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Abstract

Multi-task learning aims to improve generalization per-
formance of multiple prediction tasks by appropriately
sharing relevant information across them. In the context
of deep neural networks, this idea is often realized by hand-
designed network architectures with layers that are shared
across tasks and branches that encode task-specific fea-
tures. However, the space of possible multi-task deep ar-
chitectures is combinatorially large and often the final ar-
chitecture is arrived at by manual exploration of this space
subject to designer’s bias, which can be both error-prone
and tedious. In this work, we propose a principled approach
for designing compact multi-task deep learning architec-
tures. Our approach starts with a thin network and dynam-
ically widens it in a greedy manner during training using a
novel criterion that promotes grouping of similar tasks to-
gether. Extensive evaluation on person attributes classifica-
tion tasks involving facial and clothing attributes suggests
that the models produced by the proposed method are fast,
compact and can closely match or exceed the state-of-the-
art accuracy from strong baselines by much more expensive
models.

1. Introduction
Humans possess a natural yet remarkable ability of

seamlessly transferring and sharing knowledge across mul-
tiple related domains while doing inference for a given
task. Effective mechanisms for sharing relevant informa-
tion across multiple prediction tasks (referred as multi-task
learning) are also arguably crucial for making significant
advances towards machine intelligence. In this paper, we
propose a novel approach for multi-task learning in the con-
text of deep neural networks for computer vision tasks. We
particularly aim for two desirable characteristics in the pro-
posed approach: (i) automatic learning of multi-task archi-

tectures based on branching, (ii) selective sharing among
tasks with automated learning of whom to share with. In ad-
dition, we want our multi-task models to have low memory
footprint and low latency during prediction (forward pass
through the network).

A natural approach for enabling sharing across multiple
tasks is to share model parameters (partially or fully) across
the corresponding layers of the task-specific deep neural
networks. At an extreme, we can imagine a fully shared
multi-task network architecture where all layers are shared
except the last layer which predicts the labels for individual
tasks. However, this unrestricted sharing may suffer from
the problem of negative transfer where inadequate sharing
across two unrelated tasks can worsen the performance on
both. To avoid this, most of the multi-task deep architec-
tures share the bottom layers till some layer l after which the
sharing is blocked, resulting in task-specific sub-networks
or branches beyond it [28, 17, 13]. This is motivated by the
observation made by several earlier works that bottom lay-
ers capture low level detailed features, which can be shared
across multiple tasks, whereas top layers capture features at
a higher level of abstraction that are more task specific. It
can be further extended to a more general tree-like archi-
tecture, e.g., a smaller group of tasks can share parameters
even after the first break-point at layer l and breakup at a
later layer. However, the space of such possible branch-
ing architectures is combinatorially large and current ap-
proaches largely make a decision based on limited manual
exploration of this space, often biased by designer’s percep-
tion of the relationship among different tasks [25].

Our goal in this work is to develop a principled approach
for designing multi-task deep learning architectures obviat-
ing the need for tedious manual explorations. The proposed
approach operates in a greedy top-down manner, making
branching and task-grouping decisions at each layer of the
network using a novel criterion that promotes the creation

1

ar
X

iv
:1

61
1.

05
37

7v
1 

 [
cs

.C
V

] 
 1

6 
N

ov
 2

01
6



of separate branches for unrelated tasks (or groups of tasks)
while penalizing for the model complexity. Since we also
desire a multi-task model with low memory footprint, the
proposed approach starts with a thin network and dynam-
ically grows it during the training phase by creating new
branches based on the aforementioned criterion. We also
propose a method based on simultaneous orthogonal match-
ing pursuit (SOMP) [42] for initializing a thin network from
a pretrained wider network (e.g., VGG-16) as a side contri-
bution in this work.

We evaluate the proposed approach on person attribute
classification, where each attribute is considered a task
(with non-mutually exclusive labels), achieving state-of-
the-art results with highly compact multi-task models. On
the CelebA dataset [24], we match the current top results on
facial attribute classification (90% accuracy) with a model
90x more compact and 3x faster than the original VGG-16
model. We draw similar conclusions for clothing category
recognition on the DeepFashion dataset [23], demonstrating
that we can perform simultaneous facial and clothing at-
tribute prediction using a single compact multi-task model,
while preserving accuracy.
In summary, our main contributions are listed below:
◦ We propose to automate learning of multi-task deep net-

work architectures through a novel dynamic branching
procedure, which makes task grouping decisions at each
layer of the network (deciding with whom each task
should share features) by taking into account both task
relatedness and complexity of the model.

