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Abstract

Monocular 3D facial shape reconstruction from a single
2D facial image has been an active research area due to its
wide applications. Inspired by the success of deep neural
networks (DNN), we propose a DNN-based approach for
End-to-End 3D FAce Reconstruction (UH-E2FAR) from a
single 2D image. Different from recent works that recon-
struct and refine the 3D face in an iterative manner using
both an RGB image and an initial 3D facial shape render-
ing, our DNN model is end-to-end, and thus the compli-
cated 3D rendering process can be avoided. Moreover, we
integrate in the DNN architecture two components, namely
a multi-task loss function and a fusion convolutional neural
network (CNN) to improve facial expression reconstruction.
With the multi-task loss function, 3D face reconstruction is
divided into neutral 3D facial shape reconstruction and ex-
pressive 3D facial shape reconstruction. The neutral 3D
facial shape is class-specific. Therefore, higher layer fea-
tures are useful. In comparison, the expressive 3D facial
shape favors lower or intermediate layer features. With the
fusion-CNN, features from different intermediate layers are
fused and transformed for predicting the 3D expressive fa-
cial shape. Through extensive experiments, we demonstrate
the superiority of our end-to-end framework in improving
the accuracy of 3D face reconstruction.

1. Introduction
Three-dimensional information, being a strong prior in-

variant to view perspectives, has been demonstrated bene-
ficial in different computer vision applications [29, 9, 11,
17, 18, 15]. Among these applications, 3D data has been
widely employed in face recognition research to address
pose, expression, and illumination variations in facial im-
ages, resulting in many publications with state-of-the-art
performance [11, 17, 15, 34, 8, 10, 5, 6]. In these meth-
ods, one crucial step is acquiring the personalized 3D face
model which, ideally, can be captured with a 3D camera

system. However, the high cost and limited effective sens-
ing range of 3D cameras have constrained their applicability
in practice. An alternative approach is reconstructing the 3D
facial shape using 2D facial images, which has found wide
applications in both the computer vision and the computer
graphics communities.

Three-dimensional facial shape reconstruction from 2D
image(s) is very challenging by its nature if no prior knowl-
edge is provided. This is mainly due to the large solution
space of the problem and the loss of depth information in
the image acquisition process. Given prior knowledge about
the camera intrinsic parameters or multi-view images of the
same subject, a number of methods including multi-view
stereo, photometric stereo, or structure-from-motion can be
applied to reconstruct the 3D face. However, in most sce-
narios, camera intrinsic parameters are unknown and usu-
ally only a single 2D image is available, making the prob-
lem, referred to as monocular 3D facial shape reconstruc-
tion (MFSR), even harder.

A common prior employed in solving the monocular 3D
facial shape reconstruction problem is the subspace or mor-
phable model [3] that captures shape variations in human
face with a set of basis shapes. By using a morphable
model, a 3D human face can be parameterized as a vec-
tor of weights for the shape basis. As a result, the solution
space becomes numerically constrained, thus is solvable by
common optimization techniques. To retrieve the optimal
model parameters that best reconstruct the 3D facial shape
of the input 2D image, Blanz and Vetter [3] proposed to
minimize the discrepancy between the input 2D image and
the 3D face rendering in an analysis-by-synthesis manner.
Though interesting results have been achieved, this method
cannot handle complex illumination conditions and suffers
from high computation cost. To solve its limitation, Blanz
et al. [2] proposed to predict the model parameters via linear
regression from facial feature point locations. Though effi-
cient, this method abandons most of the useful information
in the image and learns very simple regressor functions. As
a result, the reconstruction is usually very coarse and sensi-
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Figure 1: Example of 3D faces reconstructed by our method: (L) Expressive 3D faces reconstructed from facial images with
expression and (R) neutral 3D faces reconstructed from images with different facial pose.

