub-network, and only fine-tune the layers unique
to optical flow. Now the two sub-networks share convolu-
tional layers. (iv) keeping Convl~ConvS5 layers fixed, we
fine-tune the unique layers of frame parsing and temporal
fusion sub-networks. As such, all sub-networks form a uni-
fied network.

3.6. Inference

During inference, we slide a parsing window along the
video to specifically consider the temporal context. The
parsing results of I is jointly determined by the short video
segment preceding it. For calculation simplicity, a triplet of
frames, including long-range frame I;_;, short-range frame
I;_s as well as I; collaboratively contribute to the final pars-
ing results P;. Note that because the first [ frames of a video
do not have enough preceding frames to form a sliding pars-
ing window, we apply the frame parsing sub-network alone
to I; and produce its parsing results.

4. Experiments
4.1. Experimental setting

Dataset & Evalutaion Metrics: Since there is no pub-
licly available surveillance video parsing dataset, we man-
ually build two datasets, one for indoor, the other for out-
door. The indoor dataset contains 700 videos, among which
400 videos and 300 videos are used as training set and test
set, respectively. The outdoor dataset contains 198 train-
ing videos, and 109 testing videos. For both datasets, we
randomly select and pixel-wisely label 1 frame from each
training video. For each testing video, we randomly label 5
frames for comprehensive testing. The indoor dataset con-
tains 13 categories, namely face, hair, upper-clothes, left-
arm, right-arm, pants, left-leg, right-leg, left-shoe, right-



Table 1. Per-Class Comparison of F-1 scores with state-of-the-arts and several architectural variants of our model in Indoor dataset. (%).

Methods bk face hair  U- L-arm  R- pants  L- R-leg Dress L-shoe R- bag
clothes arm leg shoe

PaperDoll [37] | 92.62 57.16 5822 62.52 19.96 1499 5247 2543 20.7 992 20.66 2441 14.32
FCN-8s [21] 94.80 7135 7490 79.53 3355 3229 81.89 36.57 3398 43,53 33.03 3150 43.66
DeepLab [5] 93.64 63.01 69.61 8154 40.97 4031 81.12 3425 3324 64.60 2839 2640 56.50
EM-Adapt [26] | 93.46 66.54 70.54 77.72 4295 4220 82.19 3942 37.19 6322 33.18 31.68 53.00
SVP1 94.68 67.28 72.74 82.12 4296 4335 8191 39.26 3831 67.17 3147 3038 58.99
SVP s 94.65 6627 7348 83.12 45.17 4489 8272 38.62 3843 66.04 3093 3146 58.81
SVP l+c 9444 6729 7376 83.06 43.56 43.56 8233 4136 3946 68.36 31.75 31.73 59.04
SVP s+c 94.64 67.62 74.13 8348 45.13 45.08 83.21 39.89 40.11 68.17 31.15 3227 58.75
SVP l+s 9450 67.08 73.52 83.10 45.51 4426 8259 41.82 4231 6943 3371 3336 58.58
SVP l+s+c 94.89 70.28 76.75 84.18 4479 4329 83.59 42.69 4030 70.76 3477 35.81 60.43

Table 2. Per-Class Comparison of F-1 scores with state-of-the-arts and several architectural variants of our model in Outdoor dataset. (%).

Methods bk face hair  U- L-arm R- pants L- R-leg L- R-shoe bag
clothes arm leg shoe

PaperDoll [37] | 87.73 51.85 61.50 6633 233 339 2293 207 270 17.62 2022 245

FCN-8s [21] 92.00 62.64 6558 78.64 28.73 2897 79.69 38.88 9.08 32.04 3056 2945
DeepLab [5]] 92.19 58.65 66.72 8431 4223 3536 81.12 30.64 6.13 3789 3325 52.25
EM-Adapt [26] | 92.68 60.84 67.17 84.78 4128 33.61 81.80 4239 728 3954 3220 5431
SVP1 91.13 6240 67.73 84.64 4518 3140 80.66 30.28 586 4032 33.11 5496
SVPs 9251 6425 67.14 8499 4528 32.14 79.71 3231 1849 3724 3145 5158
SVP l+c 92.60 63.76 68.77 84.84 4583 33.75 81.67 31.37 19.06 38.54 3351 53.57
SVP s+c 92.94 6440 6993 8543 4444 3186 81.65 3588 18.22 3748 3336 54.23
SVP I+s 9190 6332 6948 84.84 42.09 28.64 8045 31.10 1328 3852 3552 46.89
SVP l+s+c 9227 64.49 70.08 8538 3994 35.82 80.83 30.39 13.14 3795 3454 50.38

shoe, bag, dress, and background. The videos in the out-
door dataset are collected in winter, so the label “dress” is
missing. To obtain human centric video, human are first
detected via Faster R-CNN [28]] fine-tuned on VOC dataset
[[LO]. The positive samples are obtained by merging all fore-
ground pixels. We enlarge the bounding box horizontally
and vertically by 1.2 times to avoid any missing foreground
regions. The obtained human centric images are fed into
SVP in both training and testing phases.