◦ A novel method based on Simultaneous Orthogonal
Matching Pursuit is proposed for initializing a thin net-
work from a wider pre-trained network model, leading to
faster convergence and higher accuracy.

◦ We perform joint prediction of facial and clothing at-
tributes, achieving state-of-the-art results on standard
datasets with a significantly more compact and efficient
multi-task model. We also conduct relevant ablation
studies providing insights into the proposed approach.

2. Related Work
Multi-Task Learning. There is a long history of re-

search in multi-task learning [4, 40, 16, 21, 25]. Most pro-
posed techniques assume that all tasks are related and ap-
propriate for joint training. A few methods have addressed
the problem of “with whom” each task should share fea-
tures [45, 16, 51, 18, 21, 26]. These methods are gener-
ally designed for shallow classification models, while our
work investigates feature sharing among tasks in hierarchi-
cal models such as deep neural networks.

Recently, several methods have been proposed for multi-
task learning using deep neural networks. HyperFace [28]
simultaneously learns to perform face detection, landmarks
localization, pose estimation and gender recognition. Uber-

Net [19] jointly learns low-, mid-, and high-level computer
vision tasks using a compact network model. MultiNet
[3] exploits recurrent networks for transferring information
across tasks. Cross-ResNet [17] connects tasks through
residual learning for knowledge transfer. However, all these
methods rely on hand-designed network architectures com-
posed of base layers that are shared across tasks and spe-
cialized branches that learn task-specific features.

As network architectures become deeper, defining the
right level of feature sharing across tasks through hand-
crafted network branches is impractical. Cross-stitching
networks [25] have been recently proposed to learn an
optimal combination of shared and task-specific represen-
tations. Although cross-stitching units connecting task-
specific sub-networks are designed to learn the feature shar-
ing among tasks, the size of the network grows linearly
with the number of tasks, causing scalability issues. We in-
stead propose a novel algorithm that makes decisions about
branching based on task relatedness, while optimizing for
the efficiency of the model. We note that other techniques
such as HD-CNN [46] and Network of Experts [1] also
group related classes to perform hierarchical classification,
but these methods are not applicable for the multi-label set-
ting (where labels are not mutually exclusive).

Model Compression and Acceleration. Existing deep
convolutional neural network models are computationally
and memory intensive, hindering their deployment in de-
vices with low memory resources or in applications with
strict latency requirements. Methods for compressing and
accelerating convolutional networks include knowledge dis-
tillation [12, 29], low-rank-factorization [14, 39, 33], prun-
ing and quantization [10, 27], structured matrices [6, 35, 9],
and dynamic capacity networks [2]. These methods are
task-agnostic and therefore most of them are complemen-
tary to our approach, which seeks to obtain a compact multi-
task model by widening a low-capacity network based on
task relatedness. Moreover, many of these state-of-the-art
compression techniques can be used to further reduce the
size of our learned multi-task architectures.

Person Attribute Classification. Methods for recog-
nizing attributes of people, such as facial and clothing at-
tributes, have received increased attention in the past few
years. In the visual surveillance domain, person attributes
serve as features for improving person re-identification [36]
and enable search of suspects based on their description
[43, 8]. In e-commerce applications, these attributes have
proven effective in improving clothing retrieval [13], and
fashion recommendation [22]. It has also been shown that
facial attribute prediction is helpful as an auxiliary task for
improving face detection [47] and face alignment [50].

State-of-the-art methods for person attribute prediction
are based on deep convolutional neural networks [44, 24, 5,
49]. Most methods either train separate classifiers per at-
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tribute [49] or perform joint learning with a fully shared
network [32]. Multi-task networks have been used with
base layers that are shared across all attributes, and branches
to encode task-specific features for each attribute category
[13, 37]. However, in contrast to our work, the network
branches are hand-designed and do not exploit the fact that
some attributes are more related than others in order to de-
termine the level of sharing among tasks in the network.
Moreover, we show that our approach produces a single
compact network that can predict both facial and clothing
attributes simultaneously.

