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Abstract

Face hallucination is a domain-specific super-resolution
problem with the goal to generate high-resolution (HR)
faces from low-resolution (LR) input images. In contrast
to existing methods that often learn a single patch-to-patch
mapping from LR to HR images and are regardless of the
contextual interdependency between patches, we propose a
novel Attention-aware Face Hallucination (Attention-FH)
framework which resorts to deep reinforcement learning
for sequentially discovering attended patches and then per-
forming the facial part enhancement by fully exploiting the
global interdependency of the image. Specifically, in each
time step, the recurrent policy network is proposed to dy-
namically specify a new attended region by incorporating
what happened in the past. The state (i.e., face hallucina-
tion result for the whole image) can thus be exploited and
updated by the local enhancement network on the selected
region. The Attention-FH approach jointly learns the recur-
rent policy network and local enhancement network through
maximizing the long-term reward that reflects the hallucina-
tion performance over the whole image. Therefore, our pro-
posed Attention-FH is capable of adaptively personalizing
an optimal searching path for each face image according
to its own characteristic. Extensive experiments show our
approach significantly surpasses the state-of-the-arts on in-
the-wild faces with large pose and illumination variations.

1. Introduction
Face hallucination refers to generating a high-resolution

face image from a low-resolution input image, which is a
very fundamental problem in face analysis field and can
facilitate several face-related tasks such as face attribute
recognition [16], face alignment [34], face recognition [35]
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in the complex real-world scenarios in which the face im-
ages are often of very low quality.

Existing face hallucination methods [32, 31, 17, 23] usu-
ally focus on how to learn a discriminative patch-to-patch
mapping from LR images to HR images. Particularly, re-
cent great progresses are made by employing the advanced
Convolutional Neural Networks (CNNs) [36] and multiple
cascaded CNNs [37]. The face structure priors and spatial
configurations [15, 3] are often treated as external informa-
tion for enhancing faces / facial parts. However, the con-
textual dependencies among the facial parts are usually ig-
nored during the hallucination processing. According to the
studies of human perception process [19], humans start with
perceiving the whole images and successively explore a se-
quence of regions with the attention shifting mechanism,
rather than separately processing the local regions. This
finding enlightens us to explore a new pipeline of face hal-
lucination by sequentially searching for the attentional local
regions and considering their contextual dependency from a
global perspective.

Inspired by the recent successes of attention and re-
current models on a variety of computer vision tasks [22,
1, 6], we propose an Attention-aware face hallucination
(Attention-FH) framework that recurrently discovers facial
parts and enhance them by fully exploiting the global inter-
dependency of the image, as shown in Fig. 1. In particular,
accounting for the diverse characteristics of face images on
blurriness, pose, illumination and face appearance, we ex-
plore to search for an optimal accommodated enhancement
route for each face hallucination. And we resort to the deep
reinforcement learning (RL) method [21] to harness the
model learning since this technique has been demonstrated
its effectiveness on globally optimizing the sequential mod-
els without supervision for every step.

Specifically, our Attention-FH framework jointly opti-
mizes a recurrent policy network that learns the policies to
select a preferable facial part in each step and a local en-
hancement network for facial parts hallucination, through
considering the previous enhancement results of the whole
face. In this way, rich correlation cues among different
facial parts can be explicitly incorporated in the local en-
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Figure 1: Sequentially discovering and enhancing facial parts in our Attention-FH framework. At each time step, our frame-
work specifies an attended region based on the past hallucination results and enhances it by considering the global perspective
of the whole face. The red solid bounding boxes indicate the latest perceived patch in each step and the blue dashed bounding
boxes indicate all the previously enhanced regions. We adopt a global reward at the end of sequence to drive the framework
learning under Reinforcement Learning paradigm.

hancement process in each step. For example, the agent can
improve the enhancement of the mouth region by taking a
more clear version of the eye region into account, as Fig. 1
illustrates.