We use the same metric as PaperDoll [37] to evaluate the
performance, including several standard metrics: accuracy,
foreground accuracy, average precision, average recall and
average F-1 score over pixels. Among the five evaluation
metrics, the average F-1 is the most important metric. We
train SVP via the Caffe [[14] code using Titan X. The initial
learning rates for frame parsing and optical flow estimation
sub-networks are le-8 and 1e-5 respectively. In our experi-
ment, the long range [ and short range s are empirically set
as 3 and 1 in the indoor dataset. Because the outdoor dataset
has a lower frame rate and contains more quick dynamics, [
and s are set to 2 and 1 empirically.

4.2. Comparison with state-of-the-art

We compare our results with five state-of-the-art meth-
ods. The first is PaperDoll [37]. It is the best traditional
method which does not use deep learning. The second is

Table 3. Comparison with state-of-the-arts and several architec-
tural variants of our model in Indoor dataset. (%).

Methods [ Accu fg_accu Avg.pre Avgrec Avg. F-1

PaperDoll [37]]|46.71 78.69 33.55 45.68 36.41
FCN-8s [21] |88.33 71.56 55.05 52.15 53.12
DeepLab [5] | 86.88 77.45 49.88 6430 54.89
EM-Adapt [26] 86.63 80.88 53.01 63.64 56.40
SVP1 88.81 7442 5628 59.81 57.74
SVPs 88.91 77.12 5590 61.21 58.04
SVP l+c 88.75 7728 56.07 6194 5843
SVP s+c 89.07 77.06 56.86 61.98 58.73
SVP I+s 88.85 78.68 56.77 62.73 59.21

SVPl+s+c | 89.88 7648 61.52 59.38 60.20

FCN-8s [21], which achieves competitive results in sev-
eral semantic segmentation benchmark datasets. We imple-
ment the FCN-8s because of its superior performance than
other FCN variants, such as FCN-16s and FCN-32s. The
third baseline is DeepLab [5]. The above mentioned three
methods are supervised algorithms. Therefore, we only use
the labeled set for training. The fourth baseline method
is EM-Adapt [26] which can use both image-level and
bounding-box annotation as weak- and semi-Supervised su-
pervision. We also try another baseline DecoupledNet [13]],
which targets for semi-supervised semantic segmentation
with image-level class labels and/or pixel-wise segmenta-



Table 4. Comparison with state-of-the-arts and several architec-
tural variants of our model in Outdoor dataset. (%).

Methods \ Accu fg_accu Avg.pre Avgrec Avg. F-1
PaperDoll [37])(41.48 71.14 3048  33.11 26.23
FCN-8s [21] [82.46 70.70 4322 50.09  44.33
DeepLab [3] 85.07 78.44 49.87 51.10 47.75
EM-Adapt [26] 85.82 76.87 50.82 5298  49.07

SVP1 84.27 81.51 4746 5531 4828
SVP s 85.83 7348 5346 50.63  49.01
SVP l+c 85.87 7737 5266 52.68  49.79
SVP s+c 86.30 77.13 52.89 52,70  49.99
SVP l+s 8530 77.03 56.15 4992  51.17
SVPl+s+c | 8571 79.26 5695 52.14 52.94

tion annotations. However, the results of DecoupledNet in
both datasets are much lower than SVP and other baselines.
The reason is that DecoupledNet first obtains the saliency
map of each classified label. Deconvlution is then operated
upon the map to generate the final parsing results. How-
ever, many labels, e.g., face, hair etc, appear in almost every
training image, which causes the classification network less
sensitive to the position of these labels. For EM-Adapt and
DecoupledNet, we use their source codes [