3. Methodology
Let the linear operation in a layer l of the network be

paramterized by W l. Let xl ∈ Rcl be the input vector of
layer l, and yl ∈ Rcl+1 be the output vector. In feedforward
networks that are of interest to this work, it is always the
case that xl = yl−1. In other words, the output of a layer
is the input to the layer above. In vision applications, the
feature maps are often considered as three-way tensors and
one should think of xl and yl as appropriately vectorized
versions of the input and output feature tensors. The func-
tional form of the network is a series of within-layer com-
putations chained in a sequence linking the lowest to the
highest (output) layer. The within-layer computation (for
both convolutional and fully-connected layers) can be con-
cisely represented by a simple linear operation parametrized
by W l, followed by a non-linearity σl(·) as

yl = σl(P(W l)xl), (1)

where P is an operator that maps the parameters W l to the
appropriate matrix P(W l) ∈ Rcl+1×cl . For a fully con-
nected layer P reduces to the identity operator, whereas for
a convolutional layer with fl filters, W l ∈ Rfl×dl contains
the vectorized filter coefficients in each row and the opera-
tor P maps it to an appropriate matrix that represents con-
volution as matrix multiplication. With this unified repre-
sentation, we define the width of the network at layer l as
cl for the fully connected layers, and as fl for the convo-
lutional layers. The widths at different layers are critical
hyper-parameters for a network design. In general, a wider
network is more expensive to train and deploy, but it has
the capacity to model a richer set of visual patterns. The
relative width across layers is a particularly relevant con-
sideration in the design of a multi-task network. It is widely
observed that higher layer represents a level of abstraction
that is more task dependent. This is confirmed by previous
works on visualization of filters at different layers [48].

Traditional approaches tackle the width design prob-
lem largely through hand-crafted layer design and manual
model selection. Notably, popular deep convolutional net-
work architectures, such as AlexNet [20], VGG [34], In-
ception [38] and ResNet [11] all use wider layers at the top

Algorithm 1: Training with Adaptive Widening
Data: Input data D = (xi, yi)

N
i=1. The labels y are for a set

of T tasks.
Input: Branch factor α, and thinness factor ω. Optionally, a

pre-trained network Mp with parameters Θp.
Result: A trained network Mf with parameters Θf .
Initialization: M0 is a thin-ω model with L layers.
if exist Mp,Θp then

Θ0 ← SompInit(M0,Mp,Θp). t← 1, d← T . (Sec. 3.1)
else

Θ0 ← Random initialization
while (t ≤ L) and (d > 1) do

Θt, At ← TrainAndGetAffinity(D,Mt,Θt) (Sec. 3.3)
d← FindNumberBranches(Mt, At, α) (Sec. 3.4)
Mt+1,Θt+1 ← WidenModel(Mt,Θt, At, d) (Sec. 3.2)
t← t+ 1

Train model Mt with sufficient iterations, update Θt.
Mf ←Mt, Θf ← Θt.

of the network in what can be called an “inverse pyramid”
pattern. These architectures serve as excellent reference de-
signs in a myriad of domains, but researchers have noted
that the width schedule (especially at the top layers) need to
be tuned for the underlying set of tasks the network has to
perform in order to achieve best accuracy [25].

Here we propose an algorithm that dynamically finds the
appropriate width of the multi-task network along with the
task groupings through a multi-round training procedure. It
has three main phases:

Thin Model Initialization. We start with a thin neu-
ral network model, initializing it from a pre-trained wider
VGG-16 model by selecting a subset of filters using simul-
taneous orthogonal matching pursuit (ref. Section 3.1).

Adaptive Model Widening. The thin initialized model
goes through a multi-round widening and training proce-
dure. The widening is done in a greedy top-down layer-
wise manner starting from the top layer. For the current
layer to be widened, our algorithm makes a decision on the
number of branches to be created at this layer along with
task assignments for each branch. The network architecture
is frozen when the algorithm decides to create no further
branches (ref. Section 3.2).

Training with the Final Model. In this last phase, the
fixed final network is trained until convergence.

More technical details are discussed in the next few sec-
tions. Algorithm 1 provides a summary of the procedure.