We define the global reward for reinforcement learn-
ing by the overall performance of the super-resolved face,
which drives the recurrent policy network optimization.
And the recurrent policy network is optimized following
the reinforcement learning (RL) procedure [26] that can be
treated as a Markov decision process (MDP) maximized
with a long-term global reward. In each time step, we
learn the policies to determine an optimal location of next
attended region by conditioning on the current enhanced
whole face and the history actions. One Long Short-Term
Memory (LSTM) layer is utilized for capturing the past in-
formation of the attended facial parts. And the history ac-
tions are also memorized to avoid the inference trapped in a
repetitive action cycle.

Given the selected facial part in each step, the local en-
hancement network performs the super-resolution opera-
tion. The loss of enhancement is defined based on the fa-
cial part hallucination quality. Notably, the supervision in-
formation from the enhancement of facial parts effectively
reduces unnecessary trials and errors during the reinforce-
ment optimization.

We compare the proposed Attention-FH approach with
other state-of-the-art face hallucination methods under both
constrained and unconstrained settings. Extensive experi-
ments have shown that our method substantially surpasses
all of them. Moreover, our framework can explicitly gener-
ate a sequence of attentional regions during the hallucina-

tion, which finely accord with human perception process.

2. Related Work

Face Hallucination and Image Super-Resolution.
Face hallucination problem is a special case of image super-
resolution, which requires more informative structure pri-
ors and suffers from more challenging blurring. Early tech-
niques made an assumption that the faces are in a controlled
setting with small variations. Wang et al. [25] implemented
the mapping between low-resolution and high-resolution
faces by an eigen transformation. Yang et al. [32] suggested
that the low-resolution and high-resolution faces have sim-
ilar sparse prior and the high-resolution faces can be ac-
curately recovered from the low-dimensional projections.
In particular, Yang et al. [31] replaced the patch-to-patch
mapping with mapping between specific facial components,
which incorporates priors on face. However, the matchings
between components are based on the landmark detection
results which are unavailable when the down-sampling fac-
tor is large. Recently, deep convolution neural network has
been successfully applied to face hallucination [37, 36] as
well as image super-resolution [13, 20]. Zhen et al. [2] ad-
vocated the use of network cascade for image SR with a lo-
cal auto-encoder architecture. Similar FCNs were also used
in [3], which formulated sparse-coding based SR method
into 3 layers convolution neural network. Zhou et al. [36]
addressed the importance of appearance invariant method,
and adopted fully-connected layer to perform face hallu-
cination. Ren et al. [20] suggested that the unevenly dis-
tributed pixels may have different influences. They used



Shepard interpolation to efficiently achieve translation in-
variant interpolation(TVI).

Reinforcement Learning and Attention Networks.
Attention mechanism has been recently applied and has
benefited various tasks, such as object proposal[12], ob-
ject classification[18], relationship detection[27], image
captioning[30] and visual question answering[28]. Since
contextual information is important for computer vision
problems, most of these works attempted to attend multi-
ple regions by formulating their attention procedure as a
sequential decision problem. Reinforcement learning tech-
nique was introduced to optimize the sequential model with
delayed reward. This technique has been applied to face
detection[5] and object localization[1]. These methods
learned an agent that actively locates the target regions (ob-
jects) instead of exhaustively sliding sub-windows on im-
ages. For example, Goodrich et al. [5] defined 32 actions to
shift the focal point and reward the agent when finding the
goal. Caicedo et al. [1] defined an action set that contains
several transformations of the bounding box and rewarded
the agent if the bounding box is closer to the ground-truth
in each step. These two methods both learned an optimal
policy to locate the target through Q-learning.

3. Attention-Aware Face Hallucination
Given a face image Ilr with low-resolution, our

Attention-FH framework targets on its corresponding high-
resolution face image Ihr by learning a projection function
F :

Ihr = F (Ilr|θ), (1)

where θ denotes the function parameters. Our Attention-FH
proposes to sequentially locate and enhance the attended fa-
cial parts in each step, which can be formulated as a deep
reinforcement learning procedure. Our framework consists
of two networks: the recurrent policy network that dynam-
ically determines the specific facial part to be enhanced in
current step and the local enhancement network which is
further employed to enhance the selected facial part.