Table[3|shows the comparisons between SVP and 4 state-
of-the-art methods in the Indoor dataset. Different variants
of SVP are generated by gradually adding more compo-
nents, which will be discussed in the next subsection. It
can be seen that our best SVP, namely “SVP l+s+c” reaches
the average F-1 score of 0.6020 while PaperDoll, FCN-8s
and DeepLab only reach 0.3641, 0.5312 and 0.5489 respec-
tively. In other words, our results are superior than Paper-
Doll, FCN-8s and DeepLab by 0.2379, 0.0708 and 0.0531.
The three baselines only use labeled images. Therefore, the
improvements show the advantage of utilizing the unlabeled
dataset. EM-Adapt also uses unlabeled images, and thus
reaches a higher Fl-score of 0.5640, which is better than
the three supervised baselines. However, EM-Adapt is still
worse than all the variants of SVP. It shows that label prop-
agation via optical flow is helpful in the surveillance video
parsing task. The F1-scores of each category are shown in
Tablem We can observe that “SVP l+s+c” beats PaperDoll,
FCN, DeepLab and EM-Adapt in all 13 categories, which
again shows the big improvements brought by the proposed
SVP framework.

Tabled shows the results of SVP and 4 state-of-the-art in
the Outdoor dataset. It can be seen that our method reaches
the average F-1 score of 0.5294 while PaperDoll, FCS-8s,
DeepLab and EM-Adapt only reach 0.2623, 0.4433 and
0.4775. The improves are 0.2671, 0.0861 and 0.0519 re-
spectively. Comparing Table ] and Table [3] we find that
the performances of all algorithms generally drop. The rea-

Uhttp://liangchiehchen.com/projects/DeepLab-LargeFOV-Semi-EM-
Fixed.html
Zhttp://cvlab.postech.ac kr/research/decouplednet/

son is that the outdoor dataset contains 198 training videos,
while the number is doubled in the indoor dataset, reaching
400. The F1-scores of each category are shown in Table
We can observe that “SVP l+s+c” beats PaperDoll, FCN and
DeepLab in all 13 categories and is better than EM-Adapt
in most categories, which again shows the effectiveness.

4.3. Component Analysis

Temporal fusion weights: We visualize the learned
weights for the temporal fusion layers for R-arm and L-shoe
in Figure [3| in the Indoor dataset. The horizontal axis has
3 x K ticks, corresponding to the K labels for I;_; (shown
in black), I;_, (shown in green) and I; (shown in blue) se-
quentially. The vertical axis illustrates the fusion weights.

By analyzing the sub-figure for R-arm, we have sev-
eral observations. First, the shapes of the weights for I;_;,
I;_, and I; are similar. Second, all maximum values for
the triplet (denoted as red dots) are positive, which demon-
strates that all frames contribute to the final result. Third,
for all the frames, the labels reaching maximum values are
all R-arm. Fourth, the maximum value of I;_ is higher
than that of I;_;, because it contains less errors in optical
flow. The maximum value of I; is the highest, because it is
the frame under consideration. Similar phenomenon can be
found in the L-shoe case.
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Figure 3. The temporal pooling weight for R-arm and L-shoe.

Long/Short range context: We test the effectiveness of
long and short range frame. “SVP 1” means SVP with long-
range context only. To implement this SVP variant, an im-



Figure 4. Step by step illustration of SVP. 1~4 columns: the long-range frame, its the parsing result, the warped parsing result and the
confidence map. 5~8 columns: the short-range frame, its parsing result, the warped parsing result and the confidence map. 9~12 columns:
test image, the rough parsing result, refined parsing result and ground truth parsing result.

age pair, namely [; as well as I;_; are fed into SVP during
both training and testing phases. Similarly, “SVP s” is SVP
containing only short-range frame. “SVP l+s” is the com-
bination of them, meaning both long-range and short-range
frames are considered. Table 3 shows the results in indoor
dataset. The Ave.F-1 of “SVP 1” and “SVP s” reach 0.5774
and 0.5804 respectively, which are lower than “SVP l+s”
0.5843. It proves the long and short range context are com-
plementary. Similar conclusion can be drawn from outdoor
dataset in Table @ “SVP I” and “SVP s achieve 0.4828
and 0.4901, while the combination of them reaches 0.4979.
The per-class F1 score of “SVP 17, “SVP s” and “SVP l+s”
in indoor and outdoor datasets can be found in Table [Tl and
Table [2] respectively. They again show that both long and
short range context are necessary.