3.1. Thin Networks and Filter Selection using Si-
multaneous Orthogonal Matching Pursuit

The initial model we use is a thin version of the VGG-16
network. It has the same structure as VGG-16 except for
the widths at each layer. We experiment with a range of
thin models that are denoted as thin-ω models. The width
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conv1 conv2 conv3 conv4 conv5 fc6 fc7 output

Figure 1. Comparing the thin model with VGG-16. As shown, the
light color blobs shows the layers in the VGG-16 architecture. It
has an inverse pyramid structure with a width plan of 64-128-256-
512-512-4096-4096. The dark color blobs shows a thin network
with ω = 32. The convolutional layers all have widths of 32, and
the fully connected layers have widths of 64.

of a convolutional layer of the thin-ω model is the minimum
between ω and the width of the corresponding layer of the
VGG-16 network. The width of the fully connected layers
are set to 2ω. We shall call ω the “thinness factor”. Figure
1 illustrates a thin model side by side with VGG-16.

Using weights from pre-trained models is known to
speed up training and improve model generalization. How-
ever, the standard direct copy method is only suitable when
the source and the target networks have the same architec-
ture (at least for most of the layers). Our adoption of a thin
initial model forbids the use of direct copy, as there is a mis-
match in the dimension of the weight matrix (for both the
input and output dimensions, see Equation 1 and discus-
sions). In the literature a set of general methods for training
arbitrarily small networks using an existing larger network
and the training data are known as “knowledge distillation’
[12, 29]. However, for the limited use case of this work we
propose a faster, data-free, and simple yet reasonably effec-
tive method. Let W p,l be the parameters of the pre-trained
model at layer l with d rows. For convolutional layers, each
row of W p,l represents a vectorized filter kernel. The ini-
tialization procedure aims to identify a subset of d′(< d)
rows of W p,l to form W 0,l (the superscript 0 denotes ini-
tialized parameters for the thin model). We would like the
selected rows that minimize the following objective:

A?, ω?(l) = arg min
A∈Rd×d′ ,|ω|=d′

||W p,l −AW p,l
ω: ||F , (2)

where W p,l
ω: is a truncated weight matrix that only keeps

the rows indexed by the set ω. This problem is NP-hard,
however, there exist approaches based on convex relaxation
[41] and greedy simultaneous orthogonal matching pursuit
(SOMP) [42] which can produce approximate solutions. We
use the greedy SOMP to find the approximate solution ω?(l)
which is then used to initialize the parameter matrix of the
thin model as W 0,l ← W p,l

ω?(l):. We run this procedure
layer by layer, starting from the input layer. At layer l,
after initializing W 0,l, we replace W p,l+1 with a column-
truncated version that only keeps the columns indexed by

Algorithm 2: SompInit(M0, Mp, Θp)
Input: The architecture of the thin network M0 with L

layers. The pretrained network and its parameters
Mp, Θp. Denote the weight matrix at layer l as
W p,l ∈ Θp.

Result: The initial parmaeters of the thin network Θ0.
foreach l ∈ 1, 2, · · · , L do

Find ω?(l) in Equation 2 by SOMP, using W p,l as
weight matrix.
W 0,l ←W p,l

ω?(l):

W p,l+1 ←
(
(W p,l+1)Tω?(l):

)T
Aggregate W 0,l for l ∈ {1, 2, · · · , L} to form Θ0.

ω?(l) to keep the input dimensions consistent. This initial-
ization procedure is applicable for both convolutional and
fully connected layers. See Algorithm 2.

3.2. Top-Down Layer-wise Model Widening

At the core of our training algorithm is a procedure that
incrementally widens the current design in a layer-wise
fashion. Let us introduce the concept of a “junction”. A
junction is a point at which the network splits into two or
more independent sub-networks. We shall call such a sub-
network a “branch”. Each branch leads to a subset of pre-
diction tasks performed by the full network. In the context
of person attributes classification, each prediction is a sig-
moid unit that produces a normalized confidence score on
the existence of an attribute.