Specifically, the whole hallucination procedure of our
Attention-FH can be formulated as follows. Given the input
image It−1 at the t-th step, the agent of the recurrent policy
network selects one local facial part Î ltt−1 with the location
lt:

lt = fπ(st−1; θπ),

Î ltt−1 = g(lt, It−1),
(2)

where fπ represents the recurrent policy network, θπ is the
network parameters. st−1 is the encoded input state of the
recurrent policy network, which is constructed by the input
image It−1 and the encoded history action ht−1. g denotes
a cropping operation which crops a fixed-size patch from
It−1 at location lt as the selected facial part. The patch size
is set as 60× 45 for all face images.

We then enhance each local facial part Î ltt−1 by our lo-
cal enhancement network fe. The resulting enhanced local
patch Î ltt is computed as:

Î ltt = fe(Î
lt
t−1, It−1; θe), (3)

where θe is the local enhancement network parameters. The
output image It at each t-th step is thus obtained by replac-
ing the local patch of the input image It−1 at location lt with
the enhanced patch Î ltt . Our whole sequential Attention-FH
procedure can be written as:

I0 = Ilr

It = f(It−1; θ) 1 ≤ t ≤ T,
Ihr = IT

(4)

where T is the maximal number of local patch mining steps,
θ = [θπ; θe] and f = [fπ; fe]. We set T = 25 empirically
throughout this paper.

3.1. Recurrent Policy Network

The recurrent policy network performs the sequential lo-
cal patch mining, which can be treated as a decision mak-
ing process on discrete time intervals. At each time step, the
agent takes action to determine an optimal image patch to be
enhanced by conditioning on the current state it has reached
so far. Given the selected location, the extracted local patch
is enhanced through the proposed local enhancement net-
work. During each time step, the state is updated by ren-
dering the hallucinated face image with the enhanced facial
part. The policy network recurrently selects and enhances
local patches until the maximum time step is achieved. At
the end of this sequence, a delayed global reward, which is
measured by the mean squared error between the final face
hallucination result and groundtruth high-resolution image,
is employed to guide the policy learning of the agent. The
agent can thus iterate to explore an optimal searching route
for each individual face image in order to maximize the
global holistic reward.

State: The state st at t-th step should be able to provide
enough information for the agent to decide without looking
back more than one step. It is thus composed of two parts:
1) the enhanced hallucinated face image It from previous
steps, which enables the agent to sense rich contextual in-
formation for a new patch to be processed, e.g., the part
which is still blur and requires to be enhanced; 2) the la-
tent variable ht obtained by forwarding the encoded history
action vector ht−1 into the LSTM layer, which is used to
incorporate all previous actions. In this way, the goal of the
agent is to determine the location of the next attended lo-
cal patch by sequentially observing state st = {It, ht} to
generate a high-resolution image Ihr.

Action: Given a face image I with sizeW×H , the agent
targets on selecting one action from all possible locations



Figure 2: Network architecture of our recurrent policy network and local enhancement network. At each time step, the
recurrent policy network takes a current hallucination result It−1 and action history vector encoded by LSTM (512 hidden
states) as the input and then outputs the action probabilities for all W ×H locations, where W, H are the height and width of
the input image. The policy network first encodes the It−1 with one fully-connected layer (256 neurons), and then fuse the
encoded image and the action vector with a LSTM layer. Finally a fully-connected linear layer is appended to generate the
W ×H-way probabilities. Given the probability map, we extract the local patch, then pass the patch and It−1 into the local
enhancement network to generate the enhanced patch. The local enhancement network is constructed by two fully-connected
layers (each with 256 neurons) for encoding It−1 and 8 cascaded convolutional layers for image patch enhancement. Thus a
new face hallucination result can be generated by replacing the local patch with an enhanced patch.

lt = (x, y|1 ≤ x ≤ W, 1 ≤ y ≤ H). As shown in Fig. 2,
at each time step t, the policy network fπ first encodes the
current hallucinated face image It−1 with fully-connected
layer. Then the LSTM unit in policy network fuses the
encoded vector with the history action vector ht−1. Ulti-
mately, a final linear layer is appended to produce aW×H-
way vector which indicates the probabilities of all available
actions P (lt = (x, y)|st−1), with each entry (x, y) indicat-
ing the probability of next attached patch located in position
(x, y). The agent will then take action lt by stochastically
drawing an entry following the action probability distribu-
tion. During testing, we select the location lt with the high-
est probability.