tive to inaccurate facial landmarks.
Although the past half-decade has witnessed the rapid

growth and great success of deep learning in different com-
puter vision research areas, such as object detection and
recognition, image segmentation, and image captioning,
only limited research in monocular 3D facial shape re-
construction using deep learning exists. With millions of
parameters, deep neural networks can be trained to ap-
proximate very complex non-linear regressor functions that
map a 2D facial image to the optimal morphable model
parameters. In this paper, inspired by three recent pa-
pers [33, 11, 25], we propose a DNN-based approach:
End-to-End 3D FAce Reconstruction (UH-E2FAR), that re-
constructs the 3D facial shape from a single 2D image.
Though sharing the same principal idea, our method dif-
fers from [33, 11, 25] in several ways. First, compared with
[33, 11, 25], we greatly simplify the framework. Instead
of using the iterative scheme employed in [33, 11, 25], our
approach is end-to-end and predicts the optimal morphable
model parameters with a single forward operation. Instead
of using additional data, such as the geometry image em-
ployed in [33] or the rendering of an initial 3D face em-
ployed in [25], our network takes only an RGB image patch
with the facial region-of-interest (ROI) detected as input.
With these simplifications in the framework, our approach
eases the training of deep neural network and makes it pos-
sible to use available 2D facial databases as additional train-
ing data to initialize the network. Second, as the 3D facial
shape consists of two parts, namely identity and expres-
sion, we divide the problem of 3D face reconstruction into
two sub-tasks, namely reconstructing the neutral 3D facial
shape and reconstructing the facial expression, and incor-
porate a multi-task learning loss in our approach to train
different layers for predicting the identity and the expres-
sion parameters separately, which has been demonstrated
effective in different applications [30, 23]. To validate our
simplifications and modifications, we perform extensive ex-
periments with different neural network architectures and
compare their performance with ours.

The rest of the paper is organized as follows. Section 2

reviews related work. Section 3 describes the details of our
proposed method. Section 4 describes the implementation
details and provides extensive experimental evaluations. Fi-
nally, Section 5 concludes the paper with a brief summary
and discussion.

2. Related work
Blanz and Vetter et al. [3] proposed a 3D morphable

model (3DMM) for modeling 3D human face from a sin-
gle or multiple facial images. The model parameters are
optimized in an analysis-by-synthesis manner to approxi-
mate the input 2D facial image. Though interesting results
are achieved, this method suffers from high computational
cost and requires manual manipulation to align the mean
3D facial shape to the 2D facial image during initialization.
The 3DMM method was extended by Blanz et al. [2] to
use a sparse set of facial feature points for model param-
eter estimation. Similarly, Rara et al. [24] proposed a re-
gression model between the 2D facial landmarks and the
3DMM parameters and employed principal component re-
gression (PCR) for model parameter estimation. As large
facial pose variation might degrade 2D facial landmark de-
tection, Dou et al. [7] proposed a dictionary-based represen-
tation of 3D facial shape and employed sparse coding to es-
timate model parameters from facial landmarks. Compared
with the PCA-based model, their method achieves better ro-
bustness to inaccurate facial landmark detection. Similarly,
Zhou et al. [32] also employed a dictionary-based model
and proposed a convex formulation to estimate model pa-
rameters from facial landmarks.

Compared with facial feature points, facial image pro-
vides more information useful for reconstructing the 3D
face. Wang and Yang [28] proposed to learn mappings
from 2D images to corresponding 3D shapes via manifold
learning and alignment. Song et al. [26] proposed a cou-
pled radial basis function network (C-RBF) method to learn
the intrinsic representations and corresponding non-linear
mapping functions between paired 2D and 3D training data.
Similarly, Liang et al. [16] combined RBF network and
a coupled dictionary model to reconstruct 3D faces and



enhance the facial details for facial expression synthesis.
However, these method cannot handle non-frontal facial im-
ages. Zhu et al. [35] proposed a discriminative approach
for 3DMM fitting by using local facial features and a cas-
cade of regressors to estimate and update the 3DMM pa-
rameters iteratively. This work was extended by Zhu et
al. [33] by using deep neural networks to approximate the
regression functions. Another work sharing a similar idea
is presented in [11]. The results in [33, 11] are inspiring,
as they have demonstrated the effectiveness of deep neural
networks in approximating the complex mapping function
from 2D facial appearance to 3DMM parameters. However,
both works focus on 2D face alignment and no experimental
evaluation is provided to analyze the performance of their
methods in 3D face reconstruction. Richardson et al. [25]
also proposed using deep neural networks to learn the re-
gression function for estimating 3DMM parameters from
2D facial images. Similar to [33], they use both an RGB
image and the 3D rendering of an initial 3D face as input to
the network. Different from [33], [25] also inputs the initial
3DMM parameters to establish a feedback loop and force
the deep neural networks to iteratively update the 3DMM
parameters.