We propose to widen the network only at these junctions.
More formally, consider a junction at layer l with input xl

and d outputs {yli}di=1. Note that each output is the input
to one of the d top sub-networks. Similar to Equation 1 the
within-layer computation is given as

yli = σl(P(W l
i )xl) for i ∈ [d], (3)

where W l
i parameterizes the connection from input xl to

the i’th output yli at layer l. The set [d] is the indexing set
{1, 2, · · · , d}. A junction is widened by creating new out-
puts at the layer below. To widen layer l by a factor of c, we
make layer l− 1 a junction with 2 ≤ c ≤ d outputs. We use
yl−1j to denote an output in layer l − 1 (each is an input for
layer l) and W l−1

j to denote its parameter matrix. All of the
newly-created parameter matrices have the same shape as
W l−1 (the parameter matrix before widening). The single
output yl−1 = xl is replaced by a set of outputs {yl−1j }cj=1

where

yl−1j = σl−1(P(W l−1
j )xl−1) for j ∈ [c]. (4)

Let gl : [d] → [c] be a given grouping function at layer l.
After widening, the within-layer computation at layer l is
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Figure 2. Illustration of the widening procedure. Left: the active layer is at layer L, there is one junction with 7 branches at the top. Middle:
The seven branches are clustered into three groups. Three branches are created at layer L, resulting in a junction at layer L − 1. Layer
L − 1 is now the active layer. Right: Two branches are created at layer L − 1, making layer L − 2 now the active layer. At each branch
creation, the filters at the newly created junction are initialized by direct copy from the old filter.

given as (cf. Equation 3)

yli = σl(P(W l
i )xlgl(i)) = σl

(
P(W l

i )σl−1(P(W l−1
gl(i)

)xl−1)
)

(5)
where the latter equality is a consequence of Equation 3.
The widening operation sets the initial weight for W l−1

j

to be equal to the original weight of W l−1. It allows the
widened network to preserve the functional form of the
smaller network, enabling faster training.

To put the widening of one junction into the context
of the multi-round progressive model widening procedure,
consider a situation where there are T tasks. Before any
widening, the output layer of the initial thin multi-task net-
work has a junction with T outputs, each is the output of a
sub-network (branch). It is also the only junction at ini-
tialization. The widening operation naturally starts from
the output layer (denoted as layer l). It will cluster the T
branches into t groups where t ≤ T . In this manner the
widening operation creates t branches at layer l − 1. The
operation is performed recursively in a top-down manner
towards the lower layers. Note that each branch will be as-
sociated with a sub-set of tasks. There is a 1-1 correspon-
dence between tasks and branches at the output layer, but
the granularity goes coarser at lower layers. An illustration
of this procedure can be found in Figure 2.

3.3. Task Grouping based on the Probability of Con-
currently Simple or Difficult Examples

Ideally, dissimilar tasks are separated starting from a low
layer, resulting in less sharing of features. For similar tasks
the situation is the opposite. We observe that if an easy
example for one task is typically a difficult example for
another, intuitively a distinctive set of filters are required
for each task to accurately model both in a single network.
Thus we define the affinity between a pair of tasks as the
probability of observing concurrently simple or difficult ex-
amples for the underlying pair of tasks from a random sam-
ple of the training data.

To make it mathematically concrete, we need to prop-

erly define the notion of a “difficult” and a “simple” ex-
ample. Consider an arbitrary attribute classification task i.
Denote the prediction of the task for example n as sni , and
the error margin as mn

i = |tni − sni |, where tni is the bi-
nary label for task i at sample n. Following the previous
discussion, it seems natural to set a fixed threshold on mn

i

to decide whether example n is simple or difficult. How-
ever, we observe that this is problematic since as the training
progresses most of the examples will become simple as the
error rate decreases, rendering this measure of affinity use-
less. An adaptive but universal (across all tasks) threshold is
also problematic as it creates a bias that makes intrinsically
easier tasks less related to all the other tasks.

These observations lead us to the following approach.
Instead of setting a fixed threshold, we estimate the average
margin for each task, E{mi}. We define the indicator vari-
able for a difficult example for task i as eni = 1mn

i ≥E{mi}.
For a pair of tasks i, j, we define their affinity as

A(i, j) = P(eni = 1, enj = 1) + P(eni = 0, enj = 0)

= E{eni enj + (1− eni )(1− enj )}. (6)

Both E{mi} and the expectation on Equation 6 can be es-
timated by their sample averages. Since these expectations
are functions of the current neural network model, a naive
implementation would require a large number of time con-
suming forward passes after every training iterations. As a
much more efficient implementation, we alternatively col-
lect the sample averages from each training mini-batches.
The expectations are estimated by computing a weighted
average of the within-batch sample averages. To make the
estimation closer to the true expectations from the current
model, an exponentially decaying weight is used.