Reward: The reward is applied to guide the agent to
learn the sequential policies to obtain the whole action
sequence. Since our model targets on generating a hal-
lucinated face image, we define the reward according to
mean squared error (MSE) after enhancing T attended lo-
cal patches at the selected locations with the local enhance-
ment network. Given the fixed local enhancement network
fe, we first compute the final face hallucination result IT
by sequentially enhancing a list of local patches mined by
l = l1,2,...,T . The MSE loss is thus obtained by computing
Lθπ = Ep(l;π)[‖Ihr − IT ‖2], where p(l;π) is the probabil-
ity distribution produced by the policy network fπ . The
reward r at t-th step can be set as:

rt =

{
0 t < T

−Lθπ t = T.
(5)

By setting the discounted factor as 1, the total discounted
reward will be R = −Lθπ .

3.2. Local Enhancement Network

The local enhancement network fe is used to enhance
the extracted low-resolution patches. Its input contains the
whole face image It−1 that is rendered by all previous en-
hanced results and the selected local patch Î ltt−1 at current
step. As shown in Fig. 2, we pass the input It−1 into two
fully-connected layers to generate a feature map that has
the same size of the extracted patch Î ltt−1 in order to encode
the holistic information of It−1. This feature map is then
concatenated with the extracted patch Î ltt−1 and go through
convolution layers to obtain the enhanced patch Î ltt .

We employ the cascaded convolution network archi-
tecture similar to general image super-resolution meth-
ods [3, 13]. No pooling layers are used between convo-
lution layers, and the sizes of feature maps are kept fixed
throughout all convolution layers. We follow the detailed
setting of the network employed by Tuzel et al.[24]. Two
fully-connected layers contain 256 neurons. The cascaded
convolution network is composed of eight layers. Conv1
and conv7 layers have 16 channels of 3 × 3 kernels; conv2
and conv6 layers have 32 channels of 7× 7 kernels; conv3,
conv4 and conv5 layers have 64 channels of size 7× 7 ker-
nel; conv8 has kernel of size 5×5 and outputs the enhanced
image patch with the same size and channel as the extracted
patch.

In the initialization, we first up-sample the image Ilr to
the same size as high-resolution image Ihr with Bicubic
method. Our network first generates a residual map and then
combines the input low-resolution patch with the residual
map to produce the final high-resolution patch. Learning
from the residual map has been verified to be more effec-
tive than directly learning from the original high-resolution



images [13] [7].

3.3. Deep Reinforcement Learning

Our Attention-FH framework jointly trains the parame-
ters θπ of the recurrent policy network fπ and parameters
θe of the local enhancement network fe. We introduce a re-
inforcement learning scheme to perform joint optimization.

First, we optimize the recurrent policy network with RE-
INFORCE algorithm [26] guided by the reward given at the
end of sequential enhancement. The local enhancement net-
work is optimized with mean squared error between the en-
hanced patch and the corresponding patch from the ground
truth high-resolution image. This supervised loss is cal-
culated at each time step, and can be minimized based on
back-propagation.

Since we jointly train the recurrent policy network and
local enhancement network, the change of parameters in lo-
cal enhancement network will affect the final face halluci-
nation result, which in turn causes a non-stationary objec-
tive for the recurrent policy network. We further employ
the variance reduction strategy as mentioned in [18] to re-
duce variance due to the moving rewards during the training
procedure.