3. Method
Similar to [33, 11, 25], we employ a 3D facial shape sub-

space model and represent the 3D face as the linear combi-
nation of a set of shape and blendshape basis:

S = S̄ +Ud ·αd +Ue ·αe , (1)

where S is the target 3D face, S̄ is the mean facial shape,
Ud is the principal components trained on neutral 3D facial
scans and αd is the identity parameter vector, and Ue is the
principal components trained on the offset between expres-
sive and neutral 3D facial scans and αe is the expression
parameter vector. Given a 2D facial image, our goal is to
predict the optimal identity and expression parameters that
minimize the difference between the reconstructed 3D face
and the ground truth.

We use two 3D facial shape models, namely the BFM
model proposed by [20] and the AFM model proposed by
[12]. The BFM model consists of 53,490 vertices and
160,470 triangular faces. It preserves fine facial shape de-
tails, thus is very suitable for 3D face modeling and syn-
thesis [33]. The AFM model consists of 7,597 vertices and
14,912 triangular faces. It is a lightweight 3D facial shape
model and features a bijective mesh parameterization, thus
is very useful for 3D face analysis [12, 27] and 3D-aided
2D facial pose normalization [13, 8].

� = �# + �& ' �& + �) ' �)

�& , �), �#

Conv_b1 Conv_b2 Conv_b3 Conv_b4 Conv_b5

Conv6 Conv7

Concatenate

Conv8

Pool1 Pool2 Pool3 Pool4 Pool5

Fusion CNN

FC_e1

FC_e2

FC_e3

FC_d1

FC_d2

FC_d3

�) �&

Input image

Reconstructed 3D face

Figure 2: Depiction of the architecture of our deep neural
network model for 3D facial shape reconstruction from a
single 2D facial image.

3.1. Deep neural network architecture

The architecture of our deep neural network is illustrated
in Fig. 2. It is based on the VGG-Face model [19] that
consists of 13 convolutional layers and 5 pooling layers.
Specifically, we add two key components, a sub convo-
lutional neural network (fusion-CNN) that fuses features
from intermediate layers of VGG-Face for regressing the
expression parameters and a multi-task learning loss func-
tion for both the identity parameters prediction and the ex-
pression parameters prediction. With both components, we
can train three types of neural layers in a single DNN archi-
tecture. The first type of neural layers includes those below
the fourth pooling layer (Pool4), which learn generic fea-
tures corresponding to low-level facial structures, such as
edges and corners. These layers are shared by the two tasks.
The second type of neural layers includes the three convolu-
tional layers in the fusion-CNN and the following fully con-
nected layers. These layers are forced to learn expression-
specific features. The third type of neural layers includes
those above the fourth pooling layer (Pool4) which learn
class-specific features that are more suitable for predicting
the identity parameters.

The input to the network is an RGB image cropped and
scaled to 180×180 pixels. To fuse the intermediate features
from layer Pool4 and layer Pool5, we set the kernel size and
stride of layer Conv6 and layer Conv7 to be {5× 5, 2} and
{1 × 1, 1}, respectively. After concatenating the features
from Conv6 and Conv7, we add another 1×1 kernel convo-
lutional layer Conv8 to reduce the feature dimension. The
details of all layers (except for those in the backbone) are
summarized in Table 1.

3.2. The end-to-end training

The input to our deep neural network is an 2D image
with the facial ROI localized by a face detector. In this pa-



Layer Conv6 Conv7 Conv8 FC e1 FC e2 FC e3 FC d1 FC d2 FC d3
Input Size 512× 12× 12 512× 6× 6 1024× 6× 6 512× 6× 6 4, 096 1, 024 512× 6× 6 4, 096 1, 024

Output Size 512× 6× 6 512× 6× 6 512× 6× 6 4, 096 1, 024 29 4, 096 1, 024 199
Stride, Pad 2, 2 1, 0 1, 0 N/A N/A N/A N/A N/A N/A
Filter Size 5× 5 1× 1 1× 1 N/A N/A N/A N/A N/A N/A

Table 1: Specifications of different layers in our deep neural network architecture.

per, we use the Dlib SDK1 for face detection. We first en-
large the detected face bounding box by a factor of 0.25 of
its original size and then extend the shorter edge to crop a
square image patch of the face ROI, which is scaled to be
180 × 180. The output of the deep neural network consists
of the identity parameter vector and the expression parame-
ter vector. They are used to reconstruct the 3D facial shape
corresponding to the input 2D image using Eq. 1.