The estimated task affinity is used directly for the clus-
tering at the output layer. It is natural as branches at the
output layer has a 1-1 map to the tasks. But at lower layers
the mapping is one to many, as a branch can be associated
with more than one tasks. In this case, affinity is computed
to reflect groups of tasks. In particular, let k, l denote two
branches at the current layer, where ik and jl denotes the
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i-th and j-th task associated with each branch respectively.
The affinity of the two branches are defined by

Ãb(k, l) = mean
ik

(
min
jl

A(ik, jl)

)
(7)

Ãb(l, k) = mean
jl

(
min
ik

A(ik, jl)

)
(8)

The final affinity score is computed as Ab(k, l) =
(Ãb(k, l) + Ãb(l, k))/2. Note that if branches and tasks
form a 1-1 map (the situation at the output layer), this
reduces to the definition in Equation 6. For branches
with coarser task granularity, Ab(k, l) measures the affin-
ity between two branches by looking at the largest distance
(smallest affinity) between their associated tasks.

3.4. Complexity-aware Width Selection

The number of branches to be created determines how
much wider the network becomes after a widening opera-
tion. This number is determined by a loss function that bal-
ances complexity and the separation of dissimilar tasks to
different branches. For each number of clusters 1 ≤ d ≤ c,
we perform spectral clustering to get a grouping function
gd : [d] → [c] that associates the newly created branches
with the c old branches at one layer above. At layer l the
loss function is given by

Ll(gd) = (d− 1)L02pl + αLs(gd) (9)

where (d− 1)L02pl is a penalty term for creating branches
at layer l, Ls(gd) is a penalty for separation. pl is defined as
the number of pooling layers above the layer l and L0 is the
unit cost for branch creation. The first term grows linearly
with the number of branches, with a scalar that defines how
expensive it is to create a branch at the current layer (which
is heuristically set to double after every pooling layers).
Note that in this formulation a larger α encourages the cre-
ation of more branches. We call α the branching factor. The
network is widened by creating the number of branches that
minimizes the loss function, or gld

?
= arg min

gd

Ll(gd).

The separation term is a function of the branch affinity
matrix Ab. For each i ∈ [d], we have

Li
s(gd) = 1− mean

k∈g−1(i)

(
min

l∈g−1(i)
Ab(k, l)

)
, (10)

and the separation cost is the average across each newly cre-
ated branches

Ls(gd) =
1

d

∑
i∈[d]

Li
s(gd). (11)

Note Equation 10 measures the maximum distances
(minimum affinity) between the tasks within the same
group. It penalizes cases where very dissimilar tasks are
included in the same branch.

4. Experiments

We perform an extensive evaluation of our approach on
person attribute classification tasks. We use CelebA [24]
dataset for facial attribute classification tasks and Deepfash-
ion [23] for clothing category classification tasks. CelebA
consists of images of celebrities labeled with 40 attribute
classes. Most images also include the torso region in addi-
tion to the face. Our models are evaluated using the stan-
dard classification accuracy (average of classification accu-
racy rate over all attribute classes) and the top-10 recall rate
(proportion of correctly retrieved attributes from the top-10
prediction scores for each image). Top-10 is used as there
are on average about 9 positive facial attributes per image
on this dataset. DeepFashion is richly labeled with 50 cat-
egories of clothes, such as “shorts”, “jeans”, “coats”, etc.
(the labels are mutually exclusive). Faces are often visible
on these images. We evaluate top-3 and top-5 classifica-
tion accuracy to directly compare with benchmark results
in [23].