4. Experiments
4.1. Datasets and implementation details

Extensive experiments are evaluated on BioID [11] and
LFW [9] datasets. The BioID dataset contains 1521 face
images collected under the lab-constrained settings. We use
1028 images for training and 493 images for evaluation.
The LFW dataset contains 5749 identities and 13233 face
images taken in an unconstrained environment, in which
9526 images are used for training and the remaining 3707
images are used for evaluation. This train/test split fol-
lows the split provided by the LFW datasets. In our experi-
ment, we first align the images on BioID dataset with SDM
method [29] and then crop the center image patches with
size of 160 × 120 as the face images to be processed. For
LFW dataset, we use aligned face images provided in LFW
funneled[8] and extract the centric 128×128 image patches
for processing. We evaluate two scaling factors of 4 and 8,
denoted as 4× and 8× in the following figures and tables.
The input low resolution image is generated by resizing the
original image with fixed scaling factors. Thus the input
images in BioID are resized as 40 × 30 and 20 × 15, and
the input images in LFW are resized as 32×32 and 16×16
respectively.

We set the maximum time steps T = 25 in our Attention-
FH model for both datasets. And the face patch size is H ×
W = 60 × 45 for all experiments. The network is updated
using ADAM gradient descent [14]. The learning rate and
the momentum term are set to 0.0002 and 0.5 respectively.

4.2. Evaluation protocols and comparisons

We adopt the widely used Peak Signal-to-Noise Ratio
(PSNR), structural similarity(SSIM) as well as feature sim-
ilarity (FSIM) [33] as our evaluation measurements.

We compare our method with several state-of-the-art
face hallucination and image super-resolution methods. For
face hallucination approaches, we compare with SFH [31],
MZQ [17], BCCNN [36], GLN [24]. We also compare with
two general image super-resolution methods: SRCNN [3]
and VDSR [13]. For the results of VDSR and SRCNN,
we carefully re-implement their models for both scaling
factors 4 and 8. We first pre-train the models proposed
in VDSR and SRCNN using 7,000 images from PASCAL
VOC2012 [4] and then finetune them on the training sets of
LFW and BioID.

4.3. Quantitative and qualitative comparisons

Table 1 shows the performance of our model and com-
parisons with other state-of-the-art methods. Our model
substantially beats all compared methods on LFW and
BioID datasets in terms of PSNR, SSIM and FSIM met-
rics. Specifically, the average gains achieved by our model
in terms of PSNR are 2.59dB, 1.66dB, 2.43dB and 1.8dB
compared with the second best method. The largest im-
provement by our method is 2.59dB over the the second
best method in LFW on scaling factor of 4.

The traditional face hallucination methods, SFH [31] and
MZQ [17], are highly dependent on the performance of fa-
cial landmarks detection. When the scaling factor is set to
8, the landmarks detection results are not reliable given the
very low-resolution input, thus their performances are not
as good as that of our model. As for deep-learning based
methods, our proposed method outperforms the best gen-
eral image super-resolution method VDSR [13] by 3.68dB,
2.05dB, 3.04dB and 2.25dB on different experiments re-
spectively. Furthermore, our model outperforms the second
best face hallucination method GLN [24] by a significant
margin. Noted that GLN [24] shares similar model archi-
tecture with our local enhancement network. Therefore, the
highly improved performance achieved by our model con-
firms the effectiveness of utilizing the attention agent.

The qualitative comparisons of face hallucination results
on LFW dataset and BioID dataset are shown in Fig. 3 and
Fig. 4. As can be observed from these results, our model
produces much clearer images than GLN and VDSR, de-
spite the large variations. For example, in Fig. 3, the eyes
of man on the leftmost column can only be successfully re-
covered by our Attention-FH, which demonstrates the ef-
fectiveness of our recurrent enhanced model.

4.4. Ablation studies

We perform extensive ablation studies and demonstrate
the effects of several important components in our frame-



Figure 3: Qualitative results on LFW-funneled with scaling factor of 8. Results of SFH and MZQ methods are not displayed
as they depends on facial landmarks which are often failed to detect in such low-resolution images.