Training data: We propose using both real 2D images
and synthetic 2D images to train the deep neural network.
Real 2D images are used to initialize the deep neural net-
work and synthetic 2D images are used for fine-tuning. We
follow a similar procedure as Richardson et al. [25] to gen-
erate synthetic facial images for training our deep neural
network. For the BFM 3D facial shape model, we use the
shape basis provided by [20] and the blendshape basis pro-
vided by [33, 4]. For the AFM 3D facial shape model, we
select 203 neutral 3D facial scans from the FRGC2 [21] and
the BU-3DFE [31] databases and register them using the
fitting algorithm proposed by [12] to build the shape basis.
For simplicity, we do not build the blendshape basis for the
AFM model. In total, we create 10,000 random neutral 3D
faces for both the BFM and the AFM 3D facial shape mod-
els, corresponding to 10,000 identities. For each 3D face
we synthesize 25 images with different facial pose, illumi-
nation, and facial expression. More details are presented in
Sec. 4.1.

Cost functions: We choose the training cost as the dif-
ference between the predicted 3D face and the ground truth.
To measure this difference, we employ the sum of squared
error over all 3D vertices:

Ec = ‖Uc · α̂c −Uc ·αc‖22 , (2)

where c ∈ {e, d}, α̂c denotes the predicted parameter vec-
tor, and αc denotes the ground truth.

The total loss is computed as the weighted sum of both
losses:

E = λdEd + λeEe , (3)

where λd and λe are weights for the two separate losses.
1http://dlib.net/

3.3. Discussion

Compared with [33, 11, 25], one major difference of our
deep neural network is that it is end-to-end and takes only a
single RGB image as input. As a result, the training and de-
ployment of our DNN model is greatly simplified. During
training, we do not need to perform iterative data simula-
tion as [33, 25], which is non-trivial. During deployment,
we do not need to perform 3D rendering of the initial or
intermediate 3D facial shape, which is costly and might be
restricted in certain scenarios. Another benefit of using a
single RGB image as input is that we can use available 2D
face databases to initialize our DNN model, which helps
improve the robustness of our approach to facial pose and
the complex illumination conditions. Another difference is
that we employ a multi-task learning loss and a fusion-CNN
for fusing intermediate features. As a result, we are able to
train different layers for predicting the identity and the ex-
pression parameters separately. Intermediate features carry
important discriminative information useful for expression
parameter vector prediction. In comparison, high-level fea-
tures are class-specific and robust to facial expression vari-
ations, thus are beneficial for predicting the identity param-
eter vector.

4. Experiments
In this section, we evaluate our UH-E2FAR algorithm for

3D face reconstruction from a single image. We compare
it with several state-of-the-art algorithms, namely RSNIEF
[25], RSN, and UH-2FCSL [7]. The RSN algorithm is a
modification of RSNIEF by removing the feedback connec-
tion and using only 2D images without 3D synthetic render-
ings. We also compare our method with the UH-E2FARMod
algorithm, a modification of our UH-E2FAR algorithm by
removing the fusion convolutional neural networks (fusion-
CNN) to demonstrate the advantage of our algorithm in re-
constructing expressive 3D faces.

4.1. Synthetic data generation

Due to the unavailability of large scale 3D-2D face
databases, we follow a similar procedure as [25] to create
synthetic training data. As mentioned in Sec. 3.2, we first
create the 10,000 neutral 3D faces and their corresponding
facial textures using random parameters. Then, we proceed



to generate various facial expressions by changing the ex-
pression parameters. We have observed that using a random
expression parameter will generate a lot of non-plausible
3D facial shapes. As a result, we collect a very large set
of expression parameters estimated on multiple 2D face
databases by [33] and sample them randomly. In this way,
we ensure that the facial expression generated by the sam-
pled expression parameter will be plausible.