4.1. Comparison with the State of the art

We establish three baselines. The first baseline is a
VGG-16 model initialized from the a model trained from
imdb-wiki gender classification [30]. The second baseline
is a low-rank model with low rank factorization at all lay-
ers. This model is also initialized from the imdb-wiki gen-
der pretrained model, but the initialization is through trun-
cated Singular Value Decomposition (SVD) [7]. The num-
ber of basis filters is 8-16-32-64-64 for the convolutional
layers, 64-64 for the two fully-connected layers and 16 for
the output layer. The third is a thin model initialized using
the SOMP initialization method introduced in Section 3.1,
using the same pre-trained model. Our VGG-16 baselines
are stronger than all previously reported methods, while
the low-rank baselines closely matches the state-of-the-art
while being faster and more compact. The thin baseline is
up to 6 times faster, 500 times more compact than the VGG-
16 baseline, but still reasonably accurate.

We find several contributing factors to the strength of our
baselines. Firstly, the choice of pre-trained model is critical.
Most recent works use the VGG face descriptor, whereas
in our work we use the pre-trained model from imdb-wiki
[31]. For the thin baseline, it is also important to use Batch
Normalization (BN) [15]. Without the adoption of BN lay-
ers the training error ceases to decrease after a small number
of training iterations. We observe this phenomenon in both
random initialization and SOMP initialization.

A comparison of the models generated by our adaptive
widening algorithm with baseline results are shown in Table
1 and 2. Our “branching” models achieves similar or better
accuracy compared to these state-of-the-art methods, while
being much more compact and faster.
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Method Accuracy (%) Top-10 Recall (%) Test Speed (ms) Parameters (millions) Jointly?
LNet+ANet 87 N/A + + No
Walk and Learn 88 N/A + + No
MOON 90.94 N/A ≈ 33∗ 119.73 No
Our VGG-16 Baseline 91.44 73.55 33.2 134.41 No
Our Low-rank Baseline 90.88 69.82 16.0 4.52 No
Our Baseline-thin-32 89.96 65.95 5.1 0.22 No
Our Branch-32-1.0 90.74 69.95 9.6 1.49 No
Our Branch-32-2.0 90.90 71.08 15.7 2.09 No
Our Branch-64-1.0 91.26 72.03 15.2 4.99 No
Our Joint Branch-32-2.0 90.4 68.72 10.01 3.25 Yes
Out Joint Branch-64-2.0 91.02 71.38 16.28 10.53 Yes

Table 1. Comparison of accuracy, speed and compactness on CelebA test set. LNet+ANet and Walk and Learn results are cited from [44].
MOON results are cited from [32]. +: There is no reported number to cite. ∗: MOON uses the VGG16 architecture, thus its test time
should be similar to our VGG-16 baseline.

Method Top-3 Accuracy (%) Top-5 Accuracy (%) Test Speed (ms) Parameters (millions) Jointly?
WTBI 43.73 66.26 + + No
DARN 59.48 79.58 + + No
FashionNet 82.58# 90.17# ≈ 34∗ ≈ 134∗ No
Our VGG-16 Baseline 86.72 92.51 34.0 134.45 No
Our Low-rank Baseline 84.14 90.96 16.34 4.52 No
Our Joint Branch-32-2.0 79.91 88.09 10.01 3.25 Yes
Our Joint Branch-64-2.0 83.24 90.39 16.28 10.53 Yes

Table 2. Comparison of accuracy, speed and compactness on Deepfashion test set. WTBI and DARN results are cited from [23]. The
experiments are reportedly performed in the same condition on the FashionNet method and tested on the DeepFashion test set. +: There is
no reported number to cite. ∗: There is no reported number, but based on the adoption of VGG-16 network as base architecture they should
be similar to those of our VGG-16 baseline. #: The results are from a network jointly trained for clothing landmark, clothing attribute and
clothing categories predictions. We cite the reported results for clothing category [23].

4.2. Cross-domain Training of Joint Person At-
tribute Network

To examine the ability of our approach in handling cross-
domain tasks, we train a network that jointly predict facial
and clothing attributes. The model is trained on the union
of the two training sets. Note that the CelebA dataset is not
annotated with clothing labels, and the Deepfashion dataset
is not annotated with facial attribute labels. To augment the
annotations for both datasets, we use the predictions pro-
vided by the baseline VGG-16 models as soft training tar-
gets. We demonstrate that the joint model is comparable to
the state-of-the-art on both facial and clothing tasks, while
being a much more efficient combined model rather than
two separate models. The comparison between the joint
models with the baselines is shown in Table 1 and 2.