(a) Bicubic (b) BCCNN (c) SFH (d) MZQ (e) SRCNN (f) VDSR (g) GLN (h) Our (i) Original

(j) Bicubic (k) BCCNN (l) SFH (m) MZQ (n) SRCNN (o) VDSR (p) GLN (q) Our (r) Original

Figure 4: Qualitative results on LFW-funneled with scaling factor of 4.



Methods LFW-funneled 4× LFW-funneled 8× BioID 4× BioID 8×
PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Bicubic 26.79 0.8469 0.8947 21.92 0.6712 0.7824 25.18 0.8170 0.8608 20.68 0.6434 0.7539
SFH [31] 26.59 0.8332 0.8917 22.12 0.6732 0.7832 25.41 0.8034 0.8494 20.31 0.6234 0.7238

BCCNN [36] 26.60 0.8329 0.8982 22.62 0.6801 0.7903 24.77 0.8034 0.8421 21.40 0.6504 0.7621
MZQ [17] 25.93 0.8313 0.8865 22.12 0.6771 0.7802 24.66 0.8003 0.8573 21.11 0.6481 0.7594

SRCNN [3] 28.94 0.8686 0.9069 23.92 0.6927 0.8314 27.02 0.8517 0.8771 22.34 0.6980 0.8274
VDSR [13] 29.25 0.8711 0.9123 24.12 0.7031 0.8391 28.52 0.8627 0.8914 24.31 0.7321 0.8465
GLN [24] 30.34 0.8922 0.9151 24.51 0.7109 0.8405 29.13 0.8794 0.8966 24.76 0.7421 0.8525

Our 32.93 0.9104 0.9427 26.17 0.7604 0.8630 31.56 0.9002 0.9343 26.56 0.7864 0.8748

Table 1: Comparison between our method and others in terms of PSNR, SSIM and FSIM evaluate metrics. We employ the
bold face to label the first place result and underline to label the second in each column.

LFW 4× LFW 8×
T = 5 28.89 23.55
T = 15 31.51 25.25
T = 25 32.93 26.17
T = 35 32.91 26.31

Table 2: Comparison of the variants of our Attention-FH
using different number of steps for sequentially enhancing
facial parts on LFW dataset.

LFW 4× LFW 8×
CNN-16 29.11 24.02

Our w/o attention 32.26 25.71
Random Patch 31.60 25.76

I0 32.10 25.92
Spatial Transform 28.13 25.75

Our 32.93 26.17

Table 3: Comparison of our model with different architec-
ture settings, including the 16-layers convolution network
“CNN-16”, the model “Our w/o attention” that recurrently
enhance the whole image, the model that randomly picks
patches, the model with original low-resolution input im-
age I0 as input for policy network, the end-to-end trainable
spatial transform network, and our Attention-FH.

work:
Effectiveness of increasing recursion depth. Firstly,

we explore the effect of using different recursive steps T
for sequentially enhancing facial parts. We train our model
with four different settings T = 5, 15, 25, 35. Table 2 shows
that the face hallucination performance gradually increases
with more attention steps. The PSNR measurement im-
proves dramatically when the number of recursion steps
is low, since the extracted patches are unable to cover the
whole image. When the number of recursion steps gets
greater than 15, the extracted patches can cover the whole
image, the step-wise performance improvement on PSNR
becomes minor. This phenomenon becomes more obvious
when the number of steps gets close to 25.

Effectiveness of patch-wise enhancement manner. We

SRCNN(3-layers) VDSR(20-layers) OURS(8-layers)
Time 20ms 100ms 81ms

Table 4: Computational cost for testing on 128 × 128 im-
ages.

further evaluate the effectiveness of our patch-wise en-
hancement manner. In table 3, “CNN-16” indicates the re-
sults of a 16-layered fully convolution neural network. By
comparing our model with “CNN-16”, there are 3.82 dB
and 2.14 dB improvements in terms of PSNR on LFW of
factor 4 and factor 8. We also conduct another ablation
study by recurrently enhancing the whole image at each step
without extracting patches, named as “Ours w/o attention”.
This model has the same architecture as our model, and the
number of recurrent steps is set to 5, which nearly covers the
same area of overlapping regions as our full model. From
table 3, we can see that although the recurrent model with-
out attention can achieve promising results, our model with
attention still promotes 0.67 dB and 0.46 dB on LFW 4×
and LFW 8× respectively, which demonstrates the effec-
tiveness of using attention-aware model and reinforcement
learning.