To generate plausible synthetic images, it is crucial to
control the camera parameters and illumination properly
during 3D rendering. We use a perspective camera model
and set the camera field-of-view randomly to be within the
range of [15◦, 35◦]. Accordingly, the distance between the
camera and the object is set to be within 1,900 mm and 500
mm. We use the Phong Reflectance model [22] for illumi-
nation synthesis. For the shininess parameter, instead of us-
ing a constant for all 3D faces, we also collect a large set of
shininess parameters estimated on two 2D face databases by
[20] and sample them randomly. For the ambient, diffuse,
and specular parameters, we use random values within the
ranges [0.2, 0.4], [0.6, 0.8], and [0.1, 0.2]. The facial poses
of the synthetic images are randomly generated. The yaw,
pitch, and roll rotations are uniformly distributed within
the ranges [−90◦, 90◦], [−30◦, 30◦], and [−30◦, 30◦]. The
background of the synthetic images is also randomly gen-
erated. Examples of the generated synthetic images corre-
sponding to the BFM and the AFM 3D facial shape models
are depicted in Fig. 3.

Figure 3: Example of generated synthetic facial images
corresponding to the two 3D facial shape models
employed: (T) The BFM facial shape model and (B) the
AFM facial shape model.

(a) (b) (c)

Figure 4: Example of 2D images from the three public
databases used in experiments: (a) The FRGC2 database,
(b) the BU-3DFE database, and (c) the UHDB31 database.

4.2. Evaluation databases and metrics

In addition to the synthetic data, we use three publicly
available 3D face databases in our experiments, namely the
FRGC2 database [21], the BU-3DFE database [31], and the
UHDB31 database [29]. For the FRGC2 database, we use
the validation partition that consists of 4,007 pairs of 2D
and 3D data of 466 subjects. The 2D facial images are
captured under different illumination conditions. For the
BU-3DFE database, we use all the 2,500 pairs of 2D and
3D data of 100 subjects. The 2D and 3D data are captured
while the subjects are performing different types of facial
expressions. For the UHDB31 database, we use a subset of
2,079 2D facial images with corresponding 3D facial scans.
These data are captured under three illumination conditions
with nine facial poses. We show several examples of the 2D
data from these three databases in Fig. 4.

In the first experiment, these three databases are all used
to evaluate and compare the performance of our method
with state-of-the-art using the BFM 3D facial shape model.
The FRGC2 database is used to evaluate the performance
of different methods under varying illumination conditions.
The BU-3DFE database is used to evaluate their perfor-
mance with varying facial expressions. The UHDB31
database is used to evaluate their performance with different
facial poses. In the second experiment, the FRGC2 and the
BU-3DFE databases are used to build the shape basis of the
AFM 3D facial shape model, while the UHDB31 database
is used for evaluation.

To compare the performance of different methods, we
used the root mean squared error between the reconstructed
3D face and the ground truth after rigid alignment and reg-
istration using the iterative closest point (ICP) algorithm [1]
to measure the accuracy of 3D face reconstruction.

4.3. Implementation details

We use the Caffe deep learning framework2 to train the
four DNN models. The pre-trained VGG-Face model is
used as initialization for UH-E2FAR and UH-E2FARMod,
which are then fine-tuned on the synthetic database for 3D
face reconstruction. The multi-task loss weights of UH-
E2FAR are empirically set to λd = 1 and λe = 5. The
Adam solver [14] is employed with the mini-batch size and
the initial learning rate set to 32 and 0.0001, respectively.
We first fine-tune only the fully connected layers and the
fusion-CNN for 40,000 iterations. Then, we continue to
fine-tune the full deep neural network. For RSNIEF and
RSN, we train them on the synthetic database for 3D face
reconstruction from scratch. The Adam solver [14] is em-
ployed with the initial learning rate set to 0.001. The learn-
ing rate is decreased by a factor of 0.5 every 40,000 itera-
tions. We run the training for a total of 120,000 iterations.