Optical flow confidence: The flow confidence is de-
signed for filtering/suppressing the noisy optical flow. To
this end, we implement two SVP variants called “SVP l+c”
and “SVP s+c” indicating either long or short-range optical
flow is weighed by its confidence first and then contribute
to the final parsing result. The results in indoor dataset is
shown in Table[3] We find that “SVP l+c” improves “SVP1”
and “SVP s+c” performs better than “SVP s”. This demon-
strates the effectiveness of optical flow confidence. The
same conclusion can be drawn by comparing the F-1 score
of “SVP l+s+c” and “SVP l+s”. We also validate the effec-
tiveness of optical flow confidence in outdoor dataset. As
shown in Table [] the F-1 score of “SVP l+s+c¢” is 0.5294,
which is higher than “SVP I+s” 0.5117.

4.4. Qualitative Results

Figure [4] shows the stepwise results of SVP in indoor
dataset. In the first row, the left shoe of the women is pre-
dicted as leg in 15t. The warped label from the I;_, denoted
as Pt,s’t does not find left shoe. Thanks to the fusion from
pt—z,t, the women'’s left shoe is labelled correctly in the fi-
nal prediction P;. Again in the first row, comparing with
I;_,, the women is far from the camera in I;, and thus is rel-
atively small. The foreground region shrinks from P,_, to
Pt_s,t, which shows that the estimated optical flow is very
accurate. Inaccurate optical flow may result in the bad prop-
agated parsing result, e.g., the shape of the hair in pt—l,t is
too large in the first row. However, the inaccurate hair re-
gion has a low confidence in C_; ;. Therefore, the fused
result P; has precise hair shape. In the second row, the strap
of the bag is almost ignored in P,. However, both P,_; and
P,_, find the strap, and help to distinguish the strap from
the upper-clothes successfully in ;. In the third row, the
P, correctly removes the wrongly predicted arm in P,. The
I;_; is not warped very good, and there is a ghost behind
this man in the labelmap Pt_ 1,¢- But fortunately it does not
affect the fused prediction P;, because the confidence of this
ghost is very low in C;_; ; and hence it is filtered out during
the fusion.

Several qualitative results of both datasets are shown in
Figure 5] The first three rows show paring results of the
indoor dataset while the last two rows demonstrate those
of outdoor dataset. In each group, the test image, the
groundtruth, the parsing results of EM-Adapt and SVP are
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Figure 5. The test image, the groundtruth label, results of the EM-Adapt and SVP are shown sequentially.

shown. It can be seen that SVP is generally better than EM-
Adapt from two aspects. First, SVP correctly estimates the
existence of a label. For example, for the image in the sec-
ond row second column, the region wrongly predicted as
upper clothes by EM-Adapt is correctly predicted as dress
by SVP. Another example is second row first column. EM-
Adapt misses the left shoe. SVP correctly predicts the left
shoe’s existence and location. Second, SVP can better esti-
mate the shape of the labels. For example, in the first image
in top row, the shape of the bag strap is slender, which is
correctly estimated by SVP. Moreover, the shapes of shoes
estimated by SVP are more accurate than EM-Adapt. For
another example, SVP better identifies the shapes of pants
and left/right arms in the third image of the third row.

4.5. Time Complexity

Note that in the inference stage, much computation can
be saved. For example, when parsing frame I;, the long-
range frame I;_; and short-range frame I;_ ; do not need go
through the frame parsing sub-network because their rough
parsing results P,_; and P,_g have already been calculated.
For another example, the extra computation brought by the
optical flow estimation sub-network is small because the
Conv1~Conv5 features are shared. Moreover, the fusion
layer contains several 1 x 1 convolutions and thus is not

quite time-consuming.

We compare SVP with another comparison method. It
has similar network architecture as SVP, except that the op-
tical flow is calculated offline via EpicFlow [29]. The F1
score is 0.6024 and 0.5311 in indoor and outdoor dataset
respectively, which are slightly better than SVP. However,
computing Epicflow needs several seconds’ CPU compu-
tation while SVP runs on GPU for milliseconds. Also
Epicflow should be calculated beforehand. To the contrary,
SVP is end-to-end and convenient for real application.

5. Conclusion & Future Works

In this work, we present an end-to-end single frame su-
pervised video parsing network. To parse a testing frame,
SVP processes a video segment preceding it. The rough
frame parsing results and the on-line computed optical
flows among frames are fused to produce refined parsing
results. We demonstrate the effectiveness of SVP on two
newly collected surveillance video parsing datasets.

In future, we will build an online demo to parse any
surveillance video uploaded by users in real time. More-
over, we plan to apply SVP to parse other kinds of videos,
such as urban scene videos [6]. Besides, we consider to
explore how to further reduce the error of optical flow esti-
mation by considering cycle consistency constraints [39].
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