Effectiveness of sequentially attending patches. To
demonstrate the ability of our proposed model to sense
meaningful attention sequence, we conduct two experi-
ments: 1) The patch is randomly picked at each step in-
stead of being chosen by the agent; 2) use original LR im-
age as input for policy network instead of image that has
been locally enhanced at previous steps. As reported in ta-
ble 3, randomly picking patches drops 1.33dB and 0.41dB
on LFW 4× and 8× respectively, indicating the effective-
ness of the agent in our model in locating meaningful atten-
tion sequence, which can further be verified in Fig. 5. The
second experiment shows that the performance will respec-
tively drop 0.83dB and 0.25dB without previous enhanced
information, which confirms that the contextual interdepen-
dency between patches can help to mine the next patches by
our attention agent.

Effectiveness of reinforcement learning. We also



Figure 5: Example results of enhancement sequences and corresponding patches selected by the agent. The gray in some
patches indicates area outside of original image. Best viewed by zooming in the electronic version.

compare our reinforcement learning with end-to-end back-
propagation method. Spatial transform network proposed
by Jaderberg et al.[10] is capable of computing the sub-
gradients corresponding to the location of the extracted
patch. The comparison results are given in table 3.

Specifically, for “spatial transform” model, we re-
place the softmax output of the policy network with a 2-
dimensional vector, which contains coordinate offsets x and
y of the extracted patch. The transform scale s is fixed so
that the size of extracted patch is also 60 × 45. The spa-
tial transform layer takes {x, y, s} as well as the face im-
age generated at previous step as inputs, and extracts the
patch for enhancement. We expand the enhanced patch with
padding 0s by the spatial transform layer with a transform
vector {−s ∗x,−s ∗ y, 1/s}. Then, the expanded patch can
be added to the low-resolution face image. We calculate the
MSE loss between the groundtruth and the current enhanced
result at each step and train the whole recurrent model in an
end-to-end manner. Except for the spatial transform layer,
all other settings and model architecture remain the same as
our method.

4.5. Visualization of attended regions

We visualize the detailed steps of how the agent works
in our Attention-FH framework. We show the sequences
of intermediate local enhancement results, as well as the at-
tended regions located by the agent. As shown in Fig. 5, our
Attention-FH is able to first locate the corner of the images,
these regions are usually flat background and are easy to
be enhanced without the knowledge of particular face char-
acteristic. Secondly, the model turns to attend the facial

components such as ear, eye, nose and mouth. Finally, the
model refines detailed and high-frequency areas at last few
steps.

4.6. Complexity of recurrent hallucination

We compare the computation cost of our method with
other one-pass full image SR methods. The testing time of
a single 128 × 128 image running on TITANX is reported
in table 4. SRCNN[3] is a 3-layers CNN and it is the fastest
among the compared methods. VDSR[13] use a very deep
CNN with 20-layers, though it achieve state-of-art perfor-
mance, it requires longer processing time. Our local en-
hancement net is an 8 layers CNN. Though it requires mul-
tiple pass, the running time is still comparable. Importantly,
the extra recurrent iteration in our method is performed on
patches, i.e. one forward pass per patch, it performs faster
than other SR models[13].

5. Conclusion
In this paper, we propose a novel Attention-aware Face

Hallucination (Attention-FH) framework and optimize it us-
ing deep reinforcement learning. In contrast to existing face
hallucination methods, we explicitly incorporate the rich
correlation cues among different facial parts by casting the
face hallucination problem as a Markov decision process.
Extensive experiments demonstrate that our model not only
achieves state-of-the-art performance on popular evaluation
datasets, but also demonstrates better visual results. In fu-
ture, we will try to extend our model to a more general form,
which can handle other low-level vision problems.
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