2http://caffe.berkeleyvision.org/



UH-E2FAR RSNIEF RSN UH-2FCSL
UHDB31 2.73±0.71 3.51±0.84 3.65±0.91 3.37±0.76
FRGC2 3.71±3.05 3.91±2.51 4.50±3.09 3.81±2.30
BU-3DFE 4.52±1.11 4.00±1.07 4.23±1.09 N/A

Table 2: Quantitative comparison on the UHDB31, the
FRGC2, and the BU-3DFE databases: Mean and standard
deviation of RMSE (mm).

Figure 5: Cumulative distribution of 3D facial shape
reconstruction RMSE on the UHDB31 database.

(a) (b) (c) (d)

Figure 6: Reconstruction error heatmaps of different
methods on the UHDB31 database: (a) UH-E2FAR, (b)
RSNIEF, (c) RSN, and (d) UH-2FCSL. The top row
illustrates the spatial distribution of RMSE on the face and
the bottom row illustrates the differences in RMSE
between our approach UH-E2FAR and other approaches
(green indicating our method has smaller RMSE, red
indicating our method has larger RMSE, and color
intensity indicating the magnitude of the difference).

4.4. Experimental Results

In the first experiment, we evaluated the performance of
our method on the multi-view facial images in the UHDB31
database. In total, 1,638 out of the selected 2,079 2D facial
images with successful face and facial landmark detection

were used to reconstruct the 3D faces. The cumulative dis-
tribution of RMSE is depicted in Fig. 5. The quantitative
results of mean and standard deviation of RMSE are illus-
trated in Table 2. The spatial reconstruction error distribu-
tions of the four methods over the facial region are depicted
in Fig. 6(T) and the comparisons between our method UH-
E2FAR and the other three methods are depicted in Fig.
6(B). It is clear that our method offers the best performance.

Figure 7: Cumulative distribution of 3D facial shape
reconstruction RMSE on the FRGC2 database.

(a) (b) (c) (d)

Figure 8: Reconstruction error heatmaps of different
methods on the FRGC2 database: (a) UH-E2FAR, (b)
RSNIEF, (c) RSN, and (d) UH-2FCSL. The top row
illustrates the spatial distribution of RMSE on the face and
the bottom row illustrates the differences in RMSE
between our approach UH-E2FAR and other approaches
(green indicating our method has smaller RMSE, red
indicating our method has larger RMSE, and color
intensity indicating the magnitude of the difference).

Similarly, on the FRGC2 database, 3,999 out of the 4,007
facial images with successful face and facial landmark de-
tection are used to evaluate the 3D face reconstruction ac-
curacy. The cumulative distribution of RMSE is depicted
in Fig. 7. The quantitative results of mean and standard
deviation of RMSE are illustrated in Table 2. Compared



with RSNIEF, RSN, and UH-2FCSL, our algorithm achieves
considerable improvement in reconstruction accuracy. The
spatial reconstruction error distributions of the four meth-
ods over the facial region are illustrated in Fig. 8(T) and the
comparisons between our method UH-E2FAR and the other
three methods are depicted in Fig. 8(B). Compared with
RSNIEF and UH-2FCSL, our method demonstrates better
performance at the key facial regions including the mouth,
nose, and eyes.

Figure 9: Cumulative distribution of 3D facial shape
reconstruction RMSE on the BU-3DFE database.

(a) (b) (c) (d)

Figure 10: Reconstruction error heatmaps of different
methods on the BU-3DFE database: (a) UH-E2FAR, (b)
RSNIEF, (c) RSN, and (d) UH-E2FARMod. The top row
illustrates the spatial distribution of RMSE on the face and
the bottom row illustrates the differences in RMSE
between our approach UH-E2FAR and other approaches
(green indicating our method has smaller RMSE, red
indicating our method has larger RMSE, and color
intensity indicating the magnitude of the difference).