4.3. Visual Validation of Task Grouping

We visually inspect the task groupings in the generated
model. Figure 3 displays the actual task grouping in the
Branch-32-2.0 model trained on CelebA. The grouping are
often highly intuitive. For instance, “5-o-clock Shadow”,
“Bushy Eyebrows” and “No Beard”, which all describe
some forms of facial hairs, are grouped. The cluster with
“Heavy Makeup”, “Pale Skin” and “Wearing Lipstick” is
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Figure 4. The reduction in accuracy when changing the task group-
ing to favor grouping of dissimilar tasks. A positive number sug-
gests a reduction in accuracy when changing from original to the
new grouping. This figure shows our automatic grouping strategy
improves accuracy for most tasks.

clearly related. Groupings at lower layers are also sensi-
ble. As an example, the group “Bags Under Eyes”, “Big
Nose” and “Young” are joined by “Attractive” and “Reced-
ing Hairline” at fc6, probably because they all describe age
cues. This is particularly interesting as no human interven-
tion is involved in model generation.
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Figure 3. The actual task grouping in the Branch-32-2.0 model on CelebA. Upper: fc7 layer. Lower: fc6 layer. Other layers are omitted.

Method Accuracy (%) Top-10 Recall (%)
w/ pre-trained -0.54 -2.47
w/o pre-trained -0.65 -3.77

Table 3. Accuracy gap with and without initialization from pre-
trained model, defined as accuracy of Branch-32-2.0 minus the
one from VGG-16 Baseline.

4.4. Ablation Studies
What are the advantages of grouping similar tasks?

We shuffle the correspondence between training targets and
the output of the network for “Branch-32-2.0” model from
CelebA and report the reduction in accuracies for each
tasks. Both random and manual shuffling are tested but we
only report the one from manual shuffling as they are sim-
ilar. In particular, for manual shuffling we choose a new
grouping of tasks so that the network separates many tasks
that are originally in the same branch. Figure 4 summarizes
our findings. Clearly grouping tasks according to similarity
improves accuracy for most tasks.

Closer examination yields other interesting observations.
The three tasks that actually benefit from the shuffling sig-
nificantly (unlike most of the tasks), namely “wavy hair”,
“wearing necklace” and “pointy nose” are all from the
branch with the largest number of tasks. This is sensi-
ble as after the shuffling they are not forced to share fil-
ters with many other tasks. But other tasks from the same
branch, namely “black hair” and “wearing earrings” are sig-
nificantly improved from the original grouping. One possi-
ble explanation is that while grouping similar tasks allow
them to benefit from multi-task learning, some tasks are in-
trinsically more difficult and require a wider branch. Our
current design lacks the ability to change the width of a
branch, which is an interesting future direction.

Sub-optimal use of pretrained network or smaller ca-
pacity? The gap in accuracy between Branch-32-2.0 and
VGG-16 baseline can be caused by sub-optimal use of the
pretrained model or the intrinsically smaller capacity of the
former. To determine if both factors contribute to the gap,
we compare training the Branch-32-2.0 model and VGG-16
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Figure 5. Comparison of training progress with and without SOMP
initialization. The model using SOMP initialization clearly con-
verges faster and better.

from scratch on CelebA. As neither model benefit from the
information from a pre-trained network, we expect a much
smaller gap in accuracy if the sub-optimal use of the pre-
trained model is the main cause. Our results summarized in
Table 3 suggest that the smaller capacity of the Branch-32-
2.0 model is likely the main reason for the accuracy gap.

How does SOMP help the training? We compare train-
ing with and without this initialization using the Baseline-
thin-32 model on CelebA, under identical training condi-
tions. The evolution of training and validation accuracies
are shown in Figure 5. Clearly, the network initialized with
SOMP initialization converges faster and better than the one
without SOMP initialization.

5. Conclusion
We have proposed a novel method for learning the struc-

ture of compact multi-task deep neural networks. Our
method starts with a thin network model and expands it
during training by means of a novel multi-round branching
mechanism, which determines with whom each task shares
features in each layer of the network, while penalizing for
the complexity of the model. We demonstrated compelling
results of the proposed approach on the problem of person
attribute classification. As future work, we plan to adapt

8



our approach to other related problems, such as incremental
learning and domain adaptation.
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