We evaluate and compare our method with RSNIEF and
RSN in reconstructing expressive 3D face on the BU-3DFE
database. As UH-2FCSL and DRSN are not capable of
reconstructing expressive 3D face, we exclude these two
methods from this experiment. The cumulative distribu-

tion of RMSE is depicted in Fig. 9. The quantitative re-
sults of mean and standard deviation of RMSE are illus-
trated in Table 2. Compared with RSNIEF and RSN, our
method exhibits larger RMSE. From the spatial reconstruc-
tion error distributions over the facial region, as depicted in
Fig. 10(T), we observe that the majority of RMSE error of
UH-E2FAR is distributed in the outer facial region. In the
inner facial region, our method exhibits much lower RMSE
compared with RSNIEF and comparable RMSE when com-
pared with RSN. We also compare our method with UH-
E2FARMod to demonstrate the benefit of the fusion-CNN
we proposed in reconstructing expressive 3D face. Com-
pared with UH-E2FARMod, UH-E2FAR exhibits better per-
formance at the key facial regions including the mouth,
nose, and eyes.

(a) (b) (c) (d) (e) (f)

Figure 11: Example of the neutral 3D faces reconstructed
by different methods: (a) The input 2D image. (b)
UH-E2FAR, (c) RSNIEF, (d) RSN, (e) UH-2FCSL, and (f)
UH-E2FARMod.

The neutral 3D faces reconstructed by different methods
from facial images captured in the wild are depicted in Fig.
11. Compared with RSNIEF, RSN, and UH-E2FARMod,
UH-E2FAR is more robust. The expressive 3D faces recon-
structed by different methods are illustrated in Fig. 12. Note
that the performance of our method is very stable and the re-
constructed expression is more plausible than RSNIEF and
RSN, and more accurate than UH-E2FARMod.

In the second experiment, we integrate our approach
into the 2D face recognition pipeline proposed by Kakadi-
aris et al. [13] and compare with UH-2FCSL for 3D-aided
face recognition. We use the AFM 3D facial shape model
and train our UH-E2FAR model with 250,000 synthetic im-
ages. We use the frontal facial image of each subject in
the UHDB31 database as gallery and use the other eight
non-frontal images as probe. To emphasize the influence



(a) (b) (c) (d) (e)

Figure 12: Example of the expressive 3D faces
reconstructed by different methods: (a) The input 2D
image. (b) UH-E2FAR, (c) RSNIEF, (d) RSN, and (e)
UH-E2FARMod.

of 3D face reconstruction on face recognition performance,
we use manually annotated feature points on 2D facial im-
ages during 3D2D pose estimation and employ a simple fa-
cial representation based on image gradient computed on
the pose-normalized facial texture. Besides UH-E2FAR and
UH-2FCSL, we also use the ground truth 3D facial data
as a baseline to highlight the performance of our method.
The cumulative match characteristic (CMC) curve of face
identification accuracy is depicted in Fig. 13. Compared
with UH-2FCSL, our DNN-based approach UH-E2FAR in-
creases the face identification accuracy considerably. From
the fine-grained results of rank-1 face identification rates
on different facial poses, as depicted in Fig. 14, we ob-
serve that in some facial poses the rank-1 identification rates
obtained with our reconstructed 3D faces are very close to
those obtained using ground truth 3D data. It indicates the
superior performance of our approach.

Figure 13: The cumulative matching characteristic curve of
face identification accuracy on the UHDB31 database.
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Figure 14: The Rank-1 identification rates on different
facial poses.

5. Conclusions
In this paper, we propose UH-E2FAR, an end-to-end 3D

face reconstruction method based on deep neural networks.
Compared with previous work, our method brings signif-
icant simplification to the framework by replacing the it-
erative model parameter updating scheme with an end-to-
end inferring scheme and removing the dependency on 3D
shape rendering or initial model parameters as additional
DNN input. We also introduce two key components to our
framework, namely a fusion-CNN and a multi-task learn-
ing loss. With both components, we divide 3D face re-
construction into two sub-tasks, namely neutral 3D facial
shape reconstruction and expressive 3D facial shape recon-
struction, and train different types of neural layers in a sin-
gle DNN model for these two specific tasks. With exten-
sive experiments, we demonstrate that the simplification of
the framework does not compromise the 3D face recon-
struction performance. Instead, it is possible to initialize
our DNN model using real facial images from available
2D face databases, which helps improve the robustness of
our method to facial pose and complex illumination. As a
result, our method outperforms state-of-the-art approaches
[25, 7] with significant improvement in reconstruction ac-
curacy and robustness